1	Supplementary Information
2	
3	CaIn ₂ S ₄ -In ₂ O ₃ hybrid nanofibers with expedited photocarrier
4	separation for fast photocatalytic bacterial inactivation under
5	visible light
6	Lina Wang ^{a, c} ‡, Zhiping Wan ^b ‡, Xiaoxiang Xu ^{a,c} *, and Jun Qian ^b *
7	
8	^a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical
9	Science and Engineering, Tongji University, Shanghai, 200092, China
10	Email: <u>xxxu@tongji.edu.cn</u>
11	^b Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine,
12	Tongji University, 389 Xincun Road, Shanghai, 200065, China
13	Email: <u>qianjun19@126.com</u>
14	^c Clinical and Central Lab, Putuo People's Hospital, Tongji University, Shanghai,
15	200060, China
16 17	
18	* Corresponding authors
19	* These authors contributed equally.
20	Supplementary information content
21	Number of pages: 12 (S1-S12)
22	Number of figures: 12 (Figure S1-S12)
23	Number of Tables: 2 (Table S1-S2)

24 Contents

25 Figure S1. FE-SEM image of as-prepared In₂O₃ fibers by the electrospinning method.
26 S4

27 Figure S2. SEM-EDS mapping of single $CaIn_2S_4$ - In_2O_3 fiber, the element content is

S4

S5

28 tabulated in the inset table.

Figure S3. (a) TEM image of a single In₂O₃ fiber, inset shows the selected area electron diffraction patterns; (b) high resolution TEM image of a single In₂O₃ fiber, the lattice fringes marked correspond to (222), (112) and (226) planes of In₂O₃.

33 Figure S4. FE-SEM image of $CaIn_2S_4$ -In₂O₃ fibers with different $CaIn_2S_4$ /In₂O₃

- 34 molar ratio: (a) 1:2; (b) 1:1; (c) 2:1.
- 35 Figure S5. TEM image of $CaIn_2S_4$ nanofoils of the $CaIn_2S_4$ -In₂O₃ fibers.
- 36 S6
- 37 Figure S6. FE-SEM images of (a) CaIn₂S₄-In₂O₃ fibers; (b) CaIn₂S₄-In₂O₃ mixtures,
- 38 the $CaIn_2S_4/In_2O_3$ molar ratio is fixed at 1:1. S6

39 Figure S7. FE-SEM images of $CaIn_2S_4$ - In_2O_3 fibers before and after mechanical 40 grinding: (a) $CaIn_2S_4$ - In_2O_3 fibers before grinding; (b) $CaIn_2S_4$ - In_2O_3 debris after 41 grinding. S7

42 **Figure S8.** (A) FE-SEM images of In_2O_3 and $CaIn_2S_4-In_2O_3$ fibers with different 43 aspect ratios: (a) In_2O_3 fibers with diameter of 85 nm; (b) $CaIn_2S_4-In_2O_3$ fibers 44 prepared using In_2O_3 fibers with diameter of 85 nm; (c) In_2O_3 fibers with diameter of 45 190 nm; (d) $CaIn_2S_4-In_2O_3$ fibers prepared using In_2O_3 fibers with diameter of 190 nm. 46 (B) Photocatalytic disinfection activity of CaIn₂S₄-In₂O₃ fibers with different aspect
47 ratios from (A). S7

48 Figure S9. XRD patterns of CaIn₂S₄-In₂O₃ fibers before and after photocatalytic
49 disinfection experiments.
S8

50 Figure S10. (a) DMPO spin-trapping EPR spectra for ·OH; (b) TEMP spin-trapping
51 EPR spectra for ¹O₂.
S8

- 52 Figure S11. Bacterial colony growth results for illuminated CaIn₂S₄-In₂O₃ fibers in
 53 the presence of different scavengers, *i.e.* TEMPOL for 'O₂⁻, sodium oxalate for h⁺, 2-
- 54 propanol for 'OH, and L-tryptophan for ${}^{1}O_{2}$. S9

55 Figure S12. (a) Linear sweep voltammetry (LSV) of $CaIn_2S_4$ - In_2O_3 fibers, $CaIn_2S_4$,

56 and In₂O₃ fibers under chopped visible light illumination ($\lambda \ge 420$ nm); (b) transient

- 57 photocurrent of CaIn₂S₄-In₂O₃ fibers, CaIn₂S₄, and In₂O₃ fibers; (c) Electrochemical
- 58 impedance spectra of $CaIn_2S_4$ - In_2O_3 fibers, $CaIn_2S_4$, and In_2O_3 fibers. S9
- 59 **Table S1.** Comparison of disinfection activity for previously reported materials.

60 S10

61 Table S2. Summary of fitted decay lifetime τ and their relative amplitude from the

62	time-resolved photoluminescence decay spectra	S11
63	References	S11-S12

66 Figure S1. FE-SEM image of as-prepared In_2O_3 fibers by the electrospinning method.

65

68 Figure S2. SEM-EDS mapping of single $CaIn_2S_4$ - In_2O_3 fiber, the element content is

69 tabulated in the inset table.

Figure S3. (a) TEM image of a single In_2O_3 fiber, inset shows the selected area electron diffraction patterns; (b) high resolution TEM image of a single In_2O_3 fiber,

74 the lattice fringes marked correspond to (222), (112) and (226) planes of In_2O_3 .

- 76 Figure S4. FE-SEM image of CaIn₂S₄-In₂O₃ fibers with different CaIn₂S₄/In₂O₃
- 77 molar ratio: (a) 1:2; (b) 1:1; (c) 2:1.
- 78

80 Figure S5. TEM image of $CaIn_2S_4$ nanofoils of the $CaIn_2S_4$ -In₂O₃ fibers.

81

79

- 83 Figure S6. FE-SEM images of (a) $CaIn_2S_4$ - In_2O_3 fibers; (b) $CaIn_2S_4$ - In_2O_3 mixtures,
- 84 the $CaIn_2S_4/In_2O_3$ molar ratio is fixed at 1:1.

Figure S7. FE-SEM images of CaIn₂S₄-In₂O₃ fibers before and after mechanical
grinding: (a) CaIn₂S₄-In₂O₃ fibers before grinding; (b) CaIn₂S₄-In₂O₃ debris after
grinding.

Figure S8. (A) FE-SEM images of In₂O₃ and CaIn₂S₄-In₂O₃ fibers with different
aspect ratios: (a) In₂O₃ fibers with diameter of 85 nm; (b) CaIn₂S₄-In₂O₃ fibers
prepared using In₂O₃ fibers with diameter of 85 nm; (c) In₂O₃ fibers with diameter of
190 nm; (d) CaIn₂S₄-In₂O₃ fibers prepared using In₂O₃ fibers with diameter of 190 nm.
(B) Photocatalytic disinfection activity of CaIn₂S₄-In₂O₃ fibers with different aspect
ratios from (A).

100 Figure S9. XRD patterns of CaIn₂S₄-In₂O₃ fibers before and after photocatalytic

101 disinfection experiments.

102

103

104 Figure S10. (a) DMPO spin-trapping EPR spectra for ·OH; (b) TEMP spin-trapping

Figure S11. Bacterial colony growth results for illuminated $CaIn_2S_4-In_2O_3$ fibers in the presence of different scavengers, *i.e.* TEMPOL for O_2^- , sodium oxalate for h⁺, 2propanol for OH, and L-tryptophan for IO_2 .

113 **Figure S12.** (a) Linear sweep voltammetry (LSV) of $CaIn_2S_4$ -In₂O₃ fibers, $CaIn_2S_4$, 114 and In₂O₃ fibers under chopped visible light illumination ($\lambda \ge 420$ nm); (b) transient 115 photocurrent of $CaIn_2S_4$ -In₂O₃ fibers, $CaIn_2S_4$, and In₂O₃ fibers; (c) Electrochemical 116 impedance spectra of $CaIn_2S_4$ -In₂O₃ fibers, $CaIn_2S_4$, and In₂O₃ fibers.

	T.	E. coli Cell	Catalyst		Inactivation	Ref.
Materials		Densuty	Dosage	Light source (λ / nm)		
	(min)	(CFU/mL)	(mg / mL)	,)		
Graphene Oxide/g-	120	1.0×10^{7}	0.10	300 W Xe lamp	7.0.1	1
C_3N_4				$(\lambda \ge 420)$	7.0 log	1
$CuBi_0 \Omega/Bi_0 M_0 \Omega$	240	$1.0 imes 10^7$	0.80	300 W Xe lamp	7.0.1og	2
Cubi ₂ O ₄ / Di ₂ /0006				$(\lambda \ge 420)$	7.0 log	
Ag	240	2.5×10^{7}	0.60	300 W Xe lamp	7.2 log	3
$QDs/Bi_2S_3/SnIn_4S_8$	240		0.00	$(\lambda \ge 420)$	7.5 log	2
ΜσΤί2Ωε/σ=C2N4	180	1.0×107	0.50	300 W Xe lamp	7 0 log	4
Wig 1 1205/ g-C31 4	100	1.0 ~ 10		$(\lambda \ge 400)$	7.0 log	
				300W halogen		
MoS_2	90	1.0×10^{6}	1.00	tungsten	6.0 log	5
QDs/Bi2WO6				projector lamp		
				$(\lambda \ge 410)$		
	90	1.0×10^{6}	0.40	300 W Xe lamp	6.0 log	6
$g-C_3N_4/m-Bl_2O_4$				$(\lambda \ge 400)$		
$Ag_2S/g_2C_2N_4$	90	1.0×10^{7}	0.80	300 W Xe lamp	7.0 log	7
1 18220 8 0 31 14	20	110 10		$(\lambda \ge 420)$	100 108	
Graphene/CdS	60	1.0×10^{7}	0.20	350 W Xe lamp	5.3 log	8
				$(\lambda \ge 420)$ 300 W Xe lamp		
$AgInS_2/TiO_2$	180	$1.0 \times 10^{7.2}$	0.10	$(325 < \lambda < 845)$	7.2 log	9
	30	1.0×10^{6}	0.50	800 W Xe lamp		10
InVO ₄ /AgVO ₃				$(\lambda \ge 420)$	6.0 log	
CaIn ₂ S ₄ -In ₂ O ₃				300 W Xe lamp		This
fibers	20	1.0×10^{7}	0.50	$(\lambda \ge 400)$	7.0 log	work
·						

Table S1. Comparison of disinfection activity for previously reported materials.

121 Table S2. Summary of fitted decay lifetime τ and their relative amplitude from the

Sample	Electron	lifetime		Relative amplitude			Average lifetime	χ^2
	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	A_1 (%)	A ₂ (%)	A ₃ (%)	$\tau_{a} (ns)$	
In ₂ O ₃	16.63	163.25	1394.00	5.46	23.23	71.31	1347.60	1.06
CaIn ₂ S ₄ @In ₂ O ₃	71.90	331.70	1980.00	4.99	22.93	72.08	1892.26	0.98

122 time-resolved photoluminescence decay spectra

123

124 The average lifetime is calculated by Equation (1):

		$A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2$
125	$\tau_a =$	$\overline{A_1\tau_1 + A_2\tau_2 + A_3\tau_3}$
125	(1)	
127	(1)	
128	Refere	ences
129	1.	L. Sung, T. Du, C. Hu, J. N. Chen, J. Lu, Z. C. Lu and H. Y. Han, Antibacterial Activity of
130		Grophene Oxide/g-C3N4 Composite through Photocatalytic Disinfection under Visible Light,
131		Acs Sustain Chem Eng, 2017, 5 , 8693-8701.
132	2.	H. X. Shi, J. Fan, Y. Y. Zhao, X. Y. Hu, X. Zhang and Z. S. Tang, Visible light driven
133		CuBi2O4/Bi2MoO6 p-n heterojunction with enhanced photocatalytic inactivation of E. coli
134		and mechanism insight, J Hazard Mater, 2020, 381 , 121006.
135	3.	H. Shi, C. Wang, Y. Zhao, E. Liu, J. Fan and Z. Ji, Highly efficient visible light driven
136		photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8
137		composite, Appl Catal B-Environ, 2019, 254 , 403-413.
138	4.	Z. F. Jiang, B. Wang, Y. Li, H. S. Chan, H. L. Sun, T. Q. Wang, H. M. Li, S. Q. Yuan, M. K. H. Leung,
139		A. H. Lu and P. K. Wong, Solar-light-driven rapid water disinfection by ultrathin magnesium
140		titanate/carbon nitride hybrid photocatalyst: Band structure analysis and role of reactive
141		oxygen species, Appl Catal B-Environ, 2019, 257, 117898.
142	5.	X. C. Meng, Z. Z. Li, H. M. Zeng, J. Chen and Z. S. Zhang, MoS2 quantum dots-interspersed
143		Bi2WO6 heterostructures for visible light-induced detoxification and disinfection, Appl Catal
144		B-Environ, 2017, 210 , 160-172.
145	6.	S. F. Chang, Y. W. Hu, J. Qian, Y. L. Shao, S. Ni, L. L. Kong, W. Y. Dan, C. Luo, S. Jin and X. X. Xu,
146		Mg2TiO4 spinel modified by nitrogen doping as a Visible-Light-Active photocatalyst for
147		antibacterial activity, Chem Eng J, 2021, 410 , 128410.
148	7.	W. Y. Zuo, L. Liang, F. G. Ye and S. L. Zhao, Construction of visible light driven silver
149		sulfide/graphitic carbon nitride p-n heterojunction for improving photocatalytic disinfection,
150		Chemosphere, 2021, 283 , 131167.
151	8.	W. J. Wang, T. W. Ng, W. K. Ho, J. H. Huang, S. J. Liang, T. C. An, G. Y. Li, J. C. Yu and P. K.
152		Wong, CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial
153		inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms, Appl
154		Catal B-Environ, 2013, 129 , 482-490.
155	9.	J. G. Du, S. L. Ma, H. P. Liu, H. C. Fu, L. Li, Z. Q. Li, Y. Li and J. G. Zhou, Uncovering the

- 156mechanism of novel AgInS2 nanosheets/TiO2 nanobelts composites for photocatalytic157remediation of combined pollution, Appl. Catal. B-Environ., 2019, 259, 118062.
- H. L. Yan, L. Z. Liu, R. Wang, W. X. Zhu, X. Y. Ren, L. P. Luo, X. Zhang, S. J. Luo, X. L. Ai and J. L.
 Wang, Binary composite MoS2/TiO2 nanotube arrays as a recyclable and efficient photocatalyst for solar water disinfection, *Chem Eng J*, 2020, **401**, 126052.
- 161
- 162
- 163