Supporting Information for

Solution-processable hierarchical SiNWs/PEDOT/MnO_x electrodes for high-performance supercapacitors

Xiaojuan Shen,^a * Xinyue Wei,^a Tongfei Wang,^a Sumin Li,^a and Haitao Li^b *

^a Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu

University, Zhenjiang, Jiangsu Province, 212013, China.

^b Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.

Fig. S1. Photos of different composites.

Fig. S2. (a) Raman data and (b) X-ray diffraction of SiNWs/PEDOT and

SiNWs/PEDOT/MnO_x; (c) XPS survey spectra and (d) Mn 2P region of XPS spectrum

obtained from SiNWs/PEDOT/MnO_x.

Fig. S3. 45 degree angle SEM image of SiNWs/PEDOT@Pt/MnO_x electrode.

Fig. S4. SEM image of the SiNWs/PEDOT@Pt/MnO_x composite and corresponding

EDS elemental mapping of Si, S, Mn, and Pt.

Fig. S6. Areal capacitance values of different electrodes at 2 mA cm⁻².

Fig. S7. EIS spectra of SiNWs/PEDOT/MnO_x and SiNWs/PEDOT@Pt/MnO_x electrodes

in 1 M Na₂SO₄.

Fig. S8. GCD curves under different current densities from 2 to 6 mA cm⁻² for the

SiNWs/PEDOT/MnO_x electrode.

Fig. S9. Electrochemical performances of SiNWs/PEDOT/MnO_x electrodes prepared with electrodeposition times of PEDOT for 15 min dipped in 15 mM KMnO₄ for 50 min. (a) CV curves at the scan rate of 20 mV s⁻¹, (b) GCD curves at the current density

of 2 mA cm⁻², (c) EIS spectra.

Fig. S10. SEM images of SiNWs/PEDOT prepared with electrodeposition times (a) 10min, (b) 15min, (c) 20min, (d) 25min.

Fig. S11. Electrochemical performances of SiNWs/PEDOT electrodes prepared with electrodeposition times of PEDOT. (a) CV curves at the scan rate of 50 mV s⁻¹, (b) GCD curves at the current density of 2 mA cm⁻², (c) Area capacitance of each electrode at different current densities was calculated according to GCD curve.

Fig. S12. Electrochemical perofrmances of SiNWs/PEDOT/MnO_x electrodes prepared with electrodeposition times of PEDOT for 15 and dipped in different concentration

 $KMnO_4$ for various time. (a) 5 mM, (b) 10 mM, (c) 15 mM and (d) 20 mM.

Fig. S13. Areal capacitance values of the SiNWs/PEDOT/MnO_x electrodes with

different KMnO₄ concentrations along with the bath time.

System	Electrolyte	E(mWh/cm ²)	P(mW/cm ²)	Refs
PEDOT/PPy/SiNWs	PYR ₁₃ TFSI	0.0146	0.315	1
PEDOT/D/SiNWs	N ₁₁₁₄ TFSI	0.007	1.3	2
PEDOT coated SiNWs	N ₁₁₁₄ TFSI	0.0092	0.11	3
MnO _x /C/PSiNW	0.1M EMIM-TFSI	0.555	0.48	4
MnO ₂ /SiNWs	PYR ₁₃ TFSI/ LiClO ₄	0.0091	0.388	5
Si-TNR/TiN/ MnO ₂	1M Na ₂ SO ₄	0.003	0.1	6
SiNWs@MnO ₂	1M Na ₂ SO ₄	3.34×10 ⁻⁵	0.14	7
MnO _x /PEDOT/SiNWs	1M Na ₂ SO ₄	0.0409	0.524	This Work
	PVA/ Na ₂ SO ₄	0.0133	0.275	

with previous devices.

References

- 1. Q. Zhou, Y. Zhou, M. Bao and X. Ni, Modified silicon nanowires@ polypyrrole core-shell nanostructures by poly (3, 4-ethylenedioxythiophene) for high performance on-chip micro-supercapacitors, *Applied Surface Science*, 2019, **487**, 236-243.
- D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Müller-Sebert, P. Gentile, M. Boniface, D. Aldakov, B. Iliev, T. J. Schubert and C. E. Nebel, Designing 3D multihierarchical heteronanostructures for high-performance on-chip hybrid supercapacitors: poly (3, 4- (ethylenedioxy) thiophene)-coated diamond/silicon nanowire electrodes in an aprotic ionic liquid, ACS Applied Materials & Interfaces, 2016, 8, 18069-18077.
- 3. X. Shen, C. Liu, X. Zhang, J. Li, J. Zhao and S. Li, High capacitive PEDOT-coated SiNWs electrode for micro-supercapacitors with facile preparation, *Journal of Inorganic and Organometallic Polymers and Materials*, 2020, **30**, 3722-3734.
- S. Ortaboy, J. P. Alper, F. Rossi, G. Bertoni, G. Salviati, C. Carraro and R. Maboudian, MnO xdecorated carbonized porous silicon nanowire electrodes for high performance supercapacitors, *Energy & Environmental Science*, 2017, **10**, 1505-1516.
- D. P. Dubal, D. Aradilla, G. Bidan, P. Gentile, T. J. Schubert, J. Wimberg, S. Sadki and P. Gomez-Romero, 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li-doped ionic liquid, *Scientific reports*, 2015, 5, 1-10.
- P. Lu, E. Halvorsen, P. Ohlckers, L. Müller, S. Leopold, M. Hoffmann, K. Grigoras, J. Ahopelto, M. Prunnila and X. Chen, Ternary composite Si/TiN/MnO₂ taper nanorod array for on-chip supercapacitor, *Electrochimica Acta*, 2017, **248**, 397-408.
- A. Soam, K. Parida, R. Kumar and R. O. Dusane, Silicon-MnO₂ core-shell nanowires as electrodes for micro-supercapacitor application, *Ceramics International*, 2019, 45, 18914-18923.