Supplementary Information

Synergistic effect of MoS₂ decorated in situ NiFe nanoalloys/NiFe-LDH with super hydrophilicity for electrocatalytic overall water splitting

Minghui Hao^a, Zhiying Xu^a, Xin Liu^b, Liang Wang^a, Chunhu Li^a and Wentai Wang^a*

- ^a Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Email: <u>wentaiwang@ouc.edu.cn</u>
- ^b Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China.

1. Materials and reagents

Nickel sulfate hexahydrate (NiSO₄·6H₂O), thiourea, urea (CH₄N₂O), ammonium fluoride (NH₄F) and KOH were provided by Sinopharm Chemical Reagent Co., Ltd. Iron sulfate heptahydrate (FeSO₄·7H₂O), sodium molybdate dihydrate (Na₂MoO₄·2H₂O) was purchased by Tianjin BASF Chemical Co., Ltd. These above reagents are AR grade and can be used directly in this experiment without additional purification.

2. Characterizations

X-ray photoelectron spectroscopy (XPS, PHI 5300 ESCA system) were collected to explore the surface chemical state and the valence state. The microscopic morphology and element distribution of the MoS₂/NF/NFL/CC were analyzed by transmission electron microscopy (TEM, FEI Quanta 200F) and scanning electron microscopy (SEM, Regulus EU8100). The crystal structure of the MoS₂/NF/NFL/CC were revealed by the X-ray diffraction (XRD, Philips) with Cu- Kα radiation.

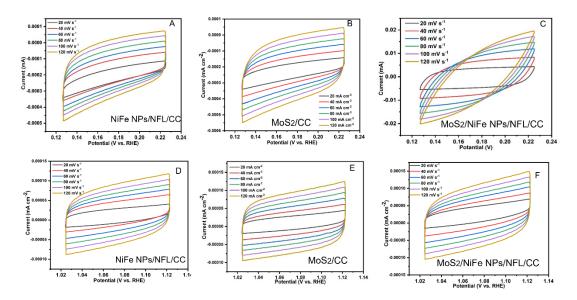


Fig. S1 (A-F) CV curves of the NiFe NPs/NFL/CC, MoS_2/CC and $MoS_2/$ NiFe NPs /NFL/CC at varied scan rate and potential range.