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Figure S1. Thermal gravimetric analysis for (a) PoPhBT-IDT, (b) PTPTz-IDT, and (c)
PTPTz-2Th-IDT. The scan rate is 10 °C/min.
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Figure S2. Occupied density of states (DOS) of (a) PoPhBT-IDT, (b) PTPTz-IDT, and
(c) PTPTz-2Th-IDT determined by photoelectron yield spectroscopy. The DOS edge was
fitted using a Gaussian function, and the energy of the highest occupied molecular orbital
(Enomo) was calculated as Eyomo = Epr — 20, where Epr and ¢ are the peak-top energy
and width of the Gaussian function, respectively. The arrows indicate the evaluated

Enomos.
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Figure S3. One-dimensional XRD patterns of the pristine polymer films in the (a) out-of-
plane and (b) in-plane directions.
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Figure S4. Two-dimensional GIWAXS patterns of the pristine polymer films for (a)
PoPhBT-IDT, (b) PTPTz-IDT, (c) PTPTz-Th-IDT (ref. S1), and (d) PTPTz-2Th-IDT.
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Figure S5. Output and transfer curves of field-effect transistor (FET) devices using (a)
PoPhBT-IDT, (b) PTPTz-IDT, and (c) PTPTz-2Th-IDT. The saturated FET mobilities
were 1.7 x 1074, 6.4 x 1073, and 5.0 x 1073 cm? V™! s71, respectively.
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Figure S6. Current density normalized by the cube of the film thickness (d) plotted
against voltage for the hole-only devices (ITO/PEDOT:PSS/polymer/MoO;/Ag) with the
pristine films. (a) PoOPhBT-IDT, (b) PTPTz-IDT, (c) PTPTz-Th-IDT (data adopted from
ref. S1), and (d) PTPTz-2Th-IDT. The holes were injected from the MoO;/Ag electrode.
The hole mobility was evaluated based on Mott—Gurney law with a permittivity of 3. We

assumed that in the high applied voltage regime, where the normalized J-V curves with

different film thicknesses were identical with a slope close to 2, the current flow through

the polymer is
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Figure S7. External quantum efficiency (EQE) spectra of the corresponding OSCs.
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Table S1. Optimization condition of BHJ devices. The shaded rows show the optimum
conditions used in the main text. The acceptor is Y6 for all devices. DIO: 1,8-

diiodooctane.

Polymer D:A DIO Annealling Jsc Voc FF PCE
(%) (°C/min) (mA/cm?) (V) (%)

PoPhBT-IDT 1:1.3 - 150/10 4.7 0.79 0.41 1.5
1:1.3 0.5 - 3.7 0.5 042  0.79

1:1.3 0.5 80/10 5.2 0.64 0.43 1.4

1:1.3 0.5 120/10 6.2 0.73 043 20

1:1.3 0.5 150/10 7.7 0.75 042 24

1:1.3 0.5 180/10 6.6 0.78 043 22

PTPTz-IDT 1:2.0 0.5 150/10 13.1 0.84 0.61 6.7

1:1.3 - 150/10 11.8 0.85 0.57 5.8

1:1.3 0.25 150/10 12.8 0.84 0.60 6.5

1:1.3 0.5 150/10 15.4 0.84 0.61 7.9

1:1.3 0.5 - 10.5 0.64 049 33

1:1.3 1.0 150/10 16.0 0.83 0.62 82

1:1.3 1.0 180/10 15.5 0.83 0.62 8.0

1:1.3 1.0 200/10 15.1 0.84 0.61 7.7

1:1.3 1.0 250/10 2.6 0.79 043 09

1:1.3 1.25 150/10 15.9 0.82 0.61 7.9

1:1.3 1.5 150/10 15.5 0.82 0.61 7.7

1:1.3 1.75 150/10 15.1 0.81 0.60 7.2

1:1.3 2.0 150/10 14.8 0.81 0.59 7.1

1:0.75 0.5 150/10 12.8 0.86 0.60 6.7

1:0.5 0.5 150/10 11.2 0.86 0.57 5.5

PTPTz-2Th-IDT 1:2 0.5 150/10 17.6 0.77 0.58 7.8

1:1.3 - 150/10 17.4 0.78 046 63

1:1.3 0.25 150/10 19.0 0.77 0.54 7.8

1:1.3 0.5 - 17.5 0.68 0.43 5.1

1:1.3 0.5 120/10 19.7 0.75 0.57 84

1:1.3 0.5 150/10 19.5 0.75 0.58 8.5

1:1.3 0.5 180/10 20.0 0.75 0.60 9.0

1:1.3 0.5 200/10 20.3 0.75 0.58 8.7

1:1.3 0.5 250/10 2.0 0.70 043 0.6

1:1.3 1.0 150/10 19.8 0.72 0.55 7.8

1:0.75 0.5 150/10 14.9 0.76 045 5.1

1:0.5 0.5 150/10 3.0 0.67 0.19 04
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Instrumentation

Silica gel column chromatography was performed on Wakogel C-300 (FUJIFILM Wako
Pure Chemical Corporation). Thin-layer chromatography was carried out on aluminum
sheets coated with silica gel 60 F254 (Merck 5554, Merck Millipore). 'H and '*C NMR
spectra were recorded on an NMR spectrometer (JNM-ECZ400, JEOL) operating at 400
MHz for 'TH NMR and 100 MHz for 3C NMR, and using the residual solvent as the
internal reference for '"H (6= 7.26 ppm in CDCl;) and for '3C (6= 77.16 ppm in CDCl;)
spectra at room temperature. High-resolution mass spectrometry (HRMS) was performed
on a mass spectrometer (JMS-T100GCV, JEOL).

Polymerization was conducted with a microwave reactor (Initiator+, Biotage). Gel
permeation chromatography was performed on a high-performance liquid
chromatography system (Prominence, Shimadzu) equipped with a UV detector and size
exclusion columns at 40 °C using chloroform and calibrated with polystyrene standards.

Thermogravimetric analysis was performed on a differential thermogravimetric analyzer
(TG 8120, Rigaku) at a heating rate of 10 °C min™!' under N, with runs recorded from
room temperature to 500 °C. Differential scanning calorimetry was performed on a
calorimeter (DSC 8230, Rigaku) with a heating/cooling rate of 10 °C/min under N, flow.
Al,O3 was used as a reference compound.

Substrate preparation: All substrates were cleaned by sequential ultrasonication in
detergent solution, water, 2-propanol, and acetone, followed by O, plasma treatment.

Photoelectron yield spectroscopy measurements: Photoelectron yield spectroscopy
was performed with photoemission yield spectroscopy in air systems (AC-2 and AC-3,
RIKEN KEIKI) with a monochromated D2 lamp. The films were prepared on a glass
substrate coated with conductive indium tin oxide (ITO). The occupied density of states
was obtained by calculating the central differential of the yield with energy, as reported
previously.S?

Field-effect transistor device fabrication and characterization: The surface of pre-
cleaned n+Si substrates with a 300 nm SiO; insulating layer (E&M) was covered with an
octadecyltrimethoxysilane self-assembled monolayer (SAM). The SAM formation
conditions were the same as reported (with trichloroethylene).S3 Polymer films
approximately 50 nm thick were spin-coated onto the other glass substrate and transferred
to the SAM by the contact film transfer method.$* A 15-nm-thick Au and 25-nm-thick
Ag top-contact electrode were formed sequentially by thermal evaporation through a
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metal shadow mask under a pressure of 107 Pa. The channel width and length were 1000
and 200 um, respectively. Source meters were used to measure the source-drain current
(6430, Keithley) and gate leakage current (2400, Keithley). Field-effect transistor
measurements were conducted in a vacuum of ~1072 Pa.

Organic photovoltaic device fabrication: A pre-cleaned glass substrate with a patterned
ITO electrode was used. The ITO surface was covered by an approximately 30-nm-thick
ZnO nanoparticle layer, as previously reported.S’> A donor polymer:Y6 (4.0:5.3 mg mL™")
chloroform solution with optimized concentration of 1,8-diiodooctane was spin-coated
on the ZnO layer at 500 rpm, resulting in a film about 100 nm thick. The film was
thermally annealed at the optimized temperature prior to the back-electrode evaporation.
A MoOj hole-transporting layer (10 nm) and Ag electrodes (100 nm) were deposited by
thermal evaporation through a metal mask under a high vacuum (~10~* Pa). The device
area was 0.165 cm?. We encapsulated all samples with a glass cap and UV-curable resin
in a dry N,-filled glovebox.

Current-voltage characteristics: The current-voltage characteristics of the devices were
measured under simulated solar illumination (AM1.5, 100 mW cm™2) from a solar
simulator with a 150 W Xe lamp (PEC-L11, Peccell Technologies). The light intensity
was calibrated with a standard silicon solar cell (BS520, Bunkoh-Keiki). The active area
of each device was defined by using a 0.12 cm? metal mask.

Space charge limited current measurements: The current-voltage characteristics of
hole only devices (ITO/PEDOT:PSS/polymer/MoO3/Ag) were recorded with a source
meter (2400, Keithley). Holes were injected from the MoOs/Ag electrode. The device
area was | mm?.

External quantum efficiency measurements: The external quantum efficiency of each
device was measured with monochromatic light (SM-250F, Bunkoh-Keiki). The light
intensity was calibrated with a standard Si and InGaAs photodetector.

Light intensity dependence of J-V characteristics: The organic photovoltaic device
was put in a stainless-steel chamber filled with dry N, (Kitano Seiki). The light source
was a 5 W warm white light-emitting diode (LED; XP-G2, CREE) with a homemade
condensing lens system. The LED output power was controlled so that the irradiated
devices exhibited nearly identical performance to that under AM1.5, 100 mW cm?
irradiation. Light intensity was altered by a combination of two neutral-density filters.
The intensity was calibrated using a standard silicon photodiode (S1337-1010BQ,
Bunkoh-Keiki).

Transient photocurrent measurements: The transient photocurrent measurements
were performed with the same setup as for the light intensity dependence measurement.
The light perturbation was performed with an N,-dye pulsed laser (KEC-160, Usho) with
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an excitation wavelength of 532 nm, a repetition rate of 10 Hz, and a pulse duration of
0.4 ns. For the transient photocurrent measurements, 20 € resistance was connected
parallel to the input of a digital oscilloscope (DS-5632, Iwatsu), and the transient current
was calculated using Ohm’s law. The integral of the transient current over time provided
the amount of the transient charges.

All calculations were carried out using the Gaussian 16 program.[5¢] The structures were
optimized with no symmetry restriction. The calculations were performed by the density
functional theory method with the restricted B3LYP (Becke’s three-parameter hybrid
exchange functionals and the Lee-Yang-Parr correlation functional)37! level, using basis
set 6-31G(d). Alkyl chains were replaced by methyl groups to simplify the structures and
reduce the calculation costs.

Variable-angle spectroscopic ellipsometry measurement: Ellipsometry measurements
were conducted with an ellipsometer (RC2, J.A. Woollam). Thin films of the organic
materials were prepared on a quartz substrate. The reflected spectra with angles from 45°
to 75°, the transmittance with the film normal incidence, and the transmitted spectra with
angles from 0° to 50° were measured and used for analysis with the biaxial anisotropic
model.
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Figure S8-1. 'H NMR spectrum of TPTz-2Th in CDCl; at room temperature.
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Figure S8-2. 13C NMR spectrum of TPTz-2Th in CDCl; at room temperature.
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Mass Spectra
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