Supporting information

Functional-mother-liquor reversed titanium species to green construct anatase-free hollow TS-1 with tunable titanium micro-environment via kinetics-thermodynamics co-regulatory pathway

Yi Zhai,^a Fumin Wang,^a Xubin Zhang,^{a*} Guojun Lv,^b Zhiguo Zhu,^c Kaiwei Wang,^a Zhibo Xu,^a Linfang Jiang^a

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300350,

P.R. China

^bSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China ^cCollege of Chemistry and Chemical Engineering, Yantai University, Yantai 264005,

Shandong, P.R. China

*Corresponding authors: <u>tjzxb@tju.edu.cn</u> (Xubin Zhang)

Fax: +86 22789041; Tel: +86 22789041.

Notes:

The authors declare no competing financial interest.

Figure S1. XRD patterns of recrystallized samples and parent samples

Figure S2. SEM images of recrystallized samples and parent samples: (a) TS130-P; (b) TS170-P; (c) MTS30-0.5-140-8d; (d) MTS30-0.25-170-3d and (e) MTS-con

Figure S3. N2 adsorption-desorption isotherms of recrystallized samples

sample	$\mathbf{S}_{\text{BET}}^{a}$	S _{ext} ^b	V _{micro} ^b	V _{meso} ^c	V_{total}^{d}
	(m^{2}/g)	(m^{2}/g)	(cm^{3}/g)	(cm^{3}/g)	(cm^{3}/g)
MTS _{30-0.125-170-3d}	382.16	29.66	0.182	0.120	0.292
MTS _{30-0.25-170-3d}	398.72	41.26	0.182	0.172	0.351
MTS _{30-0.5-170-3d}	419.74	47.54	0.183	0.186	0.359
MTS _{30-0.75-170-3d}	419.60	44.82	0.180	0.230	0.393
MTS _{30-1-170-3d}	400.15	46.05	0.184	0.182	0.346
MTS _{30-0.5-140-3d}	427.54	49.46	0.185	0.285	0.452
MTS _{30-0.5-150-3d}	399.41	45.76	0.182	0.176	0.349
MTS _{30-0.5-180-3d}	376.31	50.35	0.162	0.219	0.371
MTS _{30-0.5-140-8d}	420.74	61.49	0.174	0.278	0.452
MTS-con	401.30	43.47	0.178	0.242	0.415

Table S1. Textual parameters of synthesized zeolites at various synthetic conditions

^aMeasured from multipoint BET method; ^bMeasured from t-plot method; ^cV_{meso} calculated by using BJH method, ^dDetermined from adsorbed volume at $P/P_0=0.99$.

Sample	Ti content ^a	Framework Ti	Extra-framework	Anatase	
	(wt%)	content ^b (wt%)	Ti content ^b (wt%)	content ^b (wt%)	
MTS _{30-0.125-170-3d}	1.67	1.11	0.56	0.00	
MTS _{30-0.25-170-3d}	1.42	0.79	0.63	0.00	
MTS _{30-0.5-170-3d}	1.50	0.62	0.65	0.23	
MTS _{30-0.75-170-3d}	1.74	0.83	0.52	0.39	
MTS _{30-1-170-3d}	1.25	0.74	0.33	0.18	
MTS _{30-0.5-140-3d}	1.11	0.40	0.71	0.00	
MTS _{30-0.5-150-3d}	1.14	0.44	0.53	0.17	
MTS _{30-0.5-180-3d}	1.79	0.96	0.00	0.83	
MTS _{30-0.5-140-8d}	1.24	0.57	0.67	0.00	
TS130-P	1.19	0.86	0.33	0.00	
TS170-P	1.70	1.35	0.35	0.00	
MTS-con	2.06	1.37	0.45	0.24	

Table S2. Various titanium content of different TS-1 samples

^aMeasured by ICP; ^bdetermined by ICP and UV-vis spectra.

Figure S4. (a) Si MAS NMR spectra of parent zeolites and (b) FT-IR spectra in hydroxyl vibration region of parent zeolites

Figure S5. UV-vis spectra and FT-IR spectra of parent samples (TS130-P and TS170-

P)

Community.	Parent zeolite	Recrystallized	Species Utilization	
Sample	weight (g)	sample weight (g)	(%)	
MTS _{30-0.125-170-3d}	0.125	0.382	83.3	
MTS _{30-0.25-170-3d}	0.25	0.565	86.8	
MTS _{30-0.5-170-3d}	0.50	0.801	86.0	
MTS _{30-0.75-170-3d}	0.75	0.993	82.4	
MTS _{30-1-170-3d}	1.00	1.210	80.3	
MTS _{30-0.5-140-3d}	0.50	0.582	72.4	
MTS _{30-0.5-150-3d}	0.50	0.620	74.8	
MTS _{30-0.5-180-3d}	0.50	0.756	83.2	
MTS _{30-0.5-140-8d}	0.50	0.679	78.4	
MTS-con	0.25	0.225	83.4	
TS130-P			67.3	
TS170-P			85.0	

Table S3. Utilization results of different TS-1 zeolites

Figure S6. XRD patterns of post-treated samples at different recrystallization temperatures

Figure S7. (a) UV-vis spectra, (b) Raman spectra and (c) FT-IR spectra of post-treated samples at different recrystallization temperatures.

Figure S8. SEM and TEM images of post-treated samples at different recrystallization temperatures: (a, e) 413 K; (b, f) 423 K; (c, g) 443 K and (d, h) 453 K

Figure S9. N_2 adsorption-desorption isotherms and pore size distributions of posttreated samples at different recrystallization temperatures

Figure S10. XRD patterns of post-treated samples at different liquid-to-solid ratios

Figure S11. (a) UV-vis spectra, (b) Raman spectra and (c) FT-IR spectra of post-treated samples at different liquid-to-solid ratios.

Figure S12. SEM and TEM images of post-treated samples at different liquid-to-solid ratios: (a, f) 160 (MTS_{30-0.125-170-3d}); (b, g) 80 (MTS_{30-0.25-170-3d}); (c, h) 40 (MTS_{30-0.5-170-3d}); (d, i) 27 (MTS_{30-0.75-170-3d}) and (e, j) 20 (MTS_{30-1-170-3d})

Figure S13. N₂ adsorption-desorption isotherms and pore size distributions of posttreated samples at different liquid-to-solid ratios

Figure S14. SEM images of MTS_{30-0.25-170-xh} samples: x=(a) 0; (b) 2; (c) 6; (d) 12; (e)

24; (f) 48; (g) 60; (h) 72; (i) 84; (j) 96

Figure S15. TEM images of MTS_{30-0.25-170-xh} samples: x= (a) 0; (b) 2; (c) 6; (d) 12; (e) 24; (f) 48; (g) 60; (h) 72; (i) 84; (j) 96

Figure S16. N_2 adsorption-desorption isotherms and pore size distributions of MTS_{30} . _{0.25-170-xh} samples at different time points

1.	$\mathbf{S}_{\text{BET}}^{a}$	S_{ext}^{b}	V _{micro} ^b	V _{meso} ^c	$V_{total}{}^d$
sample	(m^{2}/g)	(m^{2}/g)	(cm^{3}/g)	(cm^{3}/g)	(cm^{3}/g)
TS130-P	435.67	35.44	0.198	0.110	0.268
MTS _{30-0.25-170-2h}	426.48	41.97	0.192	0.159	0.334
MTS _{30-0.25-170-6h}	434.66	46.90	0.189	0.196	0.375
MTS _{30-0.25-170-12h}	420.72	49.37	0.188	0.204	0.388
MTS _{30-0.25-170-24h}	419.25	50.47	0.187	0.253	0.435
MTS _{30-0.25-170-48h}	409.44	42.35	0.186	0.206	0.372
MTS _{30-0.25-170-60h}	406.96	38.12	0.184	0.181	0.370
MTS _{30-0.25-170-72h}	398.72	41.26	0.182	0.172	0.351
MTS _{30-0.25-170-84h}	404.71	43.21	0.185	0.173	0.346
MTS _{30-0.25-170-96h}	399.66	38.65	0.179	0.183	0.350

Table S4. Textual parameters of $MTS_{30-0.25-170-xh}$ at different time points

^aMeasured from multipoint BET method; ^bMeasured from t-plot method; ^cV_{meso} calculated by using BJH method, ^dDetermined from adsorbed volume at $P/P_0=0.99$.

Figure S17. SEM images of $MTS_{30-0.5-170-xh}$ samples: x= (a) 0; (b) 2; (c) 6; (d) 12; (e)

24; (f) 48; (g) 60; (h) 72; (i) 84; (j) 96

Figure S18. TEM images of MTS_{30-0.5-170-xh} samples: x= (a) 0; (b) 2; (c) 6; (d) 12; (e) 24; (f) 48; (g) 60; (h) 72; (i) 84; (j) 96

Figure S19. SEM images of MTS_{30-0.5-140-xh} samples: (a) 0; (b) 2; (c) 6; (d) 12; (e) 24; (f) 48; (g) 72; (h) 96; (i)120; (j) 144; (k) 168; (l) 192 and (m) 216

Figure S20. TEM images of MTS_{30-0.5-140-xh} samples: (a) 0; (b) 2; (c) 6; (d) 12; (e) 24; (f) 48; (g) 72; (h) 96; (i)120; (j) 144; (k) 168; (l) 192 and (m) 216

Figure S21. Fitting curve of pH and TPAOH solution concentration

Figure S22. (a) UV-vis spectra, (b) distributions of titanium species and weight varying (c) Raman spectra of recrystallized TS130-P samples by 0.2 M TPAOH at different time points

catalyst	Ti content ^a (wt%)	Ti content ^b (wt%)	1-Hexene ^c			Phenol ^d		
			Conv.	Selectivity (%)		Conv	Selectivity (%)	
			(%)	Epoxide	Others	. (%)	DHB (HQ/CAT)	BQ
MTS _{30-0.125-170-3d}	1.11	1.33	46.1	97.4	2.6	22.2	94.1(46.4/47.7)	5.9
MTS _{30-0.25-170-3d}	0.79	1.40	48.8	97.9	2.1	27.8	98.0(48.0/50.0)	2.0
MTS _{30-0.5-170-3d}	0.62	1.17	42.5	98.7	1.3	22.5	98.5(48.1/50.4)	1.5
MTS _{30-0.75-170-3d}	0.83	0.92	39.6	99.5	0.5	19.9	97.6(49.8/47.8)	2.4
MTS _{30-1-170-3d}	0.74	0.90	40.3	95.5	4.5	23.7	98.8(50.8/48.0)	1.2
MTS _{30-0.5-140-3d}	0.40	0.85	37.9	99.4	0.6	16.3	98.7(45.0/53.7)	1.3
MTS _{30-0.5-150-3d}	0.44	1.00	41.7	98.9	1.1	19.4	98.6(48.1/50.5)	1.4
MTS _{30-0.5-180-3d}	0.96	1.24	44.8	99.8	0.2	24.3	94.7(47.8/46.9)	5.3
TS130-P	0.86	0.95	40.5	99.1	0.9	19.7	99.1(45.8/53.3)	0.9

Table S5. Catalysis test results of different TS-1 zeolites

^aFramework Ti contents were determined by ICP and UV-vis; ^bSurface non-anatase content were determined by EDS and UV-vis; ^cReaction conditions: catalyst 50 mg, 1hexene 10 mmol, H_2O_2 10 mmol (molar ratio of hexene: $H_2O_2=1:1$), methanol 10 mL, temp 333 K, time 4 h; ^dReaction conditions: catalyst 100 mg, phenol 10 mmol, H_2O_2 3.3 mmol (molar ratio of phenol: $H_2O_2=3:1$), water 10 mL, temp 333 K, time 6 h.

Figure S23. Recycle tests of $MTS_{30-0.25-170-3d}$: (a) 1-hexene epoxidation and (b) phenol hydroxylation

Figure S24. TEM images(a), SEM images (b), UV-vis spectra (c) and N₂ physisorption

results (d) of recycled $MTS_{30-0.25-170-3d}$ after phenol hydroxylation.