Supporting Information

Strong anisotropic second-order nonlinear optical response in 0D

lead-free chiral perovskite single-crystalline microwire arrays

Meiqiu Dong,^a Binshuai Wang,^f Ziwei Yu,^a Jinjin Zhao,^{d,e} Xinyi Li,^a Yue Fu,^a Yangwu Guo,^{*a} Yingjie Zhao,^{*c} Hanfei Gao,^{*a} Lei Jiang^{a,b} and Yuchen Wu^{a,b} ^aJi Hua Laboratory, Foshan, Guangdong, 528000, P.R. China Emails: guoyangwu15@mails.ucas.ac.cn; gaohanfei15@mails.ucas.ac.cn

^bCAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China

°College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China Email: zhaoyingjie5@zzu.edu.cn

^dDepartment of Physics, Shanxi Datong University, Datong, 037009, P.R. China

^eShanxi Province Key Laboratory of Microstructure Functional Materials Institute of Solid State Physics, Shanxi Datong University, Datong, 037009, P.R. China

^fDepartment of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China

Keywords: chiral, 0D perovskite, microwire arrays, single crystal, second harmonic generation

Fig. S1 Optical photographs of the as-synthesized colorless plate crystals and SEM images of the exfoliated crystal of 0D (R/S-MBA)₄Bi₂Cl₁₀ chiral perovskites. Scale bars: top, 3 mm; bottom, 1 μ m.

Fig. S2 The overall view of crystal structures of (a) $(R-MBA)_4Bi_2Cl_{10}$ and (b) $(S-MBA)_4Bi_2Cl_{10}$.

Fig. S3 The hydrogen bonds (red lines) around $[Bi_2Cl_{10}]^{4-}$ building block.

Fig. S4 Schematic structures of 0D perovskite crystals (a) $PEA_4Bi_2Cl_{10}$ and (b) $AMP_2BiCl_7 \cdot H_2O$. Insets are the corresponding ammonium molecules.

Fig. S5 The distribution of axial Cl–Bi–Cl angles in crystal structures of perovskites with different A-site cations.

Fig. S6 UV-vis-NIR transmittance spectrum and optical bandgap calculated based on Tauc plot (inset) of (*S*-MBA)₄Bi₂Cl₁₀.

Fig. S7 Isosurface plots of the wave functions of (a) VB maximum and (b) CB minimum of (S-MBA)₄Bi₂Cl₁₀.

Fig. S8 Schematic diagram of capillary-bridge assembly system to fabricate the 0D lead-free perovskite microwire arrays with high crystallinity and pure crystallographic orientation. (a) Liquid thin film forming between the substrate and the micropillar template. (b) Discrete capillary bridges forming on the hydrophilic micropillar tops. (c) Perovskite microwire array with uniform morphology forming on the substrate after complete evaporation of the solvent.

Fig. S9 (a) Large-scale and (b) zoom-in SEM images of micropillars with a width of 2 μ m and adjacent distance of 5 μ m. Scale bars: (a) 10 μ m, (b) 3 μ m. (c) Schematic illustration of the template showing the hydrophilic pillar top and hydrophobic sidewall selectively modified by heptadecafluorodecyltrimethoxysilane (FAS) molecules. (d) The contact angles of DMSO on the pillar top (22.0 \pm 0.3°) and the sidewall (85.4 \pm 0.5°). The average contact angles are calculated from five different templates and the error bars represent the standard deviation.

Fig. S10 SEM image of $(S-MBA)_4Bi_2Cl_{10}$ microwire arrays showing precise location, strict isometric arrangement, and homogeneous size over a large area. Scale bar: 10 µm.

Fig. S11 AFM image of $(S-MBA)_4Bi_2Cl_{10}$ microwire arrays showing the smooth surface and uniform size with a height of about 370 nm, a width of about 1.9 μ m, and the adjacent distance of about 5.1 μ m.

Fig. S12 XPS spectra of (S-MBA)₄Bi₂Cl₁₀ microwire arrays showing Bi 4f, Cl 2p, and N 1s regions.

Fig. S13 Zoom-in SEM image and corresponding EDS element mappings of $(R-MBA)_4Bi_2Cl_{10}$ single microwire showing the uniform distribution of Bi, Cl, C, and N elements. Scale bar: 1 μ m.

Fig. S14 XRD patterns of (a) $(R-MBA)_4Bi_2Cl_{10}$ and (b) $(S-MBA)_4Bi_2Cl_{10}$ microwire arrays. Insets are the details corresponding to (002) and (003) plane.

Fig. S15 (a) Measured SHG signals of $(R-MBA)_4Bi_2Cl_{10}$ sieved powder with 150–200 µm particle size and (b) particle-size-dependent SHG intensity of $(R-MBA)_4Bi_2Cl_{10}$ sieved powder with AgGaS₂ crystals as references. The pump wavelength is 2090 nm. The SHG intensity of $(R/S-MBA)_4Bi_2Cl_{10}$ powder is almost identical, resulting in the coincidence of $(R/S-MBA)_4Bi_2Cl_{10}$ curves in (a) and (b), which is indistinguishable.

Fig. S16 The schematic illustration of the home-built femtosecond laser setup for SHG signal measurement of microwires.

Fig. S17 Laser stability of perovskite microwire arrays. (a) SHG spectra of the $(R-MBA)_4Bi_2Cl_{10}$ microwire under continuous radiation with a pump wavelength of 800 nm. (b) SHG intensity for different times corresponding to (a).

Fig. S18 (a) Power-dependent SHG intensity of $(R-MBA)_4Bi_2Cl_{10}$ polycrystalline film with a pump wavelength of 800 nm. (b) Logarithmic plot of SHG intensity as a function of the incident power corresponding to (a). (c) Comparison of SHG intensities of single-crystalline microwire array and polycrystalline film of $(R-MBA)_4Bi_2Cl_{10}$ under the same excitation conditions. (d) Normalized polarization-dependent SHG intensity of $(R-MBA)_4Bi_2Cl_{10}$ polycrystalline film showing a polarization ratio of 0.272, which is smaller than that of single-crystalline microwire arrays.

Fig. S19 (a) XRD pattern and rocking curve corresponding to (001) plane (inset) of (R-MBA)₄Bi₂Cl₁₀ polycrystalline film showing a broad peak with full width at half maximum of 1.877°, which is bigger than that of (R-MBA)₄Bi₂Cl₁₀ single-crystalline microwire array, indicating the poor crystallinity of the polycrystalline film. (b) SEM image of (R-MBA)₄Bi₂Cl₁₀ polycrystalline film showing a large number of grain boundaries. Scale bar: 3 µm.

Compound	(R-MBA) ₄ Bi ₂ Cl ₁₀	(S-MBA) ₄ Bi ₂ Cl ₁₀
Empirical formula	Bi_2Cl_{10} ·4(C ₈ H ₁₂ N)	Bi_2Cl_{10} ·4(C ₈ H ₁₂ N)
Formula weight	1261.20	1261.20
Temperature /K	170	170
Crystal system	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁
<i>a</i> /Å	11.6344(3)	11.6866(2)
b/Å	14.3276(3)	14.3235(3)
<i>c</i> /Å	13.6062(3)	13.5914(3)
α /°	90	90
eta /°	94.890(2)	94.833(2)
γ /°	90	90
Volume /Å ³	2259.80(9)	2267.02(8)
Ζ	2	2
$ ho_{ m calc}$ /g cm $^{-3}$	1.854	1.848
μ /mm ⁻¹	8.40	8.37
<i>F</i> (000)	1208	1208
Radiation	Mo K α ($\lambda = 0.71073$ Å)	Mo Kα (λ = 0.71073 Å)
2θ range /°	4–59	3.6-59.6
Index ranges	$-16 \le h \le 15$	$-16 \le h \le 15$

Table S1. Crystallographic data of and structure refinement for $(R-MBA)_4Bi_2Cl_{10}$ and $(S-MBA)_4Bi_2Cl_{10}$.

	$-20 \le k \le 19$	$-19 \le k \le 20$
	$-18 \le l \le 19$	$-17 \le l \le 19$
Reflections collected	42947	43483
Independent reflections	12118 [$R_{\rm int} = 0.095$]	12240 [$R_{\rm int} = 0.049$]
Data/restraints/parameters	12118/61/440	12240/63/441
Goodness-of-fit on F ²	1.03	1.12
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0524, wR_2 = 0.1295$	$R_1 = 0.0626, wR_2 = 0.1512$
Final R indexes [all data]	$R_1 = 0.0628, wR_2 = 0.1331$	$R_1 = 0.0752, wR_2 = 0.1566$
Largest diff. peak/hole /e Å ⁻³	2.02/-2.10	2.94/-3.51
Flack parameter	0.006(7)	0.003(10)

((R-MBA) ₄ Bi ₂ Cl	10	(S-MBA) ₄ Bi ₂ Cl ₁₀			
Atom	Atom	Length /Å	Atom	Atom	Length /Å	
Bi1	C11	2.515(3)	Bi1	Cl1	2.562(4)	
Bi1	C12	2.704(4)	Bi1	C12	2.513(4)	
Bi1	C13	2.638(3)	Bi1	C13	2.701(4)	
Bi1	C14	2.683(3)	Bi1	Cl4	2.711(4)	
Bi1	C15	2.812(3)	Bi1	C15	2.880(3)	
Bi1	C16	2.984(3)	Bi1	C16	3.011(4)	
Bi2	C15	3.012(3)	Bi2	C15	2.982(3)	
Bi2	C16	2.869(3)	Bi2	C16	2.813(3)	
Bi2	C17	2.701(3)	Bi2	C17	2.701(4)	
Bi2	C18	2.515(3)	Bi2	C18	2.516(4)	
Bi2	C19	2.707(3)	Bi2	C19	2.648(4)	
Bi2	C110	2.557(4)	Bi2	C110	2.686(4)	

Table S2. Selected bond lengths for $(R-MBA)_4Bi_2Cl_{10}$ and $(S-MBA)_4Bi_2Cl_{10}$.

$(R-MBA)_4Bi_2Cl_{10}$				(S-MBA) ₄ Bi ₂ Cl ₁₀			
Atom	Atom	Atom	Angle /°	Atom	Atom	Atom	Angle /°
C11	Bi1	Cl2	96.53(14)	Cl1	Bi1	C13	88.69(14)
C11	Bi1	C13	91.97(13)	C11	Bi1	Cl4	90.97(15)
C11	Bil	Cl4	90.29(14)	C11	Bi1	C15	177.27(14)
C11	Bil	C15	91.14(11)	C11	Bi1	C16	96.62(13)
C11	Bi1	C16	174.43(12)	C12	Bi1	C11	93.38(14)
Cl2	Bi1	C15	88.20(13)	C12	Bi1	C13	90.73(13)
Cl2	Bi1	C16	85.85(12)	C12	Bi1	Cl4	95.08(13)
C13	Bi1	Cl2	91.23(14)	C12	Bi1	C15	87.40(12)
C13	Bi1	Cl4	89.08(11)	C12	Bi1	C16	169.98(11)
C13	Bi1	C15	176.89(10)	C13	Bi1	Cl4	174.19(12)
C13	Bi1	C16	93.01(10)	C13	Bi1	C15	88.69(12)
Cl4	Bi1	C12	173.16(10)	C13	Bi1	C16	88.80(12)
Cl4	Bi1	C15	91.14(11)	Cl4	Bi1	C15	91.57(14)
Cl4	Bi1	C16	87.31(11)	Cl4	Bi1	C16	85.47(12)

Table S3. Selected bond angles for $(R-MBA)_4Bi_2Cl_{10}$ and $(S-MBA)_4Bi_2Cl_{10}$.

C15	Bi1	Cl6	83.90(9)	C15	Bi1	C16	82.59(9)
C16	Bi2	C15	82.42(8)	C16	Bi2	C15	84.22(10)
C17	Bi2	C15	88.70(11)	C17	Bi2	C15	85.74(13)
C17	Bi2	C16	88.84(11)	C17	Bi2	C16	88.24(15)
C17	Bi2	C19	174.33(11)	C18	Bi2	C15	175.00(13)
C18	Bi2	C15	169.78(11)	C18	Bi2	C16	91.58(13)
C18	Bi2	C16	87.37(11)	C18	Bi2	C17	96.87(16)
C18	Bi2	C17	90.60(12)	C18	Bi2	C19	91.81(14)
C18	Bi2	C19	95.06(12)	C18	Bi2	C110	90.02(15)
C18	Bi2	C110	93.20(14)	C19	Bi2	C15	92.39(11)
C19	Bi2	C15	85.78(10)	C19	Bi2	C16	176.60(12)
C19	Bi2	C16	91.70(12)	C19	Bi2	C17	91.49(15)
C110	Bi2	C15	96.98(12)	C19	Bi2	C110	89.21(12)
C110	Bi2	C16	177.32(13)	C110	Bi2	C15	87.33(12)
C110	Bi2	C17	88.54(13)	C110	Bi2	C16	90.65(12)
C110	Bi2	C19	90.86(14)	C110	Bi2	C17	173.05(11)
Bi1	C15	Bi2	97.06(8)	Bi1	C15	Bi2	96.12(9)

Bi2	C16	Bi1	96.48(8)	Bi2	C16	Bi1	96.92(10)

Materials	Dime-	Transpare-	Morphology	Exciting	NLO	Anisotropy	Ref.
	nsion	ncy ^a		wavelength	coefficient ^b	ratio ^c	
		[nm]		[nm]	$d_{\rm eff} [{ m pm} { m V}^{-1}]$		
		Low din	nensional lead-fi	ree perovskites	5		
(R/S-MBA) ₄ Bi ₂ Cl ₁₀	0D	364-3191	Microwire	800	2.72	0.992	This work
$(R-C_8H_{12}N)_4Bi_2Br_{10}$	0D	-	Powder	1064	$20 \times \alpha$ -SiO ₂	-	[1]
$(C_8H_{11}NF)_4Bi_2Br_{10}$	0D	-	Crystal plate	800	$1/45 \times \alpha$ -SiO ₂	-	[2]
$(R-1-1NEA)_2CuCl_4$	0D	-	Film	880	0.13	0.84	[3]
(R/S-MBA) ₂ CuCl ₄	2D	-	Crystal plate	800	0.35	-	[4]
$(R/S-3AP)_4$ AgBiBr ₁₂	2D	-	Microwire	800	0.28	0.9/0.92	[5]
(CPA) ₄ AgBiBr ₈	2D	-	Powder	1064	$0.55 \times \text{KDP}$	-	[6]
		Low o	limensional lead	l perovskites			
$(R/S-2-C_5H_{14}N_2)_2PbI_6$	0D	~2000-3000	Single crystal	960	2 × Y-cut quartz	-	[7]
$C_5H_{14}N_2PbCl_4{\cdot}H_2O$	1D	-	mm-sized samples	1064	$0.83 \times \text{KDP}$	-	[8]
(<i>R/S</i> -3- aminopiperidine)PbI ₄	1D	~700-1100	bulk crystal	1064	2.1 × KDP	0.83	[9]
PEA ₃ PbBr ₅ ·H ₂ O	1D	-	Single crystal	900	0.1	0.94	[10]
(PMA) ₂ PbCl ₄	2D	-	Single crystal	1550	1.4	-	[11]

Table S4. Comparison of second-order NLO properties of perovskites.

(2-FBA) ₂ PbCl ₄	2D	-	Single crystal	1064	0.35	-	[12]
(<i>R</i> -MPEA) _{1.5} PbBr _{3.5} (DMSO) _{0.5}	2D	-	Nanowire	850	0.68	0.96	[13]
$(BA)_2(EA)_2Pb_3I_{10}$	2D	-	Powder	1064	$0.4 \times \text{KDP}$	-	[14]

^aTransparency window reflects the range of bands in which the crystal can be applied; the wider the window, the wider the wavelength range in which frequency conversion can be achieved. ^bNLO coefficient reflects the frequency conversion efficiency of a crystal; the larger the nonlinearity coefficient, the higher the conversion efficiency of frequency doubling. ^cAnisotropy ratio reflects the material's sensitivity to linearly polarized fundamental frequency light; the closer the value is to 1, the more pronounced the anisotropy of the crystal is. d_{eff} (KDP) = 0.39 pm V⁻¹; d_{eff} (Y-cut quartz) = 0.3 pm V⁻¹.

The results show that $(R/S-MBA)_4Bi_2Cl_{10}$ in our work exhibit higher NLO coefficient and anisotropy ratio, and are transparent over a broad spectral range, showing excellent NLO performances, which might provide a strategy for NLO-integrated applications in advancing photonics devices.

- T. H. Moon, S. J. Oh and K. M. Ok, [((R)-C₈H₁₂N)₄][Bi₂Br₁₀] and [((S)-C₈H₁₂N)₄][Bi₂Br₁₀]: chiral hybrid bismuth bromides templated by chiral organic cations, *ACS Omega*, 2018, **3**, 17895–17903.
- [2] N. Dehnhardt, M. Axt, J. Zimmermann, M. Yang, G. Mette and J. Heine, Band gaptunable, chiral hybrid metal halides displaying second-harmonic generation, *Chem. Mater.*, 2020, **32**, 4801–4807.
- [3] Z. H. Guo, J. Z. Li, J. C. Liang, C. S. Wang, X. Zhu and T. C. He, Regulating optical activity and anisotropic second-harmonic generation in zero-dimensional hybrid copper

halides, Nano Lett., 2022, 22, 846-852.

- [4] Z. Guo, J. Li, C. Wang, R. Liu, J. Liang, Y. Gao, J. Cheng, W. Zhang, X. Zhu, R. Pan and T. He, Giant optical activity and second harmonic generation in 2D hybrid copper halides, *Angew. Chem. Int. Ed.*, 2021, 60, 8441–8445.
- [5] Z. W. Yu, S. Q. Cao, Y. J. Zhao, Y. W. Guo, M. Q. Dong, Y. Fu, J. J. Zhao, J. R. Yang,
 L. Jiang and Y. C. Wu, Chiral lead-free double perovskite single-crystalline microwire arrays for anisotropic second-harmonic generation, *ACS Appl. Mater. Interfaces*, 2022, 14, 39451–39458.
- [6] W. Q. Guo, X. T. Liu, S. G. Han, Y. Liu, Z. Y. Xu, M. C. Hong, J. H. Luo and Z. H. Sun, Room-temperature ferroelectric material composed of a two-dimensional metal halide double perovskite for X-ray detection, *Angew. Chem. Int. Ed.*, 2020, 10, 13983–13988.
- [7] X. D. Jia, Y. S. Zheng, P. X. Cheng, X. Han, L. Xu and J. L. Xu, Methylpiperazine based
 0D chiral hybrid lead halides for second harmonic generation, *Dalton Trans.*, 2022, 51, 7248–7254.
- [8] Y. Peng, Y. P. Yao, L. N. Li, Z. Y. Wu, S. S. Wang and J. H. Luo, White-light emission in a chiral one-dimensional organic-inorganic hybrid perovskite, *J. Mater. Chem. C*, 2018, 6, 6033–6037.
- [9] D. Y. Fu, J. L. Xin, Y. Y. He, S. C. Wu, X. Y. Zhang, X. M. Zhang and J. H. Luo, Chirality-dependent second-order nonlinear optical effect in 1D organic–inorganic hybrid perovskite bulk single crystal, *Angew. Chem. Int. Ed.*, 2021, 60, 20021–20026.
- [10] Y. K. Zhou, W. Li, X. Chen, X. Z. Li, X. J. Wang, B. Bai, Y. Chen and H. H. Fang, Efficient second-order nonlinear response and upconversion emission from a wide-

bandgap quasi-1D lead bromide perovskite, J. Mater. Chem. C, 2022, 10, 15424-15430.

- Y. Gao, G. Walters, Y. Qin, B. Chen, Y. Min, A. Seifitokaldani, B. Sun, P. Todorovic,
 M. I. Saidaminov, A. Lough, S. Tongay, S. Hoogland and E. H. Sargent, Electro-optic modulation in hybrid metal halide perovskites, *Adv. Mater.*, 2019, **31**, e1808336.
- [12] P. P. Shi, S. Q. Lu, X. J. Song, X. G. Chen, W. Q. Liao, P. F. Li, Y. Y. Tang and R. G. Xiong, Two-dimensional organic-inorganic perovskite ferroelectric semiconductors with fluorinated aromatic spacers, *J. Am. Chem. Soc.*, 2019, **141**, 18334–18340.
- [13] C. Q. Yuan, X. Y. Li, S. Semin, Y. Q. Feng, T. Rasing and J. L. Xu, Chiral lead halide perovskite nanowires for second-order nonlinear optics, *Nano Lett.*, 2018, 18, 5411–5417.
- [14] S. G. Han, X. T. Liu, Y. Liu, Z. Y. Xu, Y. B. Li, M. C. Hong, J. H. Luo and Z. H. Sun,
 High-temperature antiferroelectric of lead iodide hybrid perovskites, *J. Am. Chem. Soc.*,
 2019, 141, 12470–12474.