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Fig. S1 (a, b) The SEM images of ZnO, (c-f) the HRTEM images of Co3O4@ZnO.

Fig. S2 Corresponding element energy spectrum of Fig. 1f.
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Fig. S3 EPR spectra of ZnO and Co3O4@ZnO. 

Fig. S4 The TEM images of (a) 0.3-Co3O4@ZnO, (b) 0.6-Co3O4@ZnO, and (c) 0.9-

Co3O4@ZnO.

Fig. S5 (a) TEM, (b) XRD and (c) Raman characterizations for Co3O4@ZnO after 30 

h photoreduction CO2 reaction.
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Fig. S6 (a) SEM and (b) TEM images of Co3O4.

Fig. S7 (a) XRD pattern, (b) Raman spectrum of Co3O4. High-resolution XPS spectra 

of Co3O4: (c) Co 2p and (d) O 1s.
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Fig. S8 Mott-Schottky plot of Co3O4. 

Fig. S9 Dynamic H2O vapor adsorption isotherms of (a) ZnO, and (b) Co3O4@ZnO.

Fig. S10 The models of (a) Co3O4@ZnO and (b) ZnO for FDTD simulations.
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Fig. S11 The simulated UV−vis absorption spectra of ZnO and Co3O4@ZnO.

Fig. S12 The simulations of photocurrent density distribution of ZnO and Co3O4@ZnO 

under light irradiation at (a, b) 550 nm and (c, d) 700 nm. 

 Fig. S13 The single-band I-t of ZnO and Co3O4@ZnO under light irradiation at (a) 
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400, (b) 550, and (c) 700 nm.

Fig. S14 The simulations of electric field distribution of ZnO and Co3O4@ZnO under 

light irradiation at (a, b) 550 nm and (c, d) 700 nm.

Fig. S15 The average production rate of CO and CH4 every hour of Co3O4@ZnO in 

stability test.
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Fig. S16 Time-dependent performance of CO, CH4 and H2 yields of Co3O4@ZnO.

Fig. S17 The schematic diagram of reaction device for photocatalytic CO2 reduction.

Fig. S18 The infrared images during the CO2 photoreduction reaction.
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Fig. S19 (a) N2 adsorption-desorption isotherm and (b) CO2 adsorption isotherm of 

Co3O4.

Fig. S20 (a) SEM image and (b) XRD pattern of raw material ZnO. 

Synthesis of Co3O4:  

The synthesis strategy of Co3O4 was similar to that of Co3O4@ZnO, except that 

solution A was absent. Specifically, the as-synthesized cobalt-based fragments were 

dispersed uniformly in an aqueous solution. The above system was then heated to 55°C 

for 30 min, followed by rapid cooling and collection of the reaction product. The 

precipitate was repeatedly washed with ethanol and deionized water. Finally, the 

product was dried at 80 °C for 48 h. The resulting sample was labeled Co3O4.
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Fig. S21 TEM image of cobalt-based fragments.

Fig. S22 (a) XRD pattern, (b) element energy spectrum of cobalt-based fragments. 

High-resolution XPS spectra of cobalt-based fragments: (c) Co 2p and (d) O 1s.

Cobalt based fragments exhibit poor crystallinity. Element energy spectrum shows 

that Co and O elements are included in the cobalt-based fragments. Combined with the 

results of high-resolution XPS spectra, it can be inferred that the cobalt-based fragments 

are poorly crystallized cobalt oxides. Co3O4 nanosheets were converted from cobalt-

based fragments due to oxidation and recrystallization during the solvothermal reaction.
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Quantum efficiency (QE) calculation:

QE (%) = (Number of effective electrons) / (Number of total photons) × 100% (S1)

Number of effective electrns = [2×r(CO)+8×r (CH4)] × NA = T-electrons × NA (S2)

Number of total photons = (Light absorbed by the photocatalyst) × t / (Average photon 

energy) (S3)

light absorbed by the photocatalyst = H × S (S4)

Average photon energy = hc/λ (S5) 

QE (%) = (T-electrons × NA × hc) / (H × S × t × λ) (S6)

Where r(CO) and r(CH4) is the generation rates of CO and CH4 for photocatalyst, 

respectively. NA is Avogadro’s constant (NA = 6.022×1023 mol-1). h is Planck’s constant 

(h = 6.63×10-34 J∙s). H represents the light input, which is 230 mW∙cm-2 detected by 

the light power meter. t = 3600 s, and c = 3×108 m∙s-1. S is the irradiation area of the 

photocatalyst placed on the quartz plate inside the reactor (S = 28.26 cm2).

The T-electrons of ZnO, Co3O4, 0.3-Co3O4-@ZnO, 0.6-Co3O4-@ZnO, and 0.9-

Co3O4@ZnO are 2.44, 9.16, 57.4, 89.26, 61.82 μmol g-1 h-1 respectively. So the 

corresponding QE is calculated to be 0.0025%, 0.0094%, 0.0588%, 0.0914%, 0.0633%, 

respectively.

Table S1 The mass proportion of Zn and Co elements in the three different 

Co3O4@ZnO heterojunctions

Sample ID wCo (mg L-1) wZn (mg L-1)
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0.3-Co3O4@ZnO 0.772 32.66

0.6-Co3O4@ZnO 2.941 36.31

0.9-Co3O4@ZnO 5.069 35.683

Mass proportion of Co3O4 in Co3O4@ZnO composites = w(Co3O4) / [w(Co3O4) + 

w(ZnO)]  (S7)

w(Co3O4) = n(Co3O4) × M(Co3O4)  (S8)

w(ZnO) = n(ZnO) × M(ZnO)  (S9)

For Co3O4, n(Co3O4) = n(Co) /3 (S10) 

For ZnO, n(ZnO) = n(Zn) (S11)

n(x) = w(x) / M (x), (x = Co, Zn, Co3O4, and ZnO) (S12)

So w(Co3O4) = w(Co) × M(Co3O4) / [3 × M(Co)] (S13)

w(ZnO) = w(Zn) × M(ZnO) / M(Zn) (S14)

Where w(x), n(x), and M(x) is the wight, amount of substance, and molar mass of x (x= 

Co, Zn, Co3O4, and ZnO), respectively. The M(Co), M(Zn), M(Co3O4) and M(ZnO) is 

58.93, 65.93, 240.79, and 81.39 g mol-1, respectively.

For 0.3-Co3O4@ZnO, w(Co) and w(Zn) is 0.772 and 32.66 mg L-1, respectively. 

According to the eq S7, S13 and S14, mass proportion of Co3O4 in 0.3-Co3O4@ZnO is 

calculated to be 2.5%. Similarly, the mass proportion of Co3O4 in 0.6-Co3O4@ZnO and 

0.9-Co3O4@ZnO is 8.1% and 13.5%, respectively.

Table S2 The comparison of CO2 reduction performance of photocatalysts in this work 

and recently reported literatures

Photocatalyst Light Reaction system T-electrons CH4 Ref.
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source rates a (μmol g-1 

h-1) 
selectivity b 

and stability 
Co3O4@ZnO 300W Xe 

lamp (AM 
1.5)

H2O (2 mL), CO2 (88 
kPa)

89.26
(CO:4.23 
CH4:10.1)

70.5%
30 h

This 
work

Porous ZnO with 
exposed (110) 
facets

300W Xe 
lamp

Na2SO3 (0.25 M) and 
NaOH (1 M) 
saturated CO2

1.912
(CO:0.76
CH4:0.049)

11.0%
8 h

1

ZnO/ZnMn2O4 
heterojunction

300W Xe 
lamp

NaHCO3 (0.12 g) 
and H2SO4 (0.25 mL, 
2 M)

8.74
(CO: 3.251
CH4:0.275) 

7.9%
24 h

2

ZnO/g-C3N4 
heterojunction

UVC lamp 
with 
maximum 
length of 254 
nm

H2O (100 mL) 10.16
(CO: 2.1
CH4: 0.745)

26.2%
6 h

3

ZnO nanoplates 
with defects

300W Xe 
lamp 

Na2SO3 (100 mL, 

0.25 M) and NaOH 

(1M) saturated CO2

1.9 
(CO: 0.95)

-
4 h

4

CdS/ZnO 
heterojunction

Visible light 
(λ > 400 nm)

H2O (10 mL), CO2 
(0.4 MPa)

7.8 
(CO: 3.9)

-
8 h

5

100Cu2O-0.1Pd 300W Xe 
lamp (420-
filter)

Na2SO3 (0.01 M), 
CO2 (0.4 MPa)

0.26
(CO: 0.13)

-
8 h

6

TiO2/CsPbBr3 
heterojunction

300 W Xe 
lamp

H2O (100 μL), CO2 
(80 kPa), acetonitrile 
(30 mL) 

18.04 
(CO: 9.02)

-
16 h

7

AuNPs@SCX4+ 300 W Xe 
lamp (AM 
1.5)

NaHCO3 (84 mg) 
and H2SO4 (0.25 mL, 
2 M)

3.37
(CO:1.685)

-
16 h

8

CdS/N-doped 
graphene

350 W Xe 
lamp (420- 
filter)

H2SO4 solution 
(0.3mL, 2M), 
NaHCO3 (84 mg)

7.6
(CO: 2.6
 CH4:0.3) 

10.3%
12 h

9

Porous Co3O4 LED lamp Acetonitrile / H2O 
mixture, TEOA as 
the electron donor 
and 
[Ru(bpy)3]Cl2·6H2O 
as photo-sensitizer

9.04
(CO: 4.52)

- 
30 h 

10

Phosphate 
modified- 
CeO2/g-C3N4 
heterojunction

300 W Xe 
lamp

H2O (5 mL), CO2 (4 
bar)

1.04
(CO: 0.52)

-
24 h

11
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ZnIn2S4/BiVO4 
heterojunction

300 W Xe 
lamp

H2O (0.4 mL), CO2 
(1 atm)

11.7
(CO: 4.75
CH4: 0.275)

5.5%
5 h

12

CeO2/CuS 
heterojunction

300 W Xe 
lamp

H2O, CO2 8.48
(CO:4.24)

-
4 h

13

Ag-Cu2O/ZnO
heterojunction

300 W Xe 
lamp

H2O (0.5 mL), CO2 
(1 atm)

6.72
(CO: 3.36)

-

16 h 

14

Ti3C2/g-C3N4 300 W Xe 
lamp (420-
filter)

H2O, CO2 6.6
(CO: 2.8
CH4: 0.125)

4.3%

25 h

15

a T-electrons rates = 2r(CO) + 8r(CH4), where r(CH4) and r(CO) are the generated rates of CH4 and 
CO, respectively.
b CH4 selectivity (%) = r(CH4) / [r (CO)+ r(CH4)] × 100%.
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