1 Supporting information

2

3 Morphology-controllable bimetallic MOFs/ textile composite

4 electrodes with high areal capacitance for flexible electronic devices

- 5 Shixiong Zhai ^{a, b, c}, Zhendong Jin ^{a, b}, Chengcheng Li ^{a, b}, JiaFeng Sun ^{a, b}, Hong Zhao
- 6 ^{a, b}, Zhehai Jin ^{a, b}, Zaisheng Cai ^{a, b}, Yaping Zhao ^{a, b, *}
- 7 ^a Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry,
- 8 Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
- 9 ^b College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai
- 10 201620, PR China
- 11 ^cDepartment of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- 12

13 2. Experiments

14 Supercapacitor assembly

15 The as prepared NiC/NiCo12MOF (1 cm \times 1 cm) and carbon cloth (1 cm \times 1 cm) 16 were used as positive and negative electrode, respectively. Nonwoven was used as 17 diaphragm. Potassium hydroxide (KOH) was used as electrolyte. Wet electrodes 18 (immersed into the KOH solution for 1 h) were attached on both sides of the non-19 woven diaphragm. polyester film was used as packaging material to fabricate the 20 sandwiched NiC/NiCo12MOF based supercapacitor.

21 Error estimation

- 22 In this work, each electrochemical performance test was carried out for three times.
- 23 The data in the main article are the average values of the three tests.
- 24 Theoretical calculation

25 To understand the molecular models of the NiCoMOFs, plane-wave density 26 functional theory (DFT + U) calculations of the electronic properties of the composite material were carried out using the CASTEP module in Materials Studio (MS). The 27 28 GGA with a PBE functional was employed for DFT exchange correlation energy calculations, and a cut-off of 380 eV was assigned to the plane-wave basis set. The 29 self-consistent field (SCF) tolerance was 1×10^{-5} eV. The periodic structure was 30 created with a 20 Å vacuum slab to avoid artificial interaction effects between the slab 31 32 and the mirror images. The Brillouin zone was sampled by a $1 \times 1 \times 1$ k-point mesh. The core electrons were replaced with ultrasoft pseudopotentials. The bottom two 33 layers were fixed and considered as a bulk structure. The geometrical configurations 34 and charge density difference plots were illustrated using VESTA software. 35

36 Equations and the meaning of the letters in the formula

$$Q = \frac{i \cdot \Delta t}{S}$$
(1)
$$B = \frac{I \cdot \int V dt}{S}$$
(2)
$$Q = \frac{I \cdot \int V dt}{S}$$
(2)
$$Q = \frac{3600E}{\Delta t}$$
(3)

40 where Q (C cm⁻²), i (mA cm⁻²), Δt (s) are specific capacity, current density and 41 charge time; S (cm⁻²) are specific capacitance and area of electrode. E (Wh cm⁻²) and 42 P (W cm⁻²) are energy density and power density.

$$i = a \times v^b \tag{4}$$

43 $\log(i) = b \log(v) + \log(a)$ (5)

$$\frac{i(V)}{\sqrt{v}} = k_1 \sqrt{v} + k_2 \tag{6}$$

44 Where *i* (mA) represents loop current; *V*, *v* are potential and scan rate; *a*, *b*, k_1 and k_2 45 are constants.

46

52 Fig. S1 Calculated XRD results for Co-MOF and Ni-MOFs

55 Fig. S2 The self-consistent field of the Ni-MOF, Co-MOF and NiCo-MOF.

61 Fig. S4 EDS spectrum of NiC/NiCo21MOF

- 79 NiC/NiCo12MOF

Table S1 The comparison of the mass of samples before and after the reactions

samples	The mass of the sample before reaction (NiC)	The area of the samples	The mass of the sample after reaction (NiC/NiCo-MOF)	The mass loading of the samples(NiCo- MOF on NiC)
NiC/NiCoMOF10	244 mg	$3 \text{ cm} \times 3 \text{ cm}$	261 mg	1.9 mg cm ⁻²
NiC/NiCoMOF11	236 mg	$3 \text{ cm} \times 3 \text{ cm}$	254 mg	2.0 mg cm ⁻²
NiC/NiCoMOF12	239 mg	$3 \text{ cm} \times 3 \text{ cm}$	259 mg	2.2 mg cm ⁻²
NiC/NiCoMOF21	242 mg	$3 \text{ cm} \times 3 \text{ cm}$	261 mg	2.1 mg cm ⁻²
NiC/NiCoMOF01	232 mg	$3 \text{ cm} \times 3 \text{ cm}$	248 mg	1.8 mg cm ⁻²

Table S2 The sheet resistance of the samples

samples	Sheet resistance (Ω/\Box)	
Cotton	Insulation	
Cotton/Ni	3.2	
NiC/NiCoMOF10	27.5	
NiC/NiCoMOF11	25.6	
NiC/NiCoMOF12	25.3	
NiC/NiCoMOF21	26.1	
NiC/NiCoMOF01	25.1	