Supporting information

Bimetallic Ni-Co Selenides Heterostructure Aerogel for High-efficient Overall Water Splitting

Hongchen Liu, Fan Yang^{*}, Fengjiang Chen, Sai Che, Neng Chen, Chong Xu, Ni Wu, Wenkai Wei and Yongfeng Li

State Key Laboratory of Heavy Oil Processing, China University of Petroleum,

Beijing, Changping 102249, China

E-mail: yangfan@cup.edu.cn (F. Yang); yfli@cup.edu.cn (Y.F. Li)

^{*} Corresponding authors' E-mail: yangfan@cup.edu.cn (F. Yang), Tel: +86-10-89733897;

^{*} Corresponding authors' E-mail: yfli@cup.edu.cn (Y.F. Li), Tel: +86-10-89733897.

Figure S1. Schematic illustration for the generation of porous network structure.

Figure S2. (a-b) Low-resolution SEM images of Ni-Co and NiSe₂-CoSe₂ aerogels. (c-

d) High-resolution SEM images of Ni-Co and $NiSe_2$ -CoSe₂ aerogels.

Figure S3. (a) TEM image of Ni-Co aerogel. (b) TEM image of $NiSe_2$ -CoSe₂ aerogel.

Figure S4. (a) SEM image of NiSe₂-CoSe₂-2:1 aerogel. (b) SEM image of NiSe₂-CoSe₂-1:2 aerogel. (c) SEM image of NiSe₂ aerogel. (d) SEM image of CoSe₂ aerogel.

Figure S5. (a) SEM image of NiSe₂-CoSe₂-300 aerogel. (b) SEM image of NiSe₂-CoSe₂-500 aerogel.

Figure S6. SEM-EDS of NiSe₂-CoSe₂-1:1, NiSe₂-CoSe₂-2:1 and NiSe₂-CoSe₂-1:2 aerogels.

Figure S7. Polarization LSV curves without IR-correction of NiSe₂, CoSe₂, Ni-Co, and NiSe₂-CoSe₂ aerogels toward HER in 1.0M KOH.

Figure S8. (a-b) Polarization LSV curves of NiSe₂-CoSe₂-1:1, NiSe₂-CoSe₂-2:1 and NiSe₂-CoSe₂-1:2 aerogels toward HER in 1.0M KOH (with and without IRcorrection). (c-d) Polarization LSV curves of NiSe₂-CoSe₂-300, NiSe₂-CoSe₂-400 and NiSe₂-CoSe₂-500 aerogels toward HER in 1.0M KOH (with and without IRcorrection).

Figure S9. (a) Tafel slopes of NiSe₂-CoSe₂-1:1, NiSe₂-CoSe₂-2:1 and NiSe₂-CoSe₂-1:2 aerogels toward HER in 1.0M KOH. (b) Tafel slopes of NiSe₂-CoSe₂-300, NiSe₂-CoSe₂-400 and NiSe₂-CoSe₂-500 aerogels toward HER in 1.0M KOH.

Figure S10. Polarization LSV curves without IR-correction of NiSe₂, CoSe₂, Ni-Co, and NiSe₂-CoSe₂ aerogels toward OER in 1.0M KOH.

Figure S11. (a-b) Polarization LSV curves of NiSe₂-CoSe₂-1:1, NiSe₂-CoSe₂-2:1 and NiSe₂-CoSe₂-1:2 aerogels toward OER in 1.0M KOH (with and without IRcorrection). (c-d) Polarization LSV curves of NiSe₂-CoSe₂-300, NiSe₂-CoSe₂-400 and NiSe₂-CoSe₂-500 aerogels toward OER in 1.0M KOH (with and without IRcorrection).

Figure S12. (a) Tafel slopes of NiSe₂-CoSe₂-1:1, NiSe₂-CoSe₂-2:1 and NiSe₂-CoSe₂-1:2 aerogels toward OER in 1.0M KOH. (b) Tafel slopes of NiSe₂-CoSe₂-300, NiSe₂-CoSe₂-400 and NiSe₂-CoSe₂-500 aerogels toward OER in 1.0M KOH.

Figure S13. (a) EIS measurements of NiSe₂-CoSe₂-1:1, NiSe₂-CoSe₂-2:1 and NiSe₂-CoSe₂-1:2. (b) EIS measurements of NiSe₂-CoSe₂-300, NiSe₂-CoSe₂-400 and NiSe₂-CoSe₂-500 aerogels.

Figure S14. CV curves of all samples: (a) Ni-Co, (b) $NiSe_2$ -CoSe₂, (c) $NiSe_2$, (d) CoSe₂, (e) $NiSe_2$ -CoSe₂-2:1, (f) $NiSe_2$ -CoSe₂-1:2, (g) $NiSe_2$ -CoSe₂-300, (h) $NiSe_2$ -CoSe₂-500.

Figure S15. (a) C_{dl} values of NiSe₂-CoSe₂-1:1, NiSe₂-CoSe₂-2:1 and NiSe₂-CoSe₂-1:2. (b) C_{dl} values of NiSe₂-CoSe₂-300, NiSe₂-CoSe₂-400 and NiSe₂-CoSe₂-500 aerogels.

Figure S16. (a) Amounts of gas collected of $NiSe_2$ -CoSe₂ during water splitting, pushing with a current density of 200 mA·cm⁻². (b) Photo of gas collecting device.

Figure S17. XRD patterns of NiSe₂-CoSe₂ aerogel after the stability test of overall water splitting

Table S1

Table S1. ICP-OES results of SEM-EDS of NiSe ₂ -CoSe ₂ -1:1, NiSe ₂ -CoSe ₂ -2:1 a	and
$NiSe_2$ -CoSe_2-1:2 aerogels.	

Sample	Element	Content (mg/kg)	Mass Fraction (%)
NiSe ₂ -CoSe ₂ -1:1	Ni	287485.64	28.75
	Со	277957.57	27.80
	Se	377840.08	37.78
NiSe ₂ -CoSe ₂ -2:1	Ni	303203.24	30.32
	Со	148425.37	14.84
	Se	364213.43	36.42
NiSe ₂ -CoSe ₂ -1:2	Ni	187144.77	18.71
	Со	353980.56	35.40
	Se	384152.14	38.41

Table S2

Table S2. C_{dl} value comparison of NiSe₂-CoSe₂ aerogel and reported electrocatalysts.

Sample	Morphology	C _{dl} value (mF·cm ⁻²)	
NiSe2-CoSe2 aerogel (This work)	Aerogel	18.50	
CoSe ₂ @NiSe ₂ /NF[1]	Nanowires array	16.43	
(Ni,Co)Se ₂ -GA[2]	Nanocages	16.00	
(Ni, Co) _{0.85} Se/NF[3]	Nanosheets array	3.55	
Ni ₂ P-NiSe ₂ /CC[4]	Nanosheets and nanoparticles	31.00	
NiSe ₂ -Ni ₂ P/NF[5]	Nanowrinkles	39.50	

Table S3

Sample	η ₁₀ of HER (mV)	Tafel slope of HER (mV∙dec ⁻¹)	η ₁₀ of OER (mV)	Tafel slope of OER (mV·dec ⁻¹)	Cell voltage of overall water splitting (V)
NiSe ₂ -CoSe ₂ aerogel (This work)	65	57.54	220	99.57	1.56 (10 mA·cm ⁻²)
(Ni,Co)Se ₂ -GA (Powder) [2]	128	79	250	70	1.60 (10 mA·cm ⁻²)
Ni _{0.2} Co _{0.8} Se (Powder)[6]	73	54.8	280	86.8	1.59 (10 mA·cm ⁻²)
MoCoSe _x @NC (Powder)[7]	60	64	-	-	-
Co _{0.8} Mo _{0.2} Se (Powder)[8]	86.7	58.7	-	-	-
Co _{1.8} Ni(OH) _{5.6} @Co _{1.8} NiS _{0.4} (OH) _{4.8} (Powder)[9]	-	-	274	45	-
CoSe ₂ @NiSe ₂ /NF (Self- supporting)[1]	162	62.84	235 (η ₂₀)	43.24	1.50 (10 mA·cm ⁻²)
NiSe ₂ -CoSe ₂ /NCF (Self- supporting)[10]	24	24	250	48	1.69 (100 mA·cm ⁻²)

Table S3. Performance comparison of NiSe₂-CoSe₂ aerogel and reported electrocatalysts.

CoS ₂ -MoS ₂ /Ti (Self- supporting)[11]	82	59	266	104	1.56 (10 mA·cm ⁻²)
Graphdiyne@NiOx(OH)y/CC (Self- supporting)[12]	154.3	183.80	292.0	98.27	1.54 (10 mA·cm ⁻²)

Reference

- X. Zhang, Y. Ding, G. Wu, X. Du, CoSe2@NiSe2 nanoarray as better and efficient electrocatalyst for overall water splitting, Int. J. Hydrogen Energy. 45 (2020) 30611–30621. https://doi.org/10.1016/j.ijhydene.2020.08.096.
- [2] X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie, Z. Wang, Prussian Blue Analogues Derived Penroseite (Ni,Co)Se 2 Nanocages Anchored on 3D Graphene Aerogel for E ffi cient Water Splitting, (2017) 3–8. https://doi.org/10.1021/acscatal.7b02079.
- [3] K. Xiao, L. Zhou, M. Shao, M. Wei, Fabrication of (Ni,Co)0.85Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting, J. Mater. Chem. A. 6 (2018) 7585–7591. https://doi.org/10.1039/c8ta01067f.
- [4] C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li, Q. Hao, Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution, Appl. Catal. B Environ. 262 (2020) 1–8. https://doi.org/10.1016/j.apcatb.2019.118245.
- [5] P. Wang, Z. Pu, W. Li, J. Zhu, C. Zhang, Y. Zhao, S. Mu, Coupling NiSe 2 -Ni 2 P heterostructure nanowrinkles for highly efficient overall water splitting, 377 (2019) 600–608. https://doi.org/10.1016/j.jcat.2019.08.005.
- [6] Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang, Hollow Nanocages of Ni x Co 1 x Se for Efficient Zinc – Air Batteries and Overall Water Splitting, Nano-Micro Lett. 11 (2019) 1–17. https://doi.org/10.1007/s40820-019-0258-0.
- [7] Y.N. Zhou, Y. Ma, L. Feng, J. Zhao, Z. Tong, B. Dong, Y.R. Zhu, L. Wang, C.G. Liu, Y.M. Chai, Optimized Mo–doped cobalt selenides coupled carbon nanospheres for efficient hydrogen evolution, Appl. Surf. Sci. 531 (2020). https://doi.org/10.1016/j.apsusc.2020.147404.
- [8] Y. Zhou, J. Zhang, H. Ren, Y. Pan, Y. Yan, F. Sun, X. Wang, S. Wang, J. Zhang, Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution, Appl. Catal. B Environ. 268 (2020) 118467. https://doi.org/10.1016/j.apcatb.2019.118467.
- B. Wang, C. Tang, H.F. Wang, X. Chen, R. Cao, Q. Zhang, A Nanosized CoNi Hydroxide@Hydroxysulfide Core-Shell Heterostructure for Enhanced Oxygen Evolution, Adv. Mater. 31 (2019) 1–7. https://doi.org/10.1002/adma.201805658.
- [10] D. Chen, Z. Xu, W. Chen, G. Chen, J. Huang, J. Huang, C. Song, C. Li, K. (Ken) Ostrikov, Just add water to split water: ultrahigh-performance bifunctional electrocatalysts fabricated using eco-friendly heterointerfacing of NiCo diselenides, J. Mater. Chem. A. 8 (2020) 12035–12044. https://doi.org/10.1039/d0ta02121k.
- [11] Y. Li, W. Wang, B. Huang, Z. Mao, R. Wang, B. He, Y. Gong, H. Wang, Abundant heterointerfaces in MOF-derived hollow CoS2–MoS2 nanosheet array electrocatalysts for overall water splitting, J. Energy Chem. 57 (2021) 99–108. https://doi.org/10.1016/j.jechem.2020.08.064.
- [12] C. Zhang, Y. Xue, L. Hui, Y. Fang, Y. Liu, Y. Li, Graphdiyne@NiOx(OH)yheterostructure for efficient overall water splitting, Mater. Chem. Front. 5 (2021) 5305–5311. https://doi.org/10.1039/d1qm00466b.