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Experimental Section:

All involved chemicals were purchased from Sigma-Aldrich Reagent Co. The reagents 

and solvents were of analytical grade and used without any extra purification.

Preparation of MnO@NSC hybrids

Typically, 14.7 g (1 M) (CH3COO)2Mn·4H2O, 6 g AM monomer, 36 mg 

C7H10N2O2 cross-linker and 90 mg K2S2O8 initiator were dispersed into 60 mL 

deionized water and stirred for 0.5 h at 40 °C to adequately dissolve. Next, the obtained 

mixture solution was poured into a sealed container glass bottle and heated in an electric 

oven at 60 °C for 4 h to in situ polymerization, forming uniform PAM-Mn hydrogel. 

Subsequently, the resulting hydrogel was dried at 60 ℃ in the oven for 20 h. Finally, 

the precursor was calcined at 800 ℃ for 2 h with a heating rate of 5 °C min-1 in N2 

flowing to obtain core-shell MnO@NSC nanoparticles.

For comparison study, 7.35 g (0.5 M) and 22.06 g (1.5 M) (CH3COO)2Mn·4H2O 

were also selected as Mn sources to made MnO@NSC hybrids employing the above 

method.

Materials Characterization:

The morphology of MnO@NSC samples is investigated by using field emission 

scanning electron microscopy (FESEM; SU8010, 10 kV) and transmission electron 

microscopy (TEM, JEM-2100, Japan). Energy-dispersive X-ray spectroscopy (EDS) 

was used to record elemental distribution. The compositions and structures of 

MnO@NSC hybrids were analyzed by XRD images (XRD, Bruker, Advance D8A), 

Raman spectroscopy (Witech. CRM200, 532 nm), and XPS (ESCALAB250Xi) 

images. The content of C was measured by adopting a TA/SDT650 thermal analyzer at 

10 °C min-1 from 25 to 800 °C under air atmosphere. The specific surface area and the 

pore-size distribution of MnO@NSC samples is tested by automatic gas adsorption 

analyzer (Autosorb iQ). The Mn content in electrolyte after the initial CV charge scan 

was measured by the inductively coupled plasma-optical emission spectrometry (ICP-

OES). 

Electrochemical PerformanceTesting



Cyclic voltammetry curves at 0.1, 0.2, 0.4, 0.6 mV s-1 and electrochemical 

impedance spectroscopy (100 kHz to 0.1 Hz) were evaluated on electrochemical 

workstation (CHI 760D). All the galvanostatic charge/discharge tests were conducted 

on Neware CT-4008 battery test systems (Shenzhen, China) in the potential ranging 

from 0.8 to1.9 V (vs. Zn/Zn2+). MnO@NSC electrode was prepared by uniformly 

mixing MnO@NSC active materials, carbon black conductive agents and 

polytetrafluoroethylene (PTFE) binders via grinding for 20 min to obtain a shiny 

elcetrode film, and then such film (area: 1 cm2 ) was pressed onto clean Ti mesh with a 

pressure of 10 MPa cm-2 followed by drying in a oven at 100 °C for 16 h.AZIB was 

assembled by employing Zn foil (thickness: 10 µm) as a anode, MnO@NSC (mass 

loading:2-3 mg) a cathode, 2 M ZnSO4·7H2O + 0.2 M MnSO4·H2O as an electrolyte 

and glass fiber separator (GF/D, Whatman) as a separator.The quasi-solid-state ZIB 

was further assembled by using PAM-based hydrogel instead of the above liquid 

electrolyte and glass fiber separator. The synthetic methods of hydrogel are as follows: 

28.75 g of ZnSO4·7H2O, 1.69 g of MnSO4·H2O, 5 g AM monomer, 15 mg C7H10N2O2 

cross-linker and 75 mg K2S2O8 initiator were dissolved into 50 mL deionized water, 

held at 40 °C to fully dissolve. Then, the homogenous solution was transferred into a 

mold and maintained at 60 °C for 4 h to get a brownish red PAM-based hydrogel.

Energy and power densities (E and P) of such AZIB were evaluated based on the 

calculation formulas of

E = /m

△ 𝑡

∫
0

𝐼𝑉 (𝑡)𝑑𝑡

P = 𝐸 ∆𝑡

where I refers to discharging current (A), V(t) represents discharging voltage at t (V), 

dt and Δt is time differential and discharging time (s), respectively, m is mass of MnO



The total MnO content in final sample can be estimated by TGA analysis toward 

MnO@C. The corresponding reaction equation for MnO@C in air atmospheres is 

shown below:

6𝑀𝑛𝑂 + 2𝐶 + 3𝑂2→2𝑀𝑛3𝑂4 + 2𝐶𝑂2↑

According to the mass for annealed products of MnO@C and molar ratio relationships 

in between Mn3O4, we can calculate the MnO (M1) content in MnO@NSC. The 

calculation details are listed as follows:

𝑀1 × 0.8044

228.81
× 3 × 70.938

𝑀1
= 0.748

Therefore, the mass percent concentration of MnO in the MnO@C sample is calculated 

to be ~74.8%. 
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Fig. S1 Content of Mn2+ in 2 M ZnSO4 electrolytes after the initial CV charge scan
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Fig. S2 GCD curves of MnO@NSC-0.5
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Fig. S4 GCD curves of MnO@NSC-1.5
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Fig. S6 Nyquist plot of cycled MnO@NSC electrode
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Fig. S7 XRD pattern of the cycled cathode



Table S1 Cyclic performance comparison

Electrode Remained Capacity (mAh g-1) Mass loading 
(mg cm-2) Ref.

MnO@NSC 139.75 at 2 A g−1 after 5000 cycles 3 This work
α-Mn2O3 82.2 at 2 A g−1 after 1000 cycles - [1]

CoMn-PBA 57.3 at 1 A g−1 after 1000 cycles - [2]
N-VO-MnO1-x 135 at 0.5 A g−1 after 600 cycles 1 [3]

MnO 10.5 at 0.5 A g−1 after 600 cycles 1 [4]
MgMn2O4 96.8 at 0.5 A g−1 after 500 cycles - [5]

MnO@NGS 112.3 at 0.5 A g−1 after 300 cycles - [6]
Mn3O4 124 at 0.5 A g−1 after 300 cycles - [7]

ZnMn2O4/C 84.6 at 0.5 A g−1 after 500 cycles 2 [8]
MnO@C 102.9 at 1.5 A g−1 after 1200 cycles 1.2 [9]
Cu-MnO2 111 at 5 A g−1 after 700 cycles 1.5 [10]

MnO 103 at 1 A g−1 after 1000 cycles 1.5 [11]
V2O5 36 at 10 A g−1 after 1000 cycles 2.8 [12]

ZnxMnO2/CNT
s

101 at 3 A g−1 after 2000 cycles 1 [13]

MnO@N-C 95.3 at 0.5 A g−1 after 200cycles 2 [14]
MnO2 131 at 0.5 A g−1 after 400 cycles 2 [15]

MnO@C 56.5 at 2 A g−1 after 1000 cycles 1 [16]
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