Supporting Information

Immobilization of Brønsted Basic Hexaniobate on the Lewis Acidic Zirconia by an Emulsion Assisted Self-assembly Strategy for Synergistic Boosting Nerve Agent Simulant Decontamination

Huifang Liu,^a Xiangrong Sun,^c Jing Dong,^b* Chengpeng Liu,^a Wei Lu,^a Zhemi Xu,^b Ni Zhen,^a Di Zhang,^a Yingnan Chi,^a* Changwen Hu^a

^aKey Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.

^bCollege of Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, People's Republic of China.

^cJiaxiang Country Branch of Jining Municipal Ecology and Environment Bureau, Jining, 272400, People's Republic of China.

Table of Contents

1. Experimental section

- 1.1 Preparation of amphiphilic [C₁₆H₃₃N(CH₃)₃]₄K₃HNb₆O₁₉
- 1.2 Preparation of ZrO₂

2. Characterization of the as-prepared catalysts

- Figure S1. The confocal microscopy images of the emulsion formed with C₁₆N-Nb₆
- Figure S2. The FT-IR spectra of the as-prepared catalyst
- Figure S3. Thermogravimetric curves of C₁₆N-Nb₆/ZrO₂ and C₁₆N-Nb₆
- Figure S4. The survey XPS spectrum of C₁₆N-Nb₆/ZrO₂ composite
- Figure S5. XRD patterns of C₁₆N-Nb₆/ZrO₂, C₁₆N-Nb₆ and ZrO₂
- Figure S6. Images of water contact angles of C₁₆N-Nb₆/ZrO₂, C₁₆N-Nb₆ and ZrO₂
- Table S1. The elemental analysis of the as-prepared catalysts
- Table S2. The surface area and porosity data of C_{16} N-Nb₆/ZrO₂ and ZrO₂.

3. Catalytic decontamination of DMNP and CEES

- Figure S7. ³¹P NMR of DMNP hydrolysis over different catalysts
- Figure S8. ³¹P NMR of DMNP hydrolysis over ZrO_2 at pH = 9.3

Figure S9. FT-IR spectra of C₁₆N-Nb₆/ZrO₂ before and after the catalytic hydrolysis reaction

- Figure S10. Mass spectrum of CEESO
- Figure S11. Mass spectrum of CEESO₂
- Figure S12. Raman spectra of ZrO_2 before and after treating with aqueous H_2O_2
- Figure S13. FT-IR spectra of C₁₆N-Nb₆/ZrO₂ before and after the oxidative decontamination reaction
- Table S3. Comparison of the different catalysts for the hydrolytic activity.
- 4. References

1. Experimental Section

All the starting chemicals and solvents were reagent grade, purchased from commercial sources and used without further purification. K₇HNb₆O₁₉·13H₂O was synthesized according to the reported method^[1].

1.1 Preparation of amphiphilic [C₁₆H₃₃N(CH₃)₃]₄K₃HNb₆O₁₉

 $[C_{16}H_{33}N(CH_3)_3]_4K_3HNb_6O_{19}$ ($C_{16}N-Nb_6$) was prepared according to the reported method^[2]. $[C_{16}H_{33}N(CH_3)_3]Br$ (1.0 g) was fully dissolved in deionized water (50 ml) under ultrasonic condition to obtain solution A. $K_7HNb_6O_{19}\cdot 8H_2O$ (0.05 mmol) was dissolved in 80 mL NaH₂PO₄ -Na₂HPO₄ buffer solution (0.2 M, pH = 8.2) to obtain solution B. The solution B was injected into solution A and stirred rapidly for 1 h at room temperature. And then, the obtained white precipitate was collected by centrifugation and washed with deionized water for 3 times. Finally, the white precipitate was dried under oven at 60°C overnight to obtain amphiphilic $C_{16}N-Nb_6$.

1.2 Preparation of zirconia

Zirconium *n*-butoxide (0.5 mL) was dropped into deionized water (10 mL, ice-bath) with continuous stirring. After 30 min, the ZrO_2 product was obtained by filtration, washing and drying.

2. Characterization of the as-prepared catalysts

Figure S1. The confocal microscopy images of water-in-oil type emulsion formed with $C_{16}N-Nb_6$ in the mixture solution of water and toluene, where the oil phase was stained with Nile Red (red) and the water phase was stained with polydopamine quantum dots (blue). (a) Without laser irradiation. (b) Both the polydopamine quantum dots in water phase and the Nile Red in oil phase were simultaneously irradiated. (c) Only the polydopamine quantum dots in water phase were irradiated; (d) Only with the Nile Red in oil phase was irradiated.

Figure S2. The FT-IR spectra of C₁₆N-Nb₆/ZrO₂, C₁₆N-Nb₆ and ZrO₂ in the region of 500-1000 cm⁻¹.

Figure S3. Thermogravimetric curves of 11%-C₁₆N-Nb₆/ZrO₂ and C₁₆N-Nb₆.

Figure S4. The survey XPS spectrum of the C₁₆N-Nb₆/ZrO₂ composite.

Figure S5. XRD patterns of C₁₆N-Nb₆/ZrO₂, C₁₆N-Nb₆ and ZrO₂.

Figure S6. Images of water contact angles of C_{16} N-Nb₆, ZrO₂ and C_{16} N-Nb₆/ZrO₂.

3. Catalytic decontamination of DMNP and CEES

Figure S7. ³¹P NMR of DMNP hydrolysis over different catalysts after 6 h. Reaction conditions: DMNP (5 mg), H₂O (300 μ L), CD₃CN (200 μ L), catalyst (1.7 mg for C₁₆N-Nb₆, 13.3 mg for ZrO₂), room temperature for 6 h.

Figure S8. ³¹P NMR of DMNP hydrolysis over ZrO_2 at pH = 9.3 after 6 h. Reaction conditions: DMNP (5 mg), H₂O (300 µL), CD₃CN (200 µL), ZrO₂ (13.3 mg), room temperature for 6 h.

Figure S9. FT-IR spectra of C_{16} N-Nb₆/ZrO₂ before and after the catalytic hydrolysis reaction.

Figure S10. Mass spectrum of CEESO.

Figure S11. Mass spectrum of CEESO₂.

Figure S12. Raman spectra of ZrO_2 before (blue line) and after (orange line) treating with aqueous H_2O_2 . A new peak at 838 cm⁻¹ was assigned to O-O stretching appeared after treating the ZrO_2 with H_2O_2 , suggesting a Zr-peroxo species might be also responsible for the oxidative decontamination reaction.

Figure S13. FT-IR spectra of C_{16} N-Nb₆/ZrO₂ before and after the oxidative decontamination reaction.

Composite	Mass ratio of	Calculated loading amount	
	C ₁₆ N-Nb ₆ and ZrO ₂	of C ₁₆ N-Nb ₆ (wt%)	
C ₁₆ N-Nb ₆ /ZrO ₂ -19%	3:5	19.3	
C ₁₆ N-Nb ₆ /ZrO ₂ -11%	1:3	11.6	
C ₁₆ N-Nb ₆ /ZrO ₂ -9%	1:4	9.1	
C ₁₆ N-Nb ₆ /ZrO ₂ -6%	1:6	6.7	
$C_{16}N\text{-}Nb_6/ZrO_2\text{-}4\%$	1:8	4.5	

Table S1. The elemental analysis of the as-prepared C_{16} N-Nb₆/ZrO₂ catalysts.

Table S2. The surface area and porosity data of $C_{16}N\text{-}Nb_6/ZrO_2$ and $ZrO_2.$

Sample	S _{BET} (m²/g)	Pore volume (cm ³ /g)	Average Pore Diameter (nm)	
C ₁₆ -Nb ₆ /ZrO ₂	41.6	0.27	25.9	
ZrO ₂	242.8	0.39	6.4	

Entry	Catalyst	Simulant	Conv. (%)	Time	System	Ref.
1	C ₁₆ N-Nb ₆ /ZrO ₂	DMNP	100	6 h	heterogeneous	This work
2	MOF-808	POX ^[f]	0	35 min	heterogeneous	3
3	NU-1000	POX	0	35 min	heterogeneous	3
4	UiO-66-NH ₂	POX	~ 20	35 min	heterogeneous	3
5	$\{[PW_{11}Zr]_2\}^{[a]}$	DMNP	100	120 h	homogeneous	4
6	$\{Sc_2PW_{10}\}^{[b]}$	DMNP	97	9 h	homogeneous	5
7	$\{GeNb_{12}\}^{[c]}$	DMMP ^[g]	54	264 h	heterogeneous	6
8	$\{Nb_{47}\}^{[d]}$	DMMP	46	263 h	homogeneous	7
9	$\{Nb_{54}\}^{[e]}$	DMMP	40	264 h	heterogeneous	8
10	Zr(OH) ₄ -fiber	DFP ^[h]	62	24 h	solid phase ^[i]	9

Table S3. Comparison of the different catalysts for the hydrolytic decontamination of nerve agent

 simulants under basic additive free conditions.

 $\label{eq:constraint} \fbox{[a] {[PW_{11}Zr]_2}: (Et_2NH_2)_8 {[\alpha-PW_{11}O_{39}Zr(\mu-OH)(H_2O)]_2} \cdot 7H_2O.}$

 $\label{eq:sc2PW10} \ensuremath{\left[b \right]} \{ Sc_2 PW_{10} \} \colon Na_7 [Sc_2 (CH_3 COO)_2 PW_{10} O_{38}] \cdot 10H_2 O \cdot 2 CH_3 COONa.$

 $\label{eq:genb12} \ensuremath{\left[c \right]} \{GeNb_{12}\} {:} \ensuremath{\left[K_{12} [T_{i2} O_2] [GeNb_{12} O_{40}] {\cdot} 19 H_2 O. \ensuremath{\left[M_{12} \right]} {\cdot} 19 H_2 O. \$

[d] $\{Nb_{47}\}: H_2Li_5Na_5K_5[Cu(en)_2]_7[Nb_{47}O_{128}(OH)_6(CO_3)_2]\cdot 20H_2O$, en = ethylenediamine.

 $[e] {Nb_{54}}: H_5Na_7K_4[Cu(en)_2]_2[Cu(en)(H_2O)]_2[Cu(en)_2(H_2O)]_4[Nb_{54}O_{151}]\cdot 27H_2O,$

en = ethylenediamine.

[f] POX: Eto OEt diethyl 4-nitrophenyl phosphate.

[g] DMMP: Meo ome dimethyl methylphosphonate.

[h] DFP: $(H_3C)_2HC-O = F O-CH(CH_3)_2$ diisopropyl fluorophosphate.

[i] Zr(OH)₄-fiber is soaked by DFP at room temperature with a proper humidity level.

4. References

[1] C. M. Flynn Jr., G. D. Stucky, Inorg. Chem., 1969, 8, 332-334.

- [2] X. Q. Li, J. Dong, H. F. Liu, X. R. Sun, Y. N. Chi, C. W. Hu, J. Hazard. Mater., 2018, 344, 994-999.
- [3] M. C. Koning, M. v. Grol, T. Breijaert, Inorg. Chem., 2017, 56, 11804-11809.
- [4] D. L. Collins-Wildman, M. Kim, K. P. Sullivan, A. M. Plonka, A. I. Frenkel, D. G. Musaev, C. L. Hill, ACS Catal., 2018, 8, 7068-7076.
- [5] D. Zhang, W. Q. Zhang, Z. G. Lin, J. Dong, N. Zhen, Y. N. Chi, C. W. Hu, *Inorg. Chem.*, 2020, 59, 9756-9764.
- [6] W. W. Guo, H. J. Lv, K. P. Sullivan, W. O. Gordon, A. Balboa, G. W. Wagner, D. G. Musaev, J. Bacsa, C. L. Hill, *Angew. Chem. Int. Ed.*, 2016, 55, 7403-7407.
- [7] Y. L. Wu, X. X. Li, Y. J. Qi, H. Yu, L. Jin, S. T. Zheng, Angew. Chem. Int. Ed., 2018, 57, 8572-8576.
- [8] Y. L. Wu, Y. J. Wang, Y. Q. Sun, X. X. Li, S. T. Zheng, Chem. Commun., 2011, 58, 3322-3325.
- [9] S. Kim, W. B. Ying, H. Jung, S. G. Ryu, B. Lee, K. J. Lee, Chem. Asian J., 2017, 12, 698-705.