Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Synergetic Model for Implementing Single-Component White-Light Emission: A

Case Study of Zero-Dimensional Cadmium Halides

Jiantao Yuan,^a Guojun Zhou,^a Jian Zhang,^a Xian-Ming Zhang*^{a,b}

^a Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China. Email: <u>zhangxm@dns.sxnu.edu.cn</u> ^b College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China

Contents

Figure S1. Photographs of $(C_6H_7NCl)_2CdCl_4$, $(C_6H_7NBr)_2CdBr_4$ and $(C_6H_7NI)_2CdI_4$ crystals upon natural light.

Figure S2. FT-IR spectrum of (C₆H₇NCl)₂CdCl₄, (C₆H₇NBr)₂CdBr₄ and (C₆H₇NI)₂CdI₄.

Figure S3. TGA of (C₆H₇NCl)₂CdCl₄, (C₆H₇NBr)₂CdBr₄ and (C₆H₇NI)₂CdI₄.

Figure S4. Experimental and simulated PXRD data of $(C_6H_7NCl)_2CdCl_4$, $(C_6H_7NBr)_2CdBr_4$ and $(C_6H_7NI)_2CdI$.

Figure S5. UV absorption spectra of (C₆H₇NCl)₂CdCl₄, (C₆H₇NBr)₂CdBr₄ and (C₆H₇NI)₂CdI₄.

Figure S6. CIE of (C₆H₇NCl)₂CdCl₄ and (C₆H₇NBr)₂CdBr₄.

Figure S7. Emission spectra of (C₆H₇NCl)₂CdCl₄ and (C₆H₇NBr)₂CdBr₄ under different excitations.

Figure S8. Emission spectra before and after three months of $(C_6H_7NCl)_2CdCl_4$ and $(C_6H_7NBr)_2CdBr_4$.

Figure S9. Emission spectra of $(C_6H_7NCl)_2CdCl_4$ and $(C_6H_7NBr)_2CdBr_4$ for mm-sized bulk crystals and powder sample.

Figure S10. Excitation and emission spectra of C_6H_6NC1 ·HCl and C_6H_6NBr ·HBr; Emission spectra under different excitations of C_6H_6NC1 ·HCl and C_6H_6NBr ·HBr.

Figure S11. PL decay lifetime of (C₆H₇NCl)₂CdCl₄ at 558 nm and (C₆H₇NBr)₂CdBr₄ at 570 nm.

Figure S12. The temperature-dependent PL emission spectra of $(C_6H_7NCl)_2CdCl_4$ and $(C_6H_7NBr)_2CdBr_4$.

Figure S13. The temperature-dependent PL emission spectra of $C_6H_6NCl \cdot HCl$ and $C_6H_6NBr \cdot HBr$. Figure S14. The temperature-dependent FWHM curve of $(C_6H_7NCl)_2CdCl_4$ and $(C_6H_7NBr)_2CdBr_4$. Table S1. Crystal data of $(C_6H_7NCl)_2CdCl_4$, $(C_6H_7NBr)_2CdBr_4$ and $(C_6H_7NI)_2CdI_4$. Table S2. Selective bond lengths of $(C_6H_7NCl)_2CdCl_4$, $(C_6H_7NBr)_2CdBr_4$ and $(C_6H_7NI)_2CdI_4$.

Table S3. Selective bond angles of (C₆H₇NCl)₂CdCl₄, (C₆H₇NBr)₂CdBr₄ and (C₆H₇NI)₂CdI₄.

Figure S1. Photographs of $(C_6H_7NCl)_2CdCl_4$ (a), $(C_6H_7NBr)_2CdBr_4$ (b) and $(C_6H_7NI)_2CdI_4$ (c) crystals upon natural light.

Figure S2. FT-IR spectrum of (C₆H₇NCl)₂CdCl₄ (a), (C₆H₇NBr)₂CdBr₄ (b) and (C₆H₇NI)₂CdI₄ (c).

Figure S3. TGA of (C₆H₇NCl)₂CdCl₄, (C₆H₇NBr)₂CdBr₄ and (C₆H₇NI)₂CdI₄ (c).

Figure S4. Experimental and simulated PXRD data of $(C_6H_7NCl)_2CdCl_4$ (a), $(C_6H_7NBr)_2CdBr_4$ (b) and $(C_6H_7NI)_2CdI_4$ (c).

Figure S5. UV absorption spectra of $(C_6H_7NCl)_2CdCl_4$ (a), $(C_6H_7NBr)_2CdBr_4$ (b) and $(C_6H_7NI)_2CdI_4$

(c).

Figure S6. CIE of (C₆H₇NCl)₂CdCl₄ (red point) and (C₆H₇NBr)₂CdBr₄ (blue point).

Figure S7. Emission spectra of $(C_6H_7NCl)_2CdCl_4$ and $(C_6H_7NBr)_2CdBr_4$ under different excitations.

Figure S8. Emission spectra before and after three months of $(C_6H_7NCl)_2CdCl_4$ (a) and $(C_6H_7NBr)_2CdBr_4$ (b).

Figure S9. Emission spectra of $(C_6H_7NCl)_2CdCl_4$ (a) and $(C_6H_7NBr)_2CdBr_4$ (b) for mm-sized bulk crystals and powder sample.

Figure S10. (a) Excitation and emission spectra of $C_6H_6NC1 \cdot HC1$, (c) $C_6H_6NBr \cdot HBr$; (b) Emission spectra under different excitations of $C_6H_6NC1 \cdot HC1$, (d) $C_6H_6NBr \cdot HBr$.

Figure S11. PL decay lifetime of $(C_6H_7NCl)_2CdCl_4$ at 570 nm (a) and $(C_6H_7NBr)_2CdBr_4$ at 580 nm (b).

Figure S12. The temperature-dependent PL emission spectra of $(C_6H_7NCl)_2CdCl_4$ (a) and $(C_6H_7NBr)_2CdBr_4$ (b).

emission spectra of $C_6H_6NCl \cdot HCl$ (a) and $C_6H_6NBr \cdot HBr$ (b).

Figure S14. The temperature-dependent FWHM curve of $(C_6H_7NCl)_2CdCl_4$ (a) and $(C_6H_7NBr)_2CdBr_4$ (b).

Huang-Rhys factor (S) is often used to evaluate the electron-phono coupling, and the value of S can reflect the temperature-dependence of the electron-phono coupling. The value of S is a key parameter for STEs formation, and it can be obtained via the following formula:

$$FWHM = 2.36\sqrt{S} \ \hbar\omega \sqrt{\coth\frac{\hbar\omega}{2k_BT}}$$

The *S* factor is calculated to be 16.8, 20.2, and $\hbar\omega$ is 37.7 meV, 37.8 meV for $(C_6H_7NCl)_2CdCl_4$ and $(C_6H_7NBr)_2CdBr_4$, respectively, indicating the strong electron-phono coupling effect and highly distorted lattice structure in $(C_6H_7NX)_2CdX_4$ to favor the formation of STEs.

Formula	(C ₆ H ₇ NCl) ₂ CdCl ₄	$(C_6H_7NBr)_2CdBr_4$ $(C_6H_7NI)_2CdI$		
Mr	511.35	778.11	1060.05	
Crystal system	monoclinic	monoclinic	monoclinic	
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	
Ζ	4	4	4	
a/Å	8.3379(10)	8.55700(10)	8.9322(3)	
b/Å	15.6323(10)	16.26640(10)	17.1175(9)	
c/Å	14.5932(10)	14.9119(2)	15.3568(6)	
$\alpha/^{\circ}$	90	90	90	
$eta/^{\circ}$	98.3260(10)	98.1280(10)	97.486(4)	
$\gamma^{/\circ}$	90	90	90	
$V/Å^3$	1882.43(3)	2054.76(4)	2327.99(17)	
$ ho_{ m calc}$ /g cm ⁻³	1.804	2.515	3.025	
μ/mm^{-1}	17.079	22.141	8. 891	
F(000)	1000.0	1432.0	1864.0	
$R_{\rm int}/R_{\rm sigma}$	0.0868/0.0302	0.0648/0.0201	0.0353/0.0630	
Reflections	38897	47060	10866	
Data/Para.	3885/198	4262/198	5282/208	
R_1^{a} , w $R_2^{b}[I \ge 2\sigma(I)]$	0.0483/0.1268	0.0363/0.0943	0.0630/0.1595	
R_1^{a} , w R_2^{b} [all data]	0.0485/0.1270	0.0372/0.0949	0.0912/0.1819	
$\Delta ho_{ m max}$ / $\Delta ho_{ m min}$ / e Å ⁻³	1.05/-1.62	1.65/-1.02	1.92/-1.36	

Table S1. Crystal data of (C₆H₇NCl)₂CdCl₄, (C₆H₇NBr)₂CdBr₄ and (C₆H₇NI)₂CdI₄

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \ {}^{b}wR_{2} = \{ \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

(C ₆ H ₇ NCl) ₂ CdCl ₄		(C ₆ H ₇ NBr) ₂ CdBr ₄		(C ₆ H ₇ NI) ₂ CdI ₄	
Atom–Atom	Length / Å	Atom-Atom	Length / Å	Atom-Atom	Length / Å
Cd1–Cl1	2.4641(10)	Cd1–Br1	2.5763(6)	Cd1–I1	2.7862(11)
Cd1–Cl2	2.4906(10)	Cd1–Br2	2.5550(6)	Cd1–I2	2.7591(12)
Cd1–Cl3	2.4424(9)	Cd1–Br3	2.5930(6)	Cd1–I3	2.7338(11)
Cd1–Cl4	2.4272 (10)	Cd1–Br4	2.6219(6)	Cd1–I4	2.768(11)
Cl5–C12	1.770(4)	Br5-C6	1.952(5)	I6–C7	2.123(13)
C16–C6	1.781(4)	Br6–C12	1.933(5)	I5-C1	2.186(12)

 $\textbf{Table S2.} Selective bond lengths of (C_6H_7NCl)_2CdCl_4, (C_6H_7NBr)_2CdBr_4 and (C_6H_7NI)_2CdI_4$

Table S3. Selective bond angles of (C₆H₇NCl)₂CdCl₄, (C₆H₇NBr)₂CdBr₄ and (C₆H₇NI)₂CdI₄

(C ₆ H ₇ NCl) ₂ CdCl ₄		(C ₆ H ₇ NBr) ₂ CdBr ₄		(C ₆ H ₇ NI) ₂ CdI ₄	
Cl2Cd1Cl1	100.50(3)	Br1–Cd1–Br4	106.33(2)	I1–Cd1–I2	112.04(4)
Cl4Cd1Cl1	112.68(4)	Br1–Cd1–Br3	112.03(2)	I3Cd1I4	112.66(16)
Cl4Cd1Cl2	111.54(4)	Br2–Cd1–Br4	110.30(2)	I2–Cd1–I4	113.10(2)
Cl3Cd1Cl1	112.68(4)	Br2–Cd1–Br1	112.84(2)	I3–Cd1–I1	108.42(4)
Cl3–Cd1-Cl2	105.01(3)	Br2–Cd1–Br3	113.28(2)	I2–Cd1–I1	107.89(4)
Cl3-Cd1-Cl4	113.48(3)	Br3–Cd1-Br4	101.19(2)	I4Cd1I1	102.00(16)