Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers.

Electronic Supporting Information

Surface defect-regulated PdCu/TiO_{2-x} promoting efficient electrocatalytic nitrogen reduction

Chengguang Liu, ^a Xiaolei Guo, ^a Zhen-Feng Huang,^{*a} Jinheng Li, ^a Li Gan, ^a Lun Pan, ^a Chengxiang Shi, ^a Xiangwen Zhang, ^a Guidong Yang^b and Ji-Jun Zou^{*a}

^a Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, P. R. China.

^b XJTU-Oxford Joint International Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 7010049, China.

* Corresponding author. E-mail: jj_zou@tju.edu.cn and zfhuang@tju.edu.cn

Experimental Section

NH₃ quantification

The quantitative detection of NH₃ concentration in solution was based on indiophenol blue coloration method.^{1,2}. Specifically, 2 mL cathode electrolyte and 2 mL absorption solution were collected, then 2mL chromogenic reagent containing salicylic acid (5 wt%), sodium citrate (5 wt%) and 1 mol/L NaOH solution was added, followed by adding 1mL NaClO solution (0.05 mol/L). and finally, 200 μ L sodium nitroferricyanide solution (1 wt%) was added and then shaken slightly. The absorbance data of the UV-vis absorption spectra were measured on the UV-1800 spectrophotometer after standing the mixed solution in the dark and reacting for 2 h at room temperature. To further quantitative calculation, the absorbance (Abs, a.u.) of a series of standard NH₄Cl solutions (c, μ g mL⁻¹) with specified concentrations at λ = 655 nm were recorded in advance. The NH₄⁺ standard curve in 0.1 mol/L HCl is y = 0.361x + 0.036 (R² = 0.999).

N₂H₄ quantification

The quantitative detection of N₂H₄ concentration in solution was based on the method of Watt and Chrisp.^{3,4} A mixture of 5.99 g C₉H₁₁NO, 30 mL hydrochloric acid and 300 mL ethanol was used as an indicator. Afterward, 2 mL cathode electrolyte and 2 mL absorption solution were collected, followed by adding 2 mL of indicator into above solutions, respectively. The corresponding absorbance at $\lambda = 455$ nm were measured after at 10 min at room temperature Similarly, The N₂H₄ standard curve in 0.1 mol/L HCl was measured in advance, and the curve is y = 0.730x + 0.022 (R² = 0.999).

¹⁵N isotope labeling experiment

When ${}^{15}N_2$ (99%, Shanghai Aladdin Biochemical Technology Co., LTD.) was used as the only feed gas, the produced NH₃ was determined by ¹H NMR spectra, using to further verify the N source of the produced NH₃. Before the electrochemical measurement, ${}^{15}N_2$ was immersed in the electrolyte for 1h until saturation. 500 µL of the electrolyte after electrolysis at -0.1 V *vs.* RHE was collected and 50 µL of DMSO-D6 was added, and then determined by a ¹H NMR spectrometer. Furthermore, the same procedure was used to detect ${}^{14}NH_3$ produced, apart from ${}^{14}N_2$ (99.999 %) as the feed gas.

Computational criterion

The NH₃ yield rate was calculated as follows equation:

NH₃ yield rate = $(c(NH_4^+) \times V) / (m_{cat} \times t)$

where $(c(NH_4^+))$ is the concentration of NH_4^+ determined by indophenol blue method, quantitatively. V is the volume of the electrolyte, m_{cat} is the mass of the catalyst and t is the reduction time.

The Faradaic efficiency was estimated by the ratio of the charge consumed for NH_3 production to the total charge passing through the circuit. It was calculated according to following equation:

 $FE = 3 \times F \times c(NH_4^+) \times V / (17 \times Q)$

where F is the Faraday constant (96485 C mol⁻¹), $c(NH_4^+)$ is the concentration of NH_4^+ determined by indophenol blue method, quantitatively. V is the volume of the electrolyte and Q is the quantity of applied electricity.

Fig. S1. SEM images of pristine TiO_2 and TiO_{2-x} -T (T = 200, 400, 600). (a) SEM image of TiO_2 ; (b) SEM image of TiO_{2-x} -200; (c) SEM image of TiO_{2-x} -400; (d) SEM image of TiO_{2-x} -600.

Fig. S2. Raman spectra of pristine TiO_2 and TiO_{2-x} -400.

Fig. S3. SEM images of Pd_1Cu_1/TiO_2 and $Pd_1Cu_1/TiO_{2-x}-T$ (T = 200, 400, 600). (a) SEM image of Pd_1Cu_1/TiO_2 ; (b) SEM image of $Pd_1Cu_1/TiO_{2-x}-200$; (c) SEM image of $Pd_1Cu_1/TiO_{2-x}-400$; (d) SEM image of $Pd_1Cu_1/TiO_{2-x}-600$.

Fig. S4. (a) TEM image of Pd_1Cu_1/TiO_2 ; (b) TEM image of Pd_1Cu_1/TiO_{2-x} -200. (c) TEM image of Pd_1Cu_1/TiO_{2-x} -400; (d) TEM image of Pd_1Cu_1/TiO_{2-x} -600.

Fig. S5. TEM images of Pd_xCu_y/TiO_{2-x} -400. (a) TEM image of Pd/TiO_{2-x} -400; (b) TEM image of Pd_2Cu_1/TiO_{2-x} -400; (c) TEM image of Pd_1Cu_2/TiO_{2-x} -400; (d) TEM image of Cu/TiO_{2-x} -400.

Fig. S6. (a, b) TEM and HRTEM images of Rutile Pd₁Cu₁/TiO_{2-x}-400; (c, d) TEM and HRTEM images of P25 Pd₁Cu₁/TiO_{2-x}-400.

Fig. S7. XRD patterns of a series of different crystal phases (a) XRD patterns of rutile phase series; (b) XRD patterns of P25 series.

Fig. S8. Schematic diagram of a H-type electrolytic cell with a three-electrode system.

Fig. S9. Quantitative determination of NH_3 concentration based on indophenol blue method. (a) UV-vis absorption spectra of NH_4^+ standard solutions with specified concentrations; (b) NH_4^+ Standard curve in 0.1 mol/L HCl of specified concentrations.

Fig. S10. Quantitative determination of N_2H_4 concentration. (a) UV-vis absorption spectra of N_2H_4 standard solutions with specified concentrations; (b) N_2H_4 Standard curve in 0.1 mol/L HCl of specified concentrations.

Fig. S11. (a) Uv-vis absorption spectra of electrolytes in cathode chamber after chronoamperometry test of Pd_1Cu_1/TiO_{2-x} -400 catalyst in the potential range of 0~-0.5 V vs. RHE. (b) UV-vis absorption spectra of absorption solutions after chronoamperometry test of Pd_1Cu_1/TiO_{2-x} -400 catalyst in the potential range of 0~-0.5 V vs. RHE.

Fig. S12 Comparison of the NRR performance of the Pd_1Cu_1/TiO_{2-x} -400 catalyst with other palladium-based catalysts and their alloy catalysts reported to date under ambient conditions.

Fig. S13. The N₂H₄ UV-vis absorption spectra of electrolytes at different potentials.

Fig. S14. chronoamperometry stability test of 20 h in 0.1 mol/L HCl under ambient conditions.

Fig. S15. (a) Electrocatalytic NRR performance of the Pd_1Cu_1/TiO_{2-x} -200; (b) Electrocatalytic NRR performance of the Pd_1Cu_1/TiO_{2-x} -600.

Fig. S16. EPR spectra of pristine TiO₂, Rutile TiO_{2-x}-400, P25 TiO_{2-x}-400, and TiO_{2-x}-400.

Fig. S17. (a) Electrocatalytic NRR performance of the pristine $Pd/TiO_{2-x}-400$; (b) Electrocatalytic NRR performance of the $Pd_2Cu_1/TiO_{2-x}-400$; (c) Electrocatalytic NRR performance of the $Pd_1Cu_2/TiO_{2-x}-400$; (d) Electrocatalytic NRR performance of the $Cu/TiO_{2-x}-400$.

Fig. S18. NH₃ yield rate of the Pd_xCu_y/TiO_{2-x} -400 of various metal mole ratios.

Fig. S19. Full high-resolution XPS spectra of (a) Pd/TiO_2 ; (b) Cu/TiO_2 ; (c) Pd_1Cu_1/TiO_2 ; (d) Pd_1Cu_1/TiO_{2-x} -400.

Fig. S20. (a) NH_4^+ Standard curve in 0.1 mol/L LiCl of specified concentrations; (b) NH_4^+ Standard curve in 0.1 mol/L KHCO₃ of specified concentrations.

	PdCl ₂ CuCl ₂ ·2H ₂ O		TiO2400	NaBH₄ solution	
Catalyst	$(\mu L, 5 \text{ mg mL}^{-1})$	$(\mu L, 5 \text{ mg mL}^{-1})$	(mg)	(10 mg mL^{-1})	
Pd/TiO _{2-x} -400	510	0			
$Pd_2Cu_1/TiO_{2-x}-400$	340	164			
$Pd_1Cu_1/TiO_{2-x}-400$	256	246	60	10	
$Pd_1Cu_2/TiO_{2-x}-400$	170	328			
Cu/TiO _{2-x} -400	0	492			

Table S1 Details for synthesis of PdCu/TiO_{2-x}-400 electrocatalysts with various metal molar ratios.

Table S2 Details for synthesis of Pd_1Cu_1/TiO_{2-x} -400 electrocatalysts with various metal loadings.

Catalyst	PdCl ₂	PdCl ₂ CuCl ₂ ·2H ₂ O		NaBH ₄ solution	
	$(\mu L, 5 \text{ mg mL}^{-1})$	$(\mu L, 5 \text{ mg mL}^{-1})$	(mg)	(10 mg mL^{-1})	
1 wt%-Pd ₁ Cu ₁ /TiO _{2-x} -400	128	123			
2 wt%-Pd ₁ Cu ₁ /TiO _{2-x} -400	256	246			
3 wt%-Pd ₁ Cu ₁ /TiO _{2-x} -400	384	369	60	10	
4 wt%-Pd ₁ Cu ₁ /TiO _{2-x} -400	512	492			
5 wt%-Pd ₁ Cu ₁ /TiO _{2-x} -400	640	615			

Table S3 Weight quantifications of PdCu/TiO_{2-x}-400 with various metal molar ratios based on ICP-MS.

Catalyst	Loading (wt%) Pd	Loading (wt%) Cu	Molar ratio	Practical structure	
Pd/TiO _{2 x} -400	2.26	0.00	/	Pd/TiO ₂ -400	
$Pd_2Cu_1/TiO_{2-x}-400$	1.91	0.58	1.98:1	$Pd_{1.98}Cu_1/TiO_{2-x}-400$	
Pd ₁ Cu ₁ /TiO _{2-x} -400	1.38	0.75 1.10:1		Pd _{1.10} Cu ₁ /TiO _{2-x} -400	
Pd ₁ Cu ₂ /TiO _{2-x} -400	0.93	1.16	0.48:1	Pd _{0.48} Cu ₁ /TiO _{2-x} -400	
Cu/TiO _{2-x} -400	0.00	2.07	/	Cu/TiO _{2-x} -400	

Table S4 Weight quantifications of Pd_1Cu_1/TiO_{2-x} -400 with various metal loadings based on ICP-MS..

Catalyst	Loading (wt%) Pd	Loading (wt%) Cu	Molar ratio	Practical structure
1 wt%-Pd1Cu1/TiO2-x-400	0.38	0.66	1.03:1	1.04 wt%-Pd _{1.03} Cu ₁ /TiO _{2-x} -400
2 wt%-Pd1Cu1/TiO2-x-400	1.38	0.75	1.10:1	$2.13 \text{ wt\%-Pd}_{1.10}\text{Cu}_1/\text{TiO}_{2-x}-400$
3 wt%-Pd ₁ Cu ₁ /TiO _{2-x} -400	1.31	2.26	1.03:1	$3.57 \text{ wt\%-Pd}_{1.03}\text{Cu}_1/\text{TiO}_{2-x}-400$
4 wt%-Pd1Cu1/TiO2-x-400	1.56	2.66	1.02:1	$4.23 \text{ wt\%-Pd}_{1.02}Cu_1/\text{TiO}_{2\text{-}x\text{-}400}$
$5 \text{ wt\%-Pd}_1\text{Cu}_1/\text{TiO}_{2-x}-400$	1.90	3.35	1.05:1	5.25 wt%-Pd _{1.05} Cu ₁ /TiO _{2-x} -400

Catalyst	Electrolyte	Potential (V vs. RHE)	$ m NH_3$ yield rate (mmol g _{cat} ⁻¹ h ⁻¹)	Faradaic efficiency (%)	References
Pd ₁ Cu ₁ /TiO _{2-x} -400	0.1 M HCl	-0.10	8.51	49.09	This work
Pd-TA	0.1 M Na ₂ SO ₄	-0.45	1.42	9.49	5
Pd/C	0.1 M PBS	-0.05	0.26	8.20	6
Pd/C	0.1 M HCl	-0.05	0.28	0.15	7
PdPb/C	0.1 M HCl	-0.05	2.22	1.19	7
PdO/Pd/CNTs	0.1 M NaOH	0.10	1.07	11.50	8
PdP ₂ -rGO	0.5 M LiClO ₄	-0.10	1.78	12.56	9
nanoporous Pd ₃ Bi	$0.05 \text{ M} \text{ H}_2 \text{SO}_4$	-0.20	3.47	21.52	10
np-PdH _{0.43}	0.1 M PBS	-0.15	1.20	43.6	11
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	-0.20	0.16	3.00	12
Nanoporous Pd ₃ Cu ₁	1 M KOH	-0.25	2.35	0.60	13
RhCu-BUNNs	0.1 M KOH	-0.20	5.59	1.50	14
mAu ₃ Pd/NF	0.1 M Na ₂ SO ₄	-0.10	1.41	18.16	15
BCC PdCu	0.5 M LiCl	-0.10	2.10	11.50	16
AuPdP NWs	0.1 M Na ₂ SO ₄	-0.30	1.10	15.44	17
PdRu TPs	0.1 M KOH	-0.20	2.19	1.85	18
PdZn/NHCP	0.1 M PBS	-0.20	0.31	16.9	19
BCC OV-PdCu-2	0.1 M Li ₂ SO ₄	0.00	3.27	15.6	20

Table S5 Comparison of the NRR performance of the Pd_1Cu_1/TiO_{2-x} -400 catalyst with other palladiumbased catalysts and their alloy catalysts reported to date under ambient conditions

References

- Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si and J. Zeng, Achieving a recordhigh yield rate of 120.9 μg_{NH3} mg_{cat}⁻¹ h⁻¹ for N₂ electrochemical reduction over Ru single-atom catalysts, *Adv. Mater.*, 2018, **30**, 1803498.
- L. L. Zhang, L. X. Ding, G. F. Chen, X. F. Yang and H. H. Wang, Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets, *Angew. Chem. Int. Ed.*, 2019, 58, 2612-2616.
- 3. Z. W. Fang, P. Wu, Y. M. Qian and G. H. Yu, Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation, *Angew. Chem. Int. Ed.*, 2021, **60**, 4275-4281.
- C. Y. Yang, B. L. Huang, S. X. Bai, Y. G. Feng, Q. Shao and X. Q. Huang, A generalized surface chalcogenation sstrategy for boosting the electrochemical N₂ fixation of metal nanocrystals, *Adv. Mater.*, 2020, **32**, 2001267.
- G. R. Deng, T. Wang, A. A. Alshehri, K. A. Alzahrani, Y. Wang, H. J. Ye, Y. L. Luo and X. P. Sun, Improving the electrocatalytic N₂ reduction activity of Pd nanoparticles through surface modification, *J. Mater. Chem. A*, 2019, 7, 21674-21677.
- 6. J. Wang, L. Yu, L. Hu, G. Chen, H. L. Xin and X. F. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential, *Nat. Commun.*, 2018, **9**, 1795.
- H. Zhao, D. Zhang, Z. Wang, Y. Han, X. Sun, H. Li, X. Wu, Y. Pan, Y. Qin, S. Lin, Z. Xu, J. Lai and L. Wang, High-performance nitrogen electroreduction at low overpotential by introducing Pb to Pd nanosponges, *Appl. Catal. B*, 2020, 265, 118481.
- J. L. Lv, S. L. Wu, Z. F. Tian, Y. X. Ye, J. Liu and C. H. Liang, Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N₂ reduction reaction, *J. Mater. Chem. A*, 2019, 7, 12627-12634.
- H. T. Xie, Q. Geng, X. J. Zhu, Y. L. Luo, L. Chang, X. B. Niu, X. F. Shi, A. M. Asiri, S. Y. Gao, Z. M. Wang and X. P. Sun, PdP₂ nanoparticles-reduced graphene oxide for electrocatalytic N₂ conversion to NH₃ under ambient conditions, *J. Mater. Chem. A*, 2019, 7, 24760-24764.
- 10. X. J. Wang, M. Luo, J. Lan, M. Peng and Y. W. Tan, Nanoporous intermetallic Pd₃Bi for efficient electrochemical nitrogen reduction, *Adv. Mater.*, 2021, **33**, 2007733.
- W. Xu, G. Fan, J. Chen, J. Li, L. Zhang, S. Zhu, X. Su, F. Cheng and J. Chen, Nanoporous palladium hydride for electrocatalytic N₂ reduction under ambient conditions, *Angew. Chem. Int. Ed.*, 2020, 59, 3511-3516.
- 12. M. M. Shi, D. Bao, S. J. Li, B. R. Wulan, J. M. Yan and Q. Jiang, Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N₂ to NH₃ under ambient conditions in aqueous solution, *Adv. Energy Mater.*, 2018, **8**, 1800124.
- F. Pang, Z. Wang, K. Zhang, J. He, W. Zhang, C. Guo and Y. Ding, Bimodal nanoporous Pd₃Cu₁ alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction, *Nano Energy*, 2019, 58, 834-841.
- J. Bai, H. Huang, F.-M. Li, Y. Zhao, P. Chen, P.-J. Jin, S.-N. Li, H.-C. Yao, J.-H. Zeng and Y. Chen, Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde coproduction on bimetallic RhCu ultrathin nanoflake nanoaggregates, *J. Mater. Chem. A*, 2019, 7, 21149-21156.
- H. Yu, Z. Wang, S. Yin, C. Li, Y. Xu, X. Li, L. Wang and H. Wang, Mesoporous Au₃Pd film on Ni foam: a self-supported electrocatalyst for efficient synthesis of ammonia, ACS Appl. Mater. Interfaces, 2020, 12, 436-442.
- 16. W. Tong, B. L. Huang, P. T. Wang, L. G. Li, Q. Shao and X. Q. Huang, Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis, *Angew. Chem. Int. Ed.*, 2020, **59**, 2649-

2653.

- H. Wang, D. Yang, S. Liu, S. Yin, Y. Xu, X. Li, Z. Wang and L. Wang, Metal-nonmetal onedimensional electrocatalyst: AuPdP nanowires for ambient nitrogen reduction to ammonia, ACS Sustainable Chem. Eng., 2019, 7, 15772-15777.
- H. Wang, Y. Li, C. Li, K. Deng, Z. Wang, Y. Xu, X. Li, H. Xue and L. Wang, One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia, *J. Mater. Chem. A*, 2019, 7, 801-805.
- 19. M. Ma, X. Han, H. Li, X. Zhang, Z. Zheng, L. Zhou, J. Zheng, Z. Xie, Q. Kuang and L. Zheng, Tuning electronic structure of PdZn nanocatalyst via acid-etching strategy for highly selective and stable electrolytic nitrogen fixation under ambient conditions, *Appl. Catal. B*, 2020, **265**, 118568.
- Z. C. Wang, X. K. Wu, J. Liu, D. Zhang, H. Zhao, X. Y. Zhang, Y. N. Qin, N. Z. Nie, D. Wang, J. P. Lai and L. Wang, Ordered vacancies on the body-centered cubic PdCu nanocatalysts, *Nano Lett.*, 2021, 21, 9580-9586.