Achievement of high efficiency and thermally stable near-infrared phosphors by designing

chromium crystallographic environment for nondestructive testing and night vision

Guohui Wei, Panlai Li*, Rui Li, Ye Wang, Hao Suo, Yuanbo Yang, Shaoxuan He, Jiehong Li,

Yawei Shi, Zhijun Wang*

Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science &

Technology, Hebei University, Baoding 071002, China

Table S1 Refined crystallographic data of InTaO₄:Cr³⁺ (x=0- 0.011).

*li_panlai@126.com

*wangzj1998@126.com

x	0	0.001	0.003	0.005	0.007	0.009	0.011
Crystal System				monoclinic-ty	pe		
Space group				P2/a			
a (Å)	5.1588	5.1575	5.1578	5.1582	5.1571	5.1575	5.1566
b (Å)	5.7792	5.7777	5.7779	5.7781	5.7769	5.7772	5.7761
C (Å)	4.8287	4.8274	4.8274	4.8276	4.8263	4.8265	4.8256
Z	4						
Cell Volume (Å ³)	143.920	143.823	143.803	143.744	143.727	143.671	143.651
R _{ωp} (%)	8.70	9.05	8.57	8.96	8.84	10.02	8.97
R _p (%)	6.79	7.12	6.02	6.99	6.98	7.75	7.00
χ²	1.202	1.292	1.16	1.223	1.228	1.554	1.221

Table S2 Refined crystallographic data of $ScTaO_4$:Cr³⁺(x=0-0.011).

X	0	0.001	0.003	0.005	0.007	0.009	0.011
Crystal System				monoclinic-typ	e		
Space group				P2/a			
a (Å)	5.1876	5.1575	5.1237	5.1145	5.1103	5.1073	5.1052
b (Å)	5.7781	5.7772	5.6802	5.6674	5.6635	5.6593	5.6572
c (Å)	4.8277	4.8265	4.8263	4.8072	4.8033	4.7995	4.7971
Z				4			
Cell Volume (Å ³)	143.771	143.691	143.665	143.286	142.747	142.571	142.441
R _{ωp} (%)	8.42	9.05	8.57	8.97	8.98	9.05	8.97
R _p (%)	7.92	7.85	7.86	7.99	7.68	7.75	7.78
χ²	2.245	1.992	2.216	2.41	1.998	2.134	2.129

Table S3 Refined crystallographic data of GaTaO ₄ :Cr ³⁺ (x=0- 0.0

X	0	0.001	0.003	0.005	0.007	0.009	0.011
Crystal System			n	nonoclinic-typ	e		
Space group				P2/a			
a (Å)	4.5936	4.5934	4.5930	4.5928	4.5863	4.5828	4.5755
b (Å)	5.5717	5.5711	5.5710	5.5684	5.5664	5.5620	5.5598
c(Å)	4.9680	4.9666	4.9660	4.9631	4.9615	4.9588	4.9561

Z				4			
Cell Volume (Å ³)	127.150	127.099	127.067	127.007	126.990	126.702	126.607
R _{ωp} (%)	9.95	9.65	8.69	8.43	8.54	8.02	8.97
R _p (%)	7.56	7.22	6.95	6.86	6.92	6.75	7.38
χ ²	2.505	2.794	2.265	2.443	2.678	2.362	2.267

Table S4 Content ratio of each element of $GaTaO_4$:Cr³⁺

Element	Atomic (%)
0	84.8
Ga	18.8
Ta	37.2
Cr	0.7

Table S5 Content ratio of each element of $ScTaO_4:Cr^{3+}$

Element	Atomic (%)
0	64.4
Sc	23.2
Та	51.9
Cr	1.1

Table S6 Content ratio of each element of $InTaO_4:Cr^{3+}$

Element	Atomic (%)
0	54.1

In	21.9
Ta	22.3
Cr	1.7

Table S7. Calculation of the relative formation energy of GaTaO₄ and Ga[Ta_{Cr}]O₄.

Substituting model	GaTaO4	GaTa _{Cr} O ₄
Formation energy (eV)	-14.3671 eV	-8.6370 eV

Measurements of quantum efficiency

The quantum efficiency (QE) measurement was performed at room temperature by using a HORIBA FLuorolog3 fluorescence spectrometer with a 450 W Xe lamp. The IQE is defined as the percentage of the number of emitted photons to that of absorbed photons, which can be calculated using the following equation:

$$IQE = \frac{\int L}{\int E_R - \int E_S}$$
(1)

L is the luminescence spectrum of the sample, E_S is the excitation spectrum of the sample, and E_R is the excitation spectrum referenced by BaSO₄. In addition, the EQE is defined as the percentage of the number of emitted photons to the number of exciting photons:

$$EQE = \frac{\int L}{\int E_R} \times 100\%$$
(2)

The absorption efficiency (AE) is defined as the percentage of the number of absorbed photons (by the sample) to that of excitation photons:

$$AE = \frac{\int E_R - \int E_S}{\int E_R} \times 100\%$$
(3)

Measurements of Huang–Rhys factor (S)

$$FWHM = 2.36\sqrt{S}\hbar\omega\sqrt{coth}(\frac{\hbar\omega}{2kT})$$
(4)

where the FWHM (eV) is the full width at half maximum of emission spectrum at temperature T(K),

and the $h \omega$ and k are the phonon energy and Boltzmann's constant, respectively.

$$\operatorname{coth}(x) = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

$$FWHM^{2} = 5.57 \times S \times (\hbar\omega)^{2} (1 + \frac{1}{\frac{\hbar\omega}{kT}})$$

$$e^{\frac{\hbar\omega}{kT}} = 10^{-3}$$
(6)

$$\overline{kT} \sim 10$$

$$FWHM^{2} = 5.57 \times S \times (\hbar\omega)^{2} (1 + \frac{1}{\frac{\hbar\omega}{2kT}})$$
(8)

$$FWHM = a + b \times 2kT \tag{9}$$

$$a = 5.57 \times S \times (\hbar\omega)^2 \tag{10}$$

$$b = 5.57 \times S \times (\hbar\omega)^2 \tag{11}$$

Straight-line fitting equation:

InTaO₄: y = 0.36454x + 0.00454

ScTaO₄: y = 0.57179x + 0.01892

 $GaTaO_4$: y = 0.39389x + 0.01987

Figure S1 The trend of volume change of a, b, c, V of $InTaO_4$: xCr^{3+} (x=0-0.1).

Figure S2 Mapping of InTaO₄:Cr³⁺.

Figure S3 Mapping of ScTaO₄:Cr³⁺.

Figure S4 The diffuse reflectance spectra (DRs) of XTaO₄:Cr³⁺ (X=Ga, Sc, In). The inset shows the XTaO₄

(X=Ga, Sc, In) host of linear relationship with $[F(R)^2hv]^{1/2}$ and hv.

Figure S5 The thermoluminescence spectra of XTaO₄:Cr³⁺ (X=Ga, Sc, and In).

Figure S6 Rietveld refinement of XRD results of X³⁺ and Ta⁵⁺ ions are substituted by Cr³⁺ ions, respectively.

Figure S7 T–S diagram of Cr³⁺ at an octahedron crystal environment.

Figure S8 The PL spectrum of XTaO₄:Cr³⁺ (X=Ga, Sc, In).

Figure S9 The luminescent spectra for the IQE of GaTaO₄:0.005Cr³⁺.

Figure S10 Temperature-dependent PL spectra of samples ScTaO₄:0.009Cr³⁺ and InTaO₄:0.011Cr³⁺.

Figure S11 Fitting results of FWHM² as a function 2 kT.

Figure S12 Spectra of LEDs coupled with $XTaO_4$:(X= Ga, Sc, and In) penetrating five different solutions respectively