One-Pot Construction of CoSe Nanoparticles Anchored on Single-Atomic-Co Doped Carbon for pH-Universal Hydrogen Evolution

Sai Che^{a,1}, Na Ta^{a,1}, Fan Yang^{a,*}, Xingru Yan^a, Hongchen Liu^a, Neng Chen^a, Siyuan Sun^a, Chaonan Wang^a, Bo Jiang^a, Yang Sun^a, Ying Wang^{b,*}, Yongfeng Li^{a,*}

^aState Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, China

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun, Jinlin 130022, China

¹ These authors contributed equally to this work.

^{*} Corresponding authors.

E-mail: yangfan@cup.edu.cn (F. Yang), ywang_2012@ciac.ac.cn (Y. Wang), yfli@cup.edu.cn (Y. Li).

Figure S1

Figure S1. Synthetic optimization of CoSe/Co-N-C: amount of FCC slurry. SEM images of CoSe/Co-N-C with (a) 0.1 g slurry (optimized) and (b) 0 g slurry. (c) Raman spectra of CoSe/Co-N-C with 0 g and 0.1 g slurry. (d) HER LSV curves of CoSe/Co-N-C with 0 g-0.2 g slurry in 1.0 M KOH. (e) η_{10} , η_{100} , and η_{200} of CoSe/Co-N-C with 0 g-0.2 g slurry in 1.0 M KOH.

Figure S2. Synthetic optimization of CoSe/Co-N-C: pyrolysis temperature. SEM images of CoSe/Co-N-C pyrolyzed at (a) 800 °C, (b) 700 °C, and (c) 900 °C. (d) XRD spectra of CoSe/Co-N-C pyrolyzed at 700 °C, 800 °C, and 900 °C. (e) Raman spectra of CoSe/Co-N-C pyrolyzed at 700 °C, 800 °C, and 900 °C. (f) HER LSV curves of CoSe/Co-N-C pyrolyzed at 700 °C, 800 °C, and 900 °C in 1.0 M KOH. (g) η_{10} , η_{100} , and η_{200} of CoSe/Co-N-C pyrolyzed at 700 °C, 800 °C, and 900 °C in 1.0 M KOH

Figure S3. Synthetic optimization of CoSe/Co-N-C: total amount of CoCl₂. SEM images of CoSe/Co-N-C with (a) 1.0 mmol CoCl₂, (b) 1.5 mmol CoCl₂ (optimized), and (c) 2.0 mmol CoCl₂. (d) HER LSV curves of CoSe/Co-N-C with 1.0 mmol, 1.5 mmol, and 2.0 mmol CoCl₂ in 1.0 M KOH. (g) η_{10} , η_{100} , and η_{200} of CoSe/Co-N-C with 1.0 mmol, 1.5 mmol, 1.5 mmol, and 2.0 mmol CoCl₂ in 1.0 M KOH.

Figure S4

Figure S4. Aberration-corrected high-angle annular darkfield scanning transmission electron microscopy (AC HAADF-STEM) images of (a) Co-N-C and (b) CoSe/N-C.

Table S1.	Porosity	analysis	of the representation	tive catalysts
-----------	----------	----------	-----------------------	----------------

Catalysts	BET suface area (m² g⁻¹)	Pore size (nm)	Pore volume (cm³ g⁻¹)
CoSe/Co-N-C	177	15.14	0.67
CoSe/N-C	109	16.00	0.44
Co-N-C	308	6.32	0.49
CoSe	17	25.72	0.11

Figure S5

Figure S5. XPS survey spectra of (a) CoSe/Co-N-C, (b) CoSe/N-C, and (c) Co-N-C

XPS signal		CoSe/Co-N-C Binding Energy (Ev)	CoSe/N-C Binding Energy (eV)		
	Co ²⁺ 2p _{1/2}	798.0	797.6		
0-	Co ³⁺ 2p _{1/2}	796.0	795.7		
CO	Co ²⁺ 2p _{3/2}	783.0	781.5		
	Co ³⁺ 2p _{3/2}	780.6	780.1		
50	3d _{3/2}	55.6	55.9		
56	3d _{5/2}	54.3	54.6		

	Table	S2.	Binding	energies	of Co	and Se in	n CoSe/C	o-N-C	and	CoSe/N-C
--	-------	------------	---------	----------	-------	-----------	----------	-------	-----	----------

Name	Atomic (%)	Weight (%)		
С	75.06	63.38		
N	13.85	13.64		
0	7.99	9.00		
Co	2.31	9.59		
Se	0.79	4.39		

Table S3. XPS elemental analysis of CoSe/Co-N-C

Figure S6. HER performances of CoSe/Co-N-C, CoSe/N-C, Co-N-C, CoSe, and 10% Pt/C. (a) summary of η_{10} , η_{100} , and η_{200} , (b) capacitive current density as a function of scan rates, and (c) Nyquist plots of CoSe/Co-N-C and other references in 1.0 M KOH. (d) summary of η_{10} , η_{100} , and η_{200} , (e) capacitive current density as a function of scan rates, and (f) Nyquist plots of CoSe/Co-N-C and other references in 0.5 M H₂SO₄.

Figure S7. CV spectra of (a) CoSe/Co-N-C, (b) CoSe/N-C, (c) CoSe, and (d) Co-N-C with various scan rates (50-500 mV s⁻¹) in 1.0 M KOH.

Figure S8. CV spectra of (a) CoSe/Co-N-C, (b) CoSe/N-C, (c) CoSe, and (d) Co-N-C with various scan rates (50-500 mV s⁻¹) in 0.5 M H_2SO_4 .

Figure S9. (a) XRD spectrum and (d, g) SEM images of CoSe/Co-N-C after 2000 CV electrocatalytic cycles in 1.0 M KOH; (b) XRD spectrum and (e, h) SEM images of CoSe/Co-N-C after 2000 CV electrocatalytic cycles in 0.5 M H_2SO_4 ; (c) XRD spectrum and (f, i) SEM images of CoSe/Co-N-C after 2000 CV electrocatalytic cycles in 1.0 M PBS.

Table S4. HER activity summary of CoSe/Co-N-C, CoSe/N-C, Co-N-C, and CoSe in variouselectrolytes.

Electrolytes		η ₁₀ (mV)	η ₁₀₀ (mV)	η ₂₀₀ (mV)	Tafel Slope (mV dec ⁻¹)
	CoSe/Co-N-C	71	209	275	79
	CoSe/N-C	146	314	392	139
1.0 M KOH	Co-N-C	170	345	430	147
	CoSe	189	423	N/A	180
	CoSe/Co-N-C	63	176	240	65
0.5 M H ₂ SO ₄	CoSe/N-C	126	269	348	108
	Co-N-C	143	291	364	125
	CoSe	219	461	N/A	153
1.0 M PBS	CoSe/Co-N-C	128	293	360	110

Catalysts	Tafel slope (mV/dec)	Overpotential (mV)@10mA/cm ²	Electrolyte	Stability (h)	References
	79	71	1.0 M KOH	26	This work
C03e/C0-N-C	65	63	0.5 M H ₂ SO ₄	30	THIS WORK
	95	234	1.0 M KOH	14	1
C03e2-NC	62	156	0.5 M H ₂ SO ₄	14	
	37.8	248	1.0 M KOH	10	2
NISe2@NG	79.8	201	0.5 M H ₂ SO ₄	10	
Ninssan	97	135	1.0 M KOH	10	3
NI0.8550000C	85	131	0.5 M H ₂ SO ₄	10	3
	88	162	1.0 M KOH	40	4
NISe₂@NC	37	183	0.5 M H ₂ SO ₄	40	
Masa Nisa@aarban	80.6	180	1.0 M KOH	10	5
MOSe ₂ -NISe@carbon	76.3	154	0.5 M H ₂ SO ₄	10	
NICORNO	55.3	250	1.0 M KOH	10	6
NISe@NC	53.3	123	$0.5 \text{ M H}_2\text{SO}_4$	12	0
Co _{0.9} Ni _{0.1} Se	58	185.7	$0.5 \text{ M H}_2\text{SO}_4$	-	7
CoS _{0.46} Se _{0.54} @C	105.43	251	1.0 M KOH	-	8
Co _{0.85} Se@NC	125	230	1.0 M KOH	10	9
CoNiSe/NC	66.5	100	1.0 M KOH	3.33	10
Co _{0.8} Mo _{0.2} Se	58.7	86.7	0.5 M H ₂ SO ₄	10	11
CoSe@NCNT/NCN	43	197	0.5 M H ₂ SO ₄	18	12

Table S5. Summary of HER performances of CoSe/Co-N-C and other TMSes electrocatalysts

 in the literatures.

Table S6. The interaction energies (E_{int}) of CoSe/N-C and CoSe/Co-N-C, and the Bader Charge on NC and Co-N-C backbones.

Samples	<i>E_{int}</i> (eV)	C _{NC} /C _{Co-N-C} (e)
CoSe/N-C	-3.20	0.15
CoSe/Co-N-C	-3.48	0.34

Figure S8. (a) Top view and (b) side view of the charge density in the heterostructure interface of CoSe/N-C. The charge accumulation and depletion were colored in cyan and yellow, respectively. Gray balls: C atoms; blue balls: Co atoms; yellow balls: Se atoms.

Reference

- 1. H. Lu, Y. Zhang, Y. Huang, C. Zhang and T. Liu, Reaction Packaging CoSe₂ Nanoparticles in N-Doped Carbon Polyhedra with Bifunctionality for Overall Water Splitting, *ACS Appl. Mater. Interfaces*, 2019, **11**, 3372-3381.
- 2. W. Li, B. Yu, Y. Hu, X. Wang, D. Yang and Y. Chen, Core–Shell Structure of NiSe₂ Nanoparticles@Nitrogen-Doped Graphene for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media, *ACS Sustain. Chem. Eng.*, 2019, 7, 4351-4359.
- 3. Z. Huang, B. Xu, Z. Li, J. Ren, H. Mei, Z. Liu, D. Xie, H. Zhang, F. Dai, R. Wang and D. Sun, Accurately Regulating the Electronic Structure of Ni_xSe_y@NC Core-Shell Nanohybrids through Controllable Selenization of a Ni-MOF for pH-Universal Hydrogen Evolution Reaction, *Small*, 2020, **16**, 2004231.
- 4. Z. Huang, S. Yuan, T. Zhang, B. Cai, B. Xu, X. Lu, L. Fan, F. Dai and D. Sun, Selective selenization of mixed-linker Ni-MOFs: NiSe₂@NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction, *Appl. Catal. B-Environ.*, 2020, **272**, 118976.
- 5. C. Liu, K. Wang, X. Zheng, X. Liu, Q. Liang and Z. Chen, Rational design of MoSe₂-NiSe@carbon heteronanostructures for efficient electrocatalytic hydrogen evolution in both acidic and alkaline media, *Carbon*, 2018, **139**, 1-9.
- 6. Z. Huang, J. Liu, Z. Xiao, H. Fu, W. Fan, B. Xu, B. Dong, D. Liu, F. Dai and D. Sun, A MOF-derived coral-like NiSe@NC nanohybrid: an efficient electrocatalyst for the hydrogen evolution reaction at all pH values, *Nanoscale*, 2018, **10**, 22758-22765.
- 7. W. Zhong, Z. Wang, N. Gao, L. Huang, Z. Lin, Y. Liu, F. Meng, J. Deng, S. Jin, Q. Zhang and L. Gu, Coupled Vacancy Pairs in Ni-Doped CoSe for Improved Electrocatalytic Hydrogen Production Through Topochemical Deintercalation, *Angew. Chem. Int. Ed.*, 2020, **59**, 22743-22748.
- 8. J. Sun, G. Li, K. Zheng, Y. He, Z. Guo and C. Xu, Surface Co^{3+} -rich engineering of $Co(S_xSe_{1-x})_2$ nanocrystals coated with ultrathin carbon layer for efficient OER/HER, *Appl. Surf. Sci.*, 2020, **517**, 146183.
- 9. T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao and M. Cao, In situ coupling of Co_{0.85}Se and N-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries, *J. Mater. Chem. A*, 2017, **5**, 7001-7014.
- 10. C. Jiao, X. Bo and M. Zhou, Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide, *J. Energy Chem.*, 2019, **34**, 161-170.
- 11. Y. Zhou, J. Zhang, H. Ren, Y. Pan, Y. Yan, F. Sun, X. Wang, S. Wang and J. Zhang, Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution, *Appl. Catal. B-Environ.*, 2020, **268**, 118467.
- M. Yang, Y. Yang, K. Wang, S. Li, F. Feng, K. Lan, P. Jiang, X. Huang, H. Yang and R. Li, Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubesgrafted N-doped carbon nanosheets for water splitting, *Electrochim. Acta*, 2020, 337, 135685.