UiO-66-NH₂ MOF derived N doped Porous Carbon and ZrO₂ Composite Cathode for Zinc-Ion Hybrid Supercapacitors

Xiaoqi Wang^{1,3}, Hu Hong², Shuo Yang², Shengchi Bai³, Rui Yang³, Xu Jin³, Chunyi Zhi^{2*}, Bo Wang^{1*}

¹School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

²Department of Materials Science and Engineering, City University of Hong Kong, 83

Tat Chee Avenue, Kowloon, China

³Research Institute of Petroleum Exploration & Development (RIPED), China National

Petroleum Corporation, Beijing, 100083, China

*email: cy.zhi@cityu.edu.hk; bowang@bit.edu.cn

Fig. S1 XRD patterns of the as-synthesized UiO-66, UiO-66-NH₂ samples, and simulated XRD pattern of the UiO-66, respectively.

Fig. S2 High resolution XPS spectrum of C 1s for NC@ZrO₂ composite.

Fig. S3 (a) N₂ adsorption and desorption curves of C@ZrO₂ composite, (b) pore size distribution curve.

Fig. S4 SEM images of UiO-66, UiO-66-NH₂ and the derived composites. (a) UiO-66. (b) UiO-66-NH₂. (c) NC@ZrO₂ composite (d) C@ZrO₂ composite..

Fig. S5 TEM characterizations of C@ZrO₂ composite. (a) TEM image. (b) HRTEM image. (c) TEM-EDS elemental mapping of the C@ZrO₂ composite, and the mass ratio of C, O, and Zr.

Fig. S6 TG-DTA analysis of NC@ZrO2 and C@ZrO2 composites. (a) NC@ZrO2. (b) C@ZrO2.

Fig. S7 Anlalysis of the redox pseudocapacitance-like contribution of NC@ZrO₂. (a) CV profiles of ZHC at different scan rates with NC@ZrO₂. (b) The plots of log(i) vs log(v) (peak current: *i*, scan rate: *v*), calculated from CV curves. (c) The shaded region shows the CV profile with the capacitive contribution at a scan rate of 10.0 mV s⁻¹. (d) Contribution ratio of capacitive at different scan rates.

Fig. S8 Anlalysis of the redox pseudocapacitance-like contribution of C@ZrO₂. (a) CV profiles of ZHC at different scan rates with C@ZrO₂. (b) The plots of log(*i*) vs log(v) (peak current: *i*, scan rate: *v*), calculated from CV curves. (c) The shaded region shows the CV profile with the capacitive contribution at a scan rate of 10.0 mV s⁻¹. (d) Contribution ratio of capacitive at different scan rates.

Fig. S9 GCD curves of C@ZrO₂ based ZHSs at current ranging from 0.2 to 6.4 A g^{-1} .

Fig. S10 Rate performance of the $C@ZrO_2$ cathode.

Fig. S11 Long-cycling performance of C@ZrO₂-based ZHS.