Supporting Information

Facile preparation of Nitrogen-doped carbon nanosheets from CO₂

for potassium ion storage

Chunyan Wang,^{a, b} Dandan Ouyang,^{a, d} Kang Sun,^c Hui Zhu,^{a, *} and Jiao Yin^{a, *}

^a Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics &

Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments,

Chinese Academy of Sciences, Urumqi 830011, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass

Chemical Utilization, Nanjing 210042, China

^d School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China

Corresponding author: huizhu@ms.xjb.ac.cn (H. Zhu), yinjiao@ms.xjb.ac.cn (J. Yin)

Fig. S1 SEM images of (a, b) NCNS-12, (c) NCNS-11 and (d) NCNS-14.

Fig. S2 Pore size distribution curves of: (a) NCNS-11, (b) NCNS-12 and (c) NCNS-14.

Fig. S3 XPS survey spectra of NCNS-11, NCNS-12 and NCNS-14.

Fig. S4 Atomic contents of pyridinic nitrogen (N-6), pyridinic nitrogen (N-5), quaternary nitrogen (N-Q) and oxidized N (N-O): (a) NCNS-11, (b) NCNS-14.

Fig. S5 Surface elemental characterization (a) elements contents of C, O, N from the combustion method, (b) atomic contents of pyridinic nitrogen (N-6), pyridinic nitrogen (N-5), quaternary nitrogen (N-Q) and oxidized N (N-O) based on the analysis of XPS.

Fig. S6 Electrochemical property of NCNS-12: (a) CV curves at 0.1 mV s⁻¹, (b) charge–discharge profiles at 10 mA g⁻¹.

Fig. S7 Electrochemical property of NCNS-11, NCNS-14: CV at 0.1 mV s⁻¹ (a) NCNS-11, (b) NCNS-14,

charge–discharge profiles at 10 mA g $^{-1}$ (c) NCNS-11, (d) NCNS-14.

Fig. S8 Charge and discharge profiles of NCNS-12 at various current densities.

Fig. S9 Capacitive contribution at 2 mV s⁻¹ (a) NCNS-11, (2) NCNS-14.

Fig. S10 The K-ion diffusion coefficient during the GITT measurement: (a) discharge and (b) charge processes.

Fig. S11 Ex situ HRTEM images of NCNS-12 at different states: (a) full potassiation and (b) full depotassiation state after 1 cycle (50 mA g^{-1}); (c) full potassiation and (d) full depotassiation state after 800 cycles (50 mA g^{-1}).

Fig. S12 The charge/discharge curves of the NCNS-12 electrode and PB electrode at 50 mA $\rm g^{-1}.$

 Tab. S1 Elemental content analysis by XPS measure of NCNS-11, NCNS-12, and NCNS-14.

Sample	C (at %)	O (at %)	N (at %)
NCNS-11	92.12	5.13	2.75
NCNS-12	92.5	4.17	3.24
NCNS-14	93.2	4.16	2.64

Tab. S2 Elemental content measured by combustion method of NCNS-11, NCNS-12, and NCNS-14.

Sample	C (Wt %)	O (Wt %)	N (Wt %)
NCNS-11	84.05	13.35	2.6
NCNS-12	88.43	8.92	2.65
NCNS-14	89.05	8.6	2.35