Electronic Supplementary Information

Tailoring metal sites of FeCo-MOF nanozymes for significantly enhanced peroxidase-like activity

Xiqing Cheng,^{a,b} Yameng Xie,^b Guang Li,^b Zhiping Zheng,^b Qin Kuang^{*b}

^aSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China

^bState Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian 361005, China

*Email: qkuang@xmu.edu.cn

Supplementary results

Fig. S1 TGA and DTG curves of FeCo-MOF.

FeCo-MOF presented three obvious weight loss procedures, corresponding to the evaporation of the adsorbed-water or solvent in the pores and the surface of FeCo-MOF below 150 °C, the elimination of anion ligands (OH⁻, and Cl⁻) in the range of 150-350 °C, and the decomposition of thermally stable coordinated ligands between 350 °C to 600 °C.

Fig. S2 SEM images of (a) Fe-MOF and (b) FeCo-MOF.

Fig. S3 FT-IR spectra of Fe-MOF, FeCo-MOF, and FeCo-MOF-H₂. Inset: enlarged view in the wavelength range of $590 \sim 520$ cm⁻¹.

The peak at 556 cm⁻¹ in Fe-MOF was assigned as the characteristic stretching vibration peak of Fe– O_{linker} . The metal- O_{linker} peak in FeCo-MOF and FeCo-MOF-H₂ was located at 553 cm⁻¹ and 551 cm⁻¹, respectively.

Fig. S4 (a) The absorption spectra of $H_2O_2 + TMB + FeCo-MOF-H_2$ prepared via lowtemperature heat treatment on FeCo-MOF with different ratio of Fe and Co. (b) Corresponding comparison of peroxidase-like activities of these nanozymes.

Fig. S5 The FeO_6 chains in FeCo-MOF-H₂ nanozymes.

Nanozyme	Linear range	LOD	Response	Def
	(µM)	(µM)	time (min)	Kel.
Fe-MOFs	1.2–100	1.2	60	[1]
MIL-88B-Fe	10–100	0.6	50	[2]
Fe-MIL-88A	2–20.3	0.56	30	[3]
Pt/Fe-MOF	20–600	13.01	10	[4]
MOF(Co/2Fe)	10–100	5	_	[5]
Fe ₃ O ₄ @MIL-100(Fe)	2-60/60-160	0.63	19	[6]
Fe@PCN-224 NPs	2–100	1.60	10	[7]
Fe ₃ O ₄ NPs	5-100	3	10	[8]
Si-CoO	2-10	4.32	3	[9]
Au/Co ₃ O ₄ -CeO _x NCs	10–100	5.29	3	[10]
Ni _{0.67} Co _{0.33} LDH	10–200	0.48	-	[11]
Fe SACs	0.1–100	0.03	5	[12]
FeCo-MOF-H ₂	10–50	0.29	15	This work

Table S1 Performance comparisons of different nanozymes in H_2O_2 detection.

Nanamina	Linear range	LOD	Def	
Nanozyme	(µM)	(µM)	Kel.	
Fe-MIL-88NH ₂	1–100	0.45	[13]	
Fe ₃ O ₄ @MIL-100(Fe)	1–45	0.26	[6]	
NCDs/UiO-66	-15	0.48	[14]	
PSMOF	-20	0.68	[15]	
Cu-MOF-NO ₂	-100	0.97	[16]	
Fe ₃ O ₄ MNPs	3–30	3	[17]	
Fe ₃ O ₄ /CNDs	0.1–20	0.58	[18]	
Co ₃ O ₄	-40	0.5	[19]	
Si-CoO	1–5	0.45	[9]	
Co ₃ O ₄ -MMT NCs	0.1–20	0.088	[20]	
Por-ZnFe ₂ O ₄ /rGO	2–40	0.76	[21]	
MoS ₂ @CoFe ₂ O4	0.5–35	0.21	[22]	
Fe-N-C	0.67–33	0.71	[23]	
FeCo-MOF-H ₂	2–300	0.50	This work	

 Table S2 Performance comparisons of different nanozymes in GSH detection.

References

[1] J. Chen, H. Gao, Z. Li, Y. Li and Q. Yuan, Ferriporphyrin-inspired MOFs as an artificial metalloenzyme for highly sensitive detection of H₂O₂ and glucose, Chin. Chem. Lett., 2020, 31, 1398-1401.

[2] M. Fu, B. Chai, J. Yan, C. Wang, G. Fan, G. Song and F. Xu, Facile preparation of MIL-88B-Fe metal-organic framework with high peroxidase-like activity for colorimetric detection of hydrogen peroxide in milk and beer, Appl. Phys. A-Mater., 2021, **127**, 928.

[3] C. Gao, H. Zhu, J. Chen and H. Qiu, Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H_2O_2 and ascorbic acid, Chin. Chem. Lett., 2017, 28, 1006-1012.

[4] J. Li, J. Zhao, S. Li, Y. Chen, W. Lv, J. Zhang, L. Zhang, Z. Zhang and X. Lu, Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose, Nano Res., 2021, 14, 4689–4695.

[5] H. Yang, R. Yang, P. Zhang, Y. Qin, T. Chen and F. Ye, A bimetallic (Co/2Fe) metalorganic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide, Microchim. Acta, 2017, **184**, 4629-4635.

[6] J. Xu, Y. Xing, Y. Liu, M. Liu and X. Hou, Facile in situ microwave synthesis of Fe₃O₄@MIL-100(Fe) exhibiting enhanced dual enzyme mimetic activities for colorimetric glutathione sensing, Anal. Chim. Acta, 2021, **1179**, 338825.

[7] T. Li, P. Hu, J. Li, P. Huang, W. Tong and C. Gao, Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H₂O₂ and glucose, Colloid. Surfaces A, 2019, 577, 456-463.

[8] H. Wei and E. Wang, Fe_3O_4 magnetic nanoparticles as peroxidase mimetics and their applications in H_2O_2 and glucose detection, Anal. Chem., 2008, **80**, 2250-2254.

[9] C. Jin, J. Lian, Y. Gao, K. Guo, K. Wu, L. Gao, X. Zhang, X. Zhang and Q. Liu, Si Doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione, ACS Sustainable Chem. Eng., 2019, 7, 13989-13998.

[10] H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu and X. Zhang, Colorimetric and ultrasensitive detection of H_2O_2 based on Au/Co₃O₄-CeO_x nanocomposites with enhanced peroxidase-like performance, Sensor. Actuat. B-Chem., 2018, **271**, 336-345.

[11] Y. Sun, H. Xu, X. Zhao, Z. Hui, C. Yu, L. Wang, J. Xue, Y. Zhao, R. Zhou, H. Dai, C. Miao, Q. Chen, J. Zhou, G. Sun and W. Huang, Identifying the active site of ultrathin NiCo LDH as an efficient peroxidase mimic with superior substrate affinity for sensitive detection of hydrogen peroxide, J. Mater. Chem. B, 2019, 7, 6232-6237.

[12] N. Cheng, J. C. Li, D. Liu, Y. Lin and D. Du, Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays, Small, 2019, **15**, 1901485.

[13] Z. Jiang, Y. Liu, X. Hu and Y. Li, Colorimetric determination of thiol compounds in serum based on Fe-MIL-88NH₂ metal-organic framework as peroxidase mimetics, Anal. Methods, 2014, 6, 5647-5651.

[14] J. Zhao, J. Gong, J. Wei, Q. Yang, G. Li, Y. Tong and W. He, Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione, J. Colloid Interf. Sci., 2022, **618**, 11-21.

[15] Y. Liu, M. Zhou, W. Cao, X. Wang, Q. Wang, S. Li and H. Wei, Light-responsive metalorganic framework as an oxidase mimic for cellular glutathione detection, Anal. Chem., 2019, 91, 8170–8175. [16] J. Wang, W. Li and Y.-Q. Zheng, Nitro-functionalized metal-organic frameworks with catalase mimic properties for glutathione detection, Analyst, 2019, **144**, 6041–6047.

[17] Y. Ma, Z. Zhang, C. Ren, G. Liu and X. Chen, A novel colorimetric determination of reduced glutathione in A549 cells based on Fe_3O_4 magnetic nanoparticles as peroxidase mimetics, Analyst, 2012, **137**, 485-489.

[18] N. Luo, Z. Yang, F. Tang, D. Wang, M. Feng, X. Liao and X. Yang, Fe₃O₄/Carbon nanodot hybrid nanoparticles for the indirect colorimetric detection of glutathione, ACS Appl. Nano Mater., 2019, 2, 3951–3959.

[19] W. Li, J. Wang, J. Zhu and Y. Q. Zheng, Co₃O₄ Nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione, J. Mater. Chem. B, 2018, 6, 6858-6864.

[20] Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu and Q. Liu, Glutathione detection based on peroxidase-like activity of Co₃O₄-Montmorillonite nanocomposites, Sensor. Actuat. B-Chem., 2018, **273**, 1635-1639.

[21] B. Bian, Q. Liu and S. Yu, Peroxidase mimetic activity of porphyrin modified $ZnFe_2O_4$ /reduced graphene oxide and its application for colorimetric detection of H_2O_2 and glutathione, Colloids Surf. B, 2019, **181**, 567-575.

[22] Z. Xian, L. Zhang, Y. Yu, B. Lin, Y. Wang, M. Guo and Y. Cao, Nanozyme based on CoFe₂O₄ modified with MoS₂ for colorimetric determination of cysteine and glutathione, Microchim. Acta, 2021, **188**, 65.

[23] L. Shen, M. A. Khan, X. Wu, J. Cai, T. Lu, T. Ning, Z. Liu, W. Lu, D. Ye, H. Zhao and J. Zhang, Fe-N-C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants, Biosen. Bioelectron., 2022, 205, 114097.