Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers.

Raman Spectroscopy and Carrier Scattering in 2D Tungsten

Disulfides with Vanadium Doping

Jingyun Zou,^{a,b*} Yingjie Xu,^a Xinyue Miao,^a Hongyu Chen,^a Rongjie Zhang,^b Junyang Tan,^b Lei Tang,^b Zhengyang Cai,^b Cheng Zhang,^a Lixing Kang,^c Xiaohua Zhang,^d Chunlan Ma,^{a*} Hui-Ming Cheng,^b and Bilu Liu^{b*}

^a Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou 215009, China
^b Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
^c Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China

^d Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China

Figure S1. Optical microscope images of the as-grown V-WS₂ flakes with different morphologies. (a) A triangle monolayer, (b) a twinned monolayer V-WS₂, (c) a triangle bilayer, and (d) a windmilllike bilayer flake, respectively. We find that V-WS₂ flakes with different morphologies and layer numbers can be grown by varying the growth parameters, including temperature and additive amount of the V precursors.

Figure S2. Survey XPS spectra of V-WS₂ flakes doped with V₂O₅, NH₄VO₃, and VCl₃, respectively.

Table S1. Atomic concentration obtained from the XPS characterization in the V-WS₂ flakes

Dopants	W	S	V
V ₂ O ₅	32.3 at%	65.5 at%	2.2 at%
NH ₄ VO ₃	31.1 at%	62.9 at%	6.0 at%
VCl ₃	29.3 at%	59.6 at%	11.1 at%

Figure S3. XPS analysis of V-WS₂ doped by VCl₃. (a-c) XPS spectra of the V 2p, W 4f, and S 2p orbitals, respectively. XPS signal of vanadium is observed, confirming the existence of substituted V atoms in the V-WS₂ flake. Meanwhile, both the XPS peaks of W 4f and S 2p orbitals shift toward the low binding energy direction, showing the strong *p*-type doping effect.

Figure S4. Raman spectra of the V-WS₂ excited by the 532-nm and 633-nm lasers. The two spectra were normalized according to the $A_1'(\Gamma)$ peak. Obviously, though the intensity of $E'(\Gamma)$ and ZA(M) peaks varies with the changed excitation lasers, both the peak position and intensity of P_c nearly do not change, revealing that this Raman peak has no dependence with the wavelength of the excitation lasers.

Figure S5. Schematics of the atomic crystal structure of (a) V-doped WS₂, (b) WS₂, and (c) VS₂. The substituted vanadium atoms are uniformly distributed throughout the whole flake. The bond length of VS₂ is 2.356 Å, small than that of MoS₂ (2.417 Å). So, the substituted V atoms will stretch the surrounding Mo-S bonds. A tensile strain is generated in the V-WS₂, which causes the shift of the Raman E_{2g} peak to the low wavenumber direction.

Figure S6. (a) Raman mapping image acquired at 214 cm⁻¹, in which the uniform color profile demonstrates the uniform doping effect. (b) AFM topography image of a monolayer V-WS₂ flake doped with NH_4VO_3 taken at room temperature, and the corresponding (c) EFM and (d) SKPM images.

Figure S7. (a) Schematic and (b) SEM image of the back-gated FET with a monolayer V-WS₂ flake as the channel material. The width (*W*) and length (*L*) of the channel are 11.6 μ m and 36.9 μ m, respectively, yielding an *L/W* ratio of 3.18.