Mechanism of Ligand-Induced Chiral Transmission Through a Top-

Down Selective Domain Etching

Junjie Hao,^{1,2#} Junzi Li,^{3#} Meijuan Chen,^{2,4} Xijian Duan,^{2,5,6} Bing Xu,⁶ Yiwen Li,⁴ Tingchao He,^{3*}

Xiao Wei Sun,^{2,5,6*} Marie-Hélène Delville,^{1*} Jiaji Cheng^{4*}

¹ CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, Pessac, F-33608, France;

² Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China;

³ College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China;

⁴ School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China;

⁵ Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, SUSTech-HUAWEI Joint Lab for Photonics Industry, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China;

⁶ Shenzhen Planck Innovation Technologies Co. Ltd., Shenzhen 518055, China. # These authors contributed equally to this work.

Email:jiajicheng@hubu.edu.cn;marie-helene.delville@icmcb.cnrs.fr;sunxw@sustech.edu.cn; tche@szu.edu.cn

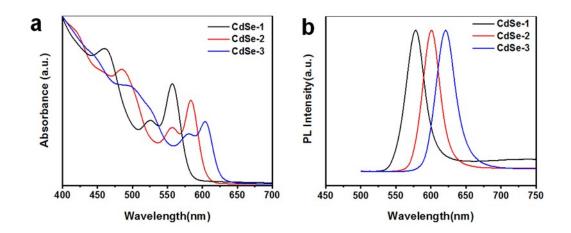


Figure S1. UV-vis. and PL of the different CdSe cores for the control synthesis of DRs.

Table S1. Physical properties of different CdSe cores.

Name	Abs (nm)	Diameter (nm) ^a	PL (nm)	FWHM (nm)
CdSe-1	557	3.2	578	33
CdSe-2	583	3.9	601	30
CdSe-3	603	4.7	619	32

^a Diameter of the CdSe core is determined from the absorption spectrum by Peng's equation (nm).¹

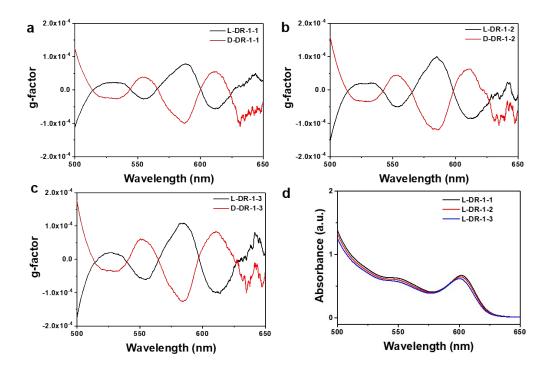


Figure S2. Corresponding g-factors variations and UV-vis. spectra of DR-1-n (n = 1-3) at the first exciton absorption peak as shown in Figure 4. a) CD spectrum of benzylamine modified DRs-1-1 after Cys exchange; b) CD spectrum of DRs-1-2 after one etching cycle and Cys exchange; c) CD spectrum of DRs-1-3 after two etching cycles and Cys exchange; d) Corresponding UV-vis. absorption spectra of the different etching processes.

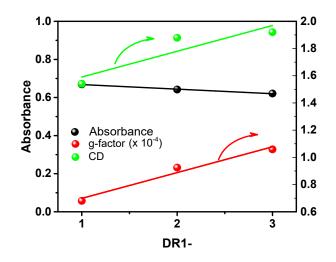


Figure S3. CD, UV-vis. and g-factor variations of L-Cys-DR-1-3 (n= 1-3) at the first exciton absorption peak during the etching process. The UV-vis. value was taken at the maximum at the first exciton absorption peak.

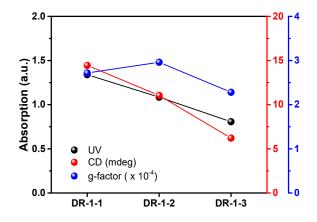


Figure S4. CD, UV-vis. and g-factor evolution of L-Cys-DR-1 (< 500 nm) during the etching process. The UV-vis. value is the wavelength of the maximum value of the CD signal.

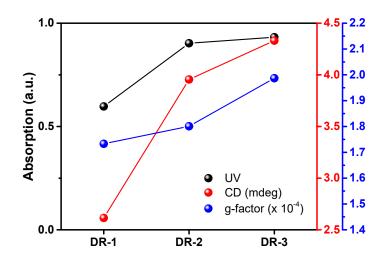


Figure S5. CD, UV-vis. and g-factor variations of L-Cys-DRs with different shell thicknesses at the first exciton absorption peak. The UV-vis. value is the maximum value at the first exciton absorption peak.

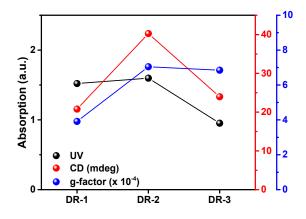


Figure S6. CD, UV-vis. and g-factor variations of L-Cys-DRs with different shell thicknesses (< 500 nm). The UV-vis. value is the wavelength of the maximum value of the CD signal.

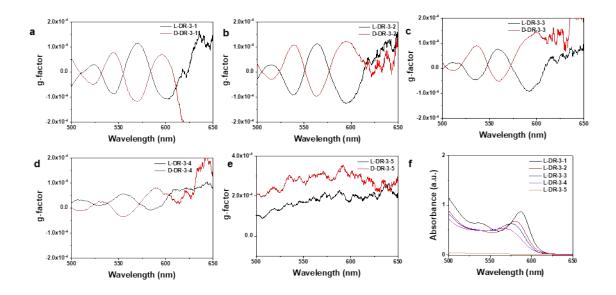


Figure S7. Corresponding UV-vis. and g-factor variations of DR-3 at the first exciton absorption peak as shown in Figure 8. (a) CD spectrum of benzyl amine-modified DRs after Cys exchange, (b)-(e) CD spectra of DRs with one cycle to four etching cycles after Cys exchange, (f) Corresponding UV-vis. absorptions of the different etching processes.

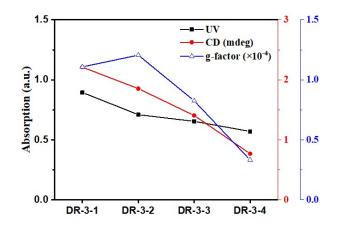


Figure S8. CD, UV-vis. and g-factor variations of L-Cys-DR-3-n (n = 1-4) at the first exciton absorption peak during the etching process. The UV-vis. value is the maximum value at the first exciton absorption peak.

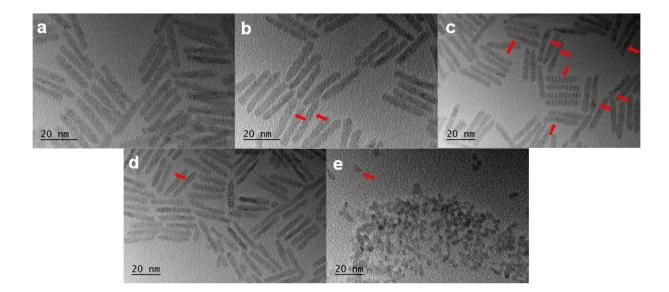


Figure S9. TEM images of DR-3 after the etching process. a) TEM of benzylamine modified DRs; b)-e) TEM of DRs after one cycle to four etching cycles.

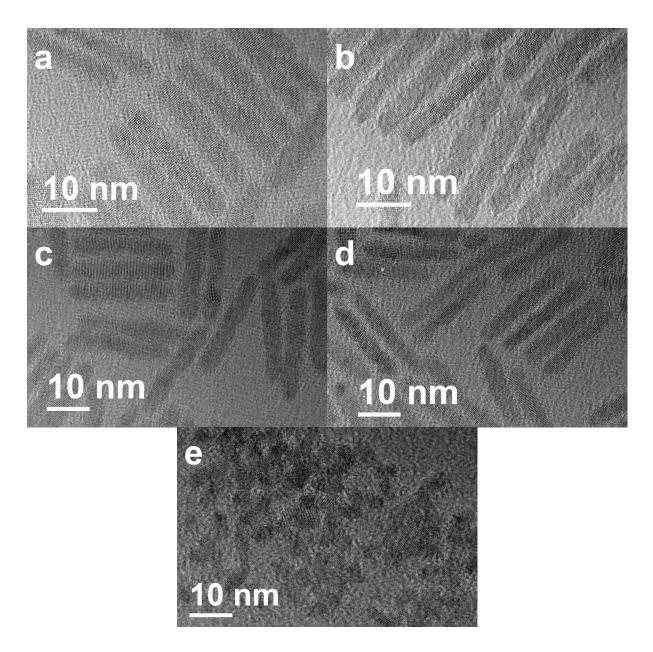


Figure S10. The HRTEM images corresponding to Figure 9. a) HRTEM of benzylamine modified DRs; b)-e) HRTEM of DRs after one cycle to four etching cycles.

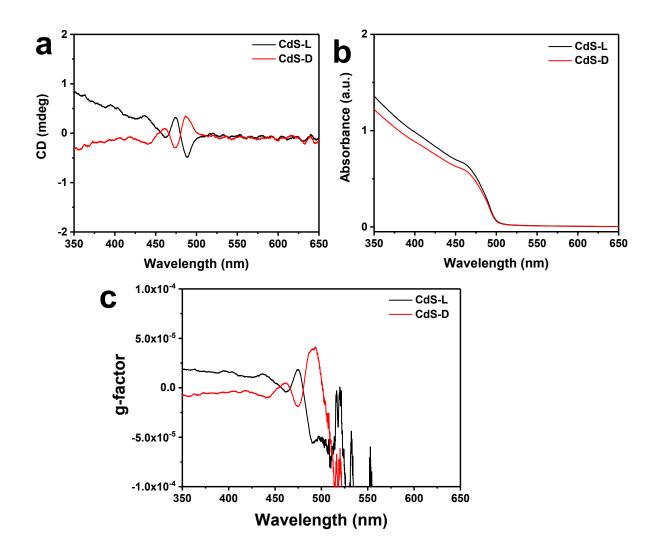


Figure S11. a) The CD spectrum of CdS-only nanorods after Cys exchange; b) the Corresponding UV-vis. absorptions of L-/D-CdS-only nanorods; c) the corresponding g-factor L-/D-CdS-only nanorods. The g_{CD} factor, defined as $|g_{CD+} - g_{CD-}|/2$, are 3.72×10^{-5} and 3.00×10^{-5} for L- and D-CdS-only nanorods, respectively.

Table S2. CD and g-factor of L-Cys-DR-3 at the first exciton absorption peak during the etching process.

Name	UV-vis (nm)	CD^+/λ_{CD}^a	CD ⁻ / λ_{CD}^{b}	CD+ -CD- /2c	$g_{\mathrm{CD}^+}/\lambda_{\mathrm{CD}}{}^{\mathrm{d}}$	$g_{\rm CD}/\lambda_{\rm CD}^{\rm e}$	$ g_{\rm CD^+} - g_{\rm CD^-} /2^{ m f}$
DR-3-1	586.8	2.251/572.0	-2.170/593.6	2.211	1.161/569.2	-1.055/599.4	1.108
DR-3-2	580.2	1.991/565.0	-2.093/589.6	1.853	1.135/563.4	-1.276/595.0	1.206
DR-3-3	575.0	1.402/558.0	-1.412/586.6	1.407	0.735/559.4	-0.915/591.6	0.825
DR-3-4	568.8	1.354/555.0	-0.185/582.2	0.770	0.566/554.8	-0.099/583.0	0.333
DR-3-5	/	/	/	/	/	/	/

^{a, b} CD anisotropy at the most intense positive and negative CD bands (mdeg/nm), ^c magnitude of the CD signal, defined as $|CD^+ - CD^-|/2$, ^{d, e} CD anisotropy g_{CD} -factors at the most intense positive and negative CD bands (10⁻⁴/nm), ^f magnitude of the g_{CD} factor, defined as $|g_{CD^+} - g_{CD^-}|/2$.

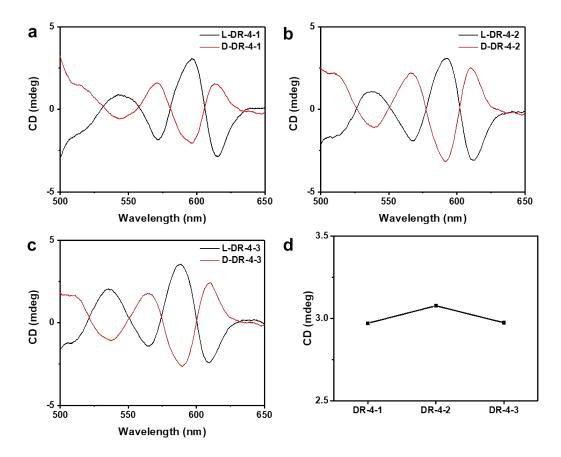


Figure S12. CD spectrum variations of DR-4-n (n =1-3) at the first exciton absorption peak during the etching process. a) CD spectrum of benzyl amine-modified DRs after the Cys exchange, b-c) CD spectra of DRs after one and two etching cycles and Cys exchange, d) CD signal evolution of L-Cys-DR-4-n (n =1-3) at the first exciton absorption peak during the etching process.

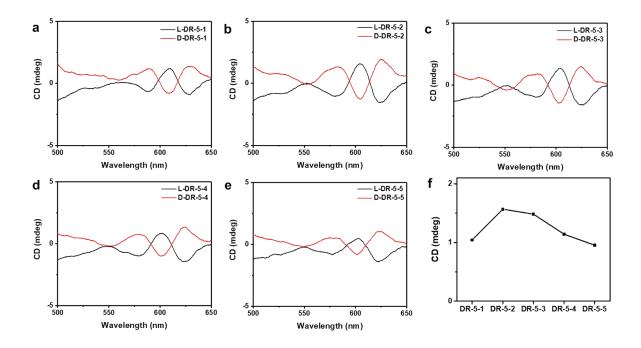


Figure S13. CD spectrum variations of DR-5-n (n = 1-5) at the first exciton absorption peak during the etching process. a) CD spectrum of benzyl amine-modified DRs after the Cys exchange, b-e) CD spectra of DRs after one cycle to four etching cycles and Cys exchange, f) CD signal variation of L-Cys-DR-5-n (n = 1-5) at the first exciton absorption peak during the etching process.

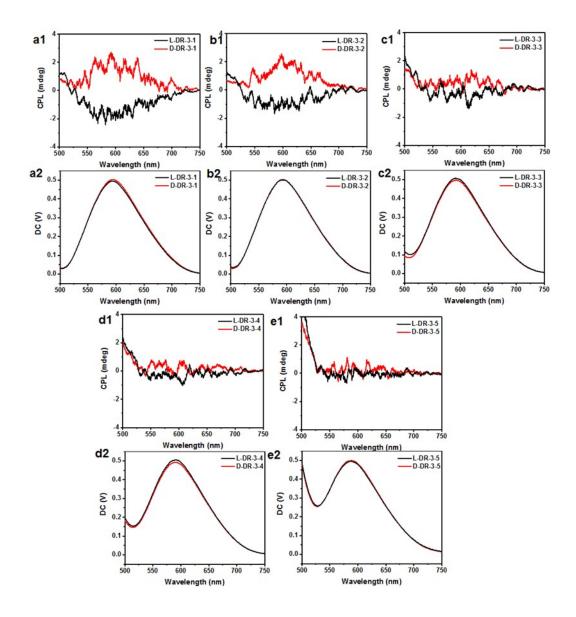


Figure S14. CPL variation of DR-3-n (n = 1-5) during the etching process. a1) CPL of benzyl amine-modified DRs after Cys exchange; b1-e1) CPL of DRs after one to four etching cycles and Cys exchange. a2-e2) Corresponding DC in volts, which stands for fluorescence intensity.

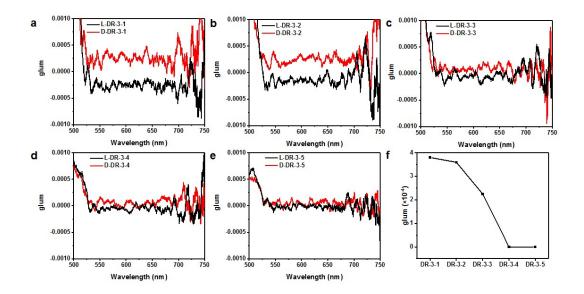


Figure S15. The corresponding g_{lum} variation of DR-3-n (n = 1-5), as shown in Figure S11. (a) The glum of benzyl amine-modified DRs after Cys exchange; (b)-(e) the g_{lum} of DRs after one to four etching cycles and Cys exchange; (f) the g_{lum} variation of L-Cys-DR-3 during the etching process.

1. W. W. Yu, L. Qu, W. Guo and X. Peng, Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, *Chem. Mater.*, 2003, **15**, 2854-2860.