Supplementary Information for

Dinuclear Coumarin-Containing Alkynylplatinum(II) Terpyridine Complexes with Supramolecular Assembly-Assisted Photodimerization

Shishi Fang, Michael Ho-Yeung Chan, and Vivian Wing-Wah Yam*

Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)

E-mail: [wwyam@hku.hk;](mailto:wwyam@hku.hk) Fax: (852) 28571586; Tel: (852) 28592153

Experimental Section

Materials and Reagents. Potassium tetrachloroplatinate(II) (K₂[PtCl₄]) was purchased from Chem. Pur., 98%. Dimethyl sulfoxide (Sigma-Aldrich Co. Ltd., spectrophotometric grade) for spectroscopic studies were used as received without further purification. DMSO- d_6 used for NMR experiments were purchased from Cambridge Isotope Laboratories, Inc. All other reagents, unless otherwise specified, were of analytical grade and were used as received. Coumarin-containing terpyridine ligands^{1,2} and substituted alkynyl ligand³ were prepared according to previously reported literature with slight modifications.

Synthesis of Dinuclear Coumarin-Containing Alkynylplatinum(II) Terpyridine Complexes

1–6. The dinuclear coumarin-containing alkynylplatinum(II) terpyridine complexes were synthesized according to modifications of procedures for the synthesis of dinuclear alkynylplatinum(II) terpyridine derivatives previously reported by Yam and coworkers in the literature.⁴

([{C2-CM-tpy-Pt}2-2TEG-*p***PE3](OTf)2 (1).** To a solution of 1,4-(HC≡C–C6H4-1,4–C≡C)2-2,5- $(OTEG)_2$ -C₆H₂ (26 mg, 0.04 mmol) and $[Pt{fpp-C₆H₄-(OC₂H₄O-(4-Me-CM)-7)-4}Cl[OTf (80$ mg, 0.09 mmol) in degassed dimethylformamide (30 ml) containing triethylamine (2 ml) was added a catalytic amount of CuI. The solution was stirred at room temperature in the dark under a nitrogen atmosphere overnight. After removing the solvent, the crude product was purified by the diffusion of diethyl ether vapor into a dichloromethane-chloroform mixture to give a red solid. Yield: 63 mg (66 %). ¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ ppm = 2.37 (s, 6H, -CH₃), 3.23 $(s, 6H, -OCH_3)$, 3.43 (t, $J = 4.5$ Hz, 4H, $-OCH_2$), 3.53–3.57 (m, 8H, $-OCH_2$), 3.70 (t, $J = 4.5$ Hz, 4H, $-OCH_2$, 3.79 (s, 4H, $-OCH_2$), 4.11 (s, 4H, $-OCH_2$), 4.46 (s, 8H, $-OCH_2$), 6.19 (s,

2H, –COCH–), 6.97–7.00 (m, 4H, –C6H3–), 7.09 (s, 2H, –C6H2–), 7.17 (d, *J* = 8.5 Hz, 4H, –C6H4–), 7.42 (d, *J* = 7.5 Hz, 4H, –C6H4–), 7.49 (d, *J* = 7.5 Hz, 4H, –C6H4–), 7.64 (d, *J* = 8.5 Hz, 2H, $-C_6H_3$, 7.90 (t, *J* = 7.5 Hz, 4H, tpy), 8.10 (d, *J* = 8.5 Hz, 4H, $-C_6H_4$), 8.48 (t, *J* = 7.5 Hz, 4H, tpy), 8.78 (d, *J* = 7.5 Hz, 4H, tpy), 8.86 (s, 4H, tpy), 9.10 (d, *J* = 5.5 Hz, 4H, tpy). Positive HR-ESI-MS: calcd for $[C_{106}H_{90}N_6O_{16}Pt_2]^{2+}m/z = 1046.2850$; found: 1046.2879 [M]²⁺; elemental analysis calcd (%) for C108H90F6N6O22Pt2S2•CHCl3: C 52.13, H 3.65, N 3.35; found: C 51.87, H 3.83, N 3.05.

([{C4-CM-tpy-Pt}2-2TEG-*p***PE3](OTf)2 (2).** The titled complex was synthesized according to the procedure similar to that described for the preparation of 1, except that $[Pt]{tpy-C_6H_4-}$ $(OC₄H₈O-(4-Me-CM)-7)-4$ Cl|OTf (82 mg, 0.09 mmol) was used in place of [Pt{tpy– $C₆H₄$ – $(OC₂H₄O_–(4-Me-CM)-7)-4$ Cl OTf. The product was isolated as a red solid. Yield: 56 mg (57 %). ¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ ppm = 1.93 (s, 8H, –CH₂–), 2.36 (s, 6H, –CH₃), 3.23 (s, 6H, $-OCH_3$), 3.42 (s, 4H, $-OCH_2$), 3.52–3.56 (m, 8H, $-OCH_2$), 3.70 (s, 4H, $-OCH_2$), 3.78 (s, 4H, –OCH2–), 4.12–4.15 (m, 12H, –OCH2–), 6.17 (s, 2H, –COCH–), 6.92 (s, 4H, –C6H3–), 7.10 $(s, 6H, -C_6H_2$ – and $-C_6H_4$ –), 7.42 (d, *J* = 8.0 Hz, 4H, $-C_6H_4$ –), 7.49 (d, *J* = 8.0 Hz, 4H, $-C_6H_4$ –), 7.62 (d, *J* = 9.0 Hz, 2H, –C6H3–), 7.88 (t, *J* = 7.5 Hz, 4H, tpy), 8.07 (d, *J* = 8.0 Hz, 4H, –C6H4–), 8.48 (t, *J* = 7.5 Hz, 4H, tpy), 8.77 (d, *J* = 7.5 Hz, 4H, tpy), 8.83 (s, 4H, tpy), 9.08 (d, *J* = 5.5 Hz, 4H, tpy). Positive HR-ESI-MS: calcd for $[C_{110}H_{98}N_6O_{16}Pt_2]^{2+}m/z = 1074.3164$; found: 1074.3180 $[M]^2$ ⁺; elemental analysis calcd (%) for C₁₁₂H₉₈F₆N₆O₂₂Pt₂S₂•CH₂Cl₂: C 53.58, H 3.98, N 3.32; found: C 53.49, H 3.82, N 3.16.

([{C6-CM-tpy-Pt}2-2TEG-*p***PE3](OTf)2 (3).** The titled complex was synthesized according to the procedure similar to that described for the preparation of 1, except that $[Pt]{tpy-C_6H_4-}$ $(OC_6H_{12}O-(4-Me-CM)-7)-4$ }Cl]OTf (84 mg, 0.09 mmol) was used in place of [Pt{tpy– C_6H_{4-}

 $(OC₂H₄O_–(4-Me-CM)-7)-4$ Cl OTf. The product was isolated as a red solid. Yield: 51 mg (51 %). ¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ ppm = 1.52 (s, 8H, –CH₂–), 1.79 (s, 8H, –CH₂–), 2.36 (s, 6H, –CH3), 3.23 (s, 6H, –OCH3), 3.42 (t, *J* = 5.0 Hz, 4H, –OCH2–), 3.52–3.57 (m, 8H, –OCH2–), 3.71 (t, *J* = 5.0 Hz, 4H, –OCH2–), 3.80 (s, 4H, –OCH2–), 4.08 (t, *J* = 5.0 Hz, 8H, –OCH2–), 4.15 (s, 4H, –OCH2–), 6.17 (s, 2H, –COCH–), 6.92–6.94 (m, 4H, –C6H3–), 7.10 (d, *J* = 7.5 Hz, 4H, –C6H4–), 7.14 (s, 2H, –C6H2–), 7.44 (d, *J* = 8.0 Hz, 4H, –C6H4–), 7.51 (d, *J* = 8.0 Hz, 4H, –C6H4–), 7.63 (d, *J* = 9.0 Hz, 2H, –C6H3–), 7.90 (t, *J* = 7.5 Hz, 4H, tpy), 8.07 (d, *J* = 7.5 Hz, 4H, –C6H4–), 8.50 (t, *J* = 7.5 Hz, 4H, tpy), 8.79 (d, *J* = 7.5 Hz, 4H, tpy), 8.86 (s, 4H, tpy), 9.10 (d, *J* = 5.5 Hz, 4H, tpy). Positive HR-ESI-MS: calcd for $[C_{114}H_{106}N_6O_{16}Pt_2]^{2+}m/z = 1102.3477$; found: 1102.3495 $[M]^2$ ⁺; elemental analysis calcd (%) for C₁₁₆H₁₀₆F₆N₆O₂₂Pt₂S₂: C 55.63, H 4.27, N 3.36; found: C 55.84, H 3.97, N 3.08.

 $([{C_2}-CM-try-Pt]_2-pPE3]$ (OTf)₂ (4). The titled complex was synthesized according to the procedure similar to that described for the preparation of **1**, except that $1,4-(HC=CC₆H₄-1,4–$ $C \equiv C_2-C_6H_4$ (16 mg, 0.05 mmol) was used in place of 1,4-(HC≡C–C₆H₄-1,4–C≡C)₂-2,5-(OTEG)₂- C_6H_2 . The product was isolated as a red solid. Yield: 62 mg (60 %). ¹H NMR (500 MHz, DMSO d_6 , 298 K): δ ppm = 2.35 (s, 6H, -CH₃), 4.39–4.42 (m, 8H, -OCH₂–), 6.17 (s, 2H, -COCH–), 6.92–6.95 (m, 4H, –C₆H₃–), 7.04 (s, 4H, –C₆H₄–), 7.42–7.49 (m, 12H, –C₆H₄–), 7.58 (d, *J* = 8.5 Hz, 2H, $-C_6H_3$ –), 7.82–7.95 (m, 8H, $-C_6H_4$ – and tpy), 8.34 (s, 4H, tpy), 8.61 (s, 8H, tpy), 8.98 (s, 4H, tpy). Positive HR-ESI-MS: calcd for $[C_{92}H_{62}N_6O_8Pt_2]^{2+}m/z = 884.1958$; found: 884.1918 $[M]^2$ ⁺; elemental analysis calcd (%) for C₉₄H₆₂F₆N₆O₁₄Pt₂S₂•CHCl₃: C 53.00, H 3.00, N 3.90; found: C 52.76, H 2.76, N 3.99.

([{C2-CM-tpy-Pt}2-2C4-*p***PE3](OTf)2 (5).** The titled complex was synthesized according to the procedure similar to that described for the preparation of **1**, except that 1,4-(HC≡C–C6H4-1,4– $C \equiv C$)₂-2,5-(OC₄H₉)₂-C₆H₂ (24 mg, 0.05 mmol) was used in place of 1,4-(HC≡C–C₆H₄-1,4– $C \equiv C$)₂-2,5-(OTEG)₂-C₆H₂. The product was isolated as a red solid. Yield: 65 mg (59 %). ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6, 298 \text{ K})$: δ /ppm = 0.99 (t, *J* = 7.5 Hz, 6H, -CH₃), 1.49–1.53 (m, 4H, -CH₂–), 1.70 (s, 4H, –CH2–), 2.36 (s, 6H, –CH3), 3.94 (s, 4H, –OCH2–), 4.43 (s, 8H, –OCH2–), 6.18 (s, 2H, –COCH–), 6.95–7.01 (m, 6H, –C₆H₂– and –C₆H₃–), 7.13 (s, 4H, –C₆H₄–), 7.38 (d, *J* = 8.0 Hz, 4H, –C6H4–), 7.46 (d, *J* = 8.0 Hz, 4H, –C6H4–), 7.61 (d, *J* = 7.5 Hz, 2H, –C6H3–), 7.86 (s, 4H, tpy), 8.04 (s, 4H, –C6H4–), 8.44 (s, 4H, tpy), 8.71–8.78 (m, 8H, tpy), 9.04 (s, 4H, tpy). Positive HR-ESI-MS: calcd for $[C_{100}H_{78}N_6O_{10}Pt_2]^{2+}m/z = 956.2533$; found: 956.2577 [M]²⁺; elemental analysis calcd (%) for $C_{102}H_{78}F_6N_6O_{16}Pt_2S_2 \cdot CH_2Cl_2$: C 53.06, H 3.42, N 3.60; found: C 53.29, H 3.41, N 3.83.

 $([{C_2}-CM-try-Pt]_2-pPE]$ (OTf)₂ (6). The titled complex was synthesized according to the procedure similar to that described for the preparation of **1**, except that $HC = C - C_6H_4 - 1$, $4 - C = CH$ $(8.0 \text{ mg}, 0.06 \text{ mmol})$ was used in place of 1,4-(HC≡C–C₆H₄-1,4–C≡C)₂-2,5-(OTEG)₂-C₆H₂. The product was isolated as a red solid. Yield: 69 mg (62%) . ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6, 298 \text{ K})$: δ ppm = 2.32 (s, 6H, –CH₃), 4.46 (s, 8H, –OCH₂–), 6.13 (s, 2H, –COCH–), 6.90–6.93 (m, 4H, –C6H3–), 7.11 (s, 4H, –C6H4–), 7.36 (s, 4H, –C6H4–), 7.56 (d, *J* = 8.0 Hz, 2H, –C6H3–), 7.85 (s, 4H, tpy), 8.00 (s, 4H, –C6H4–), 8.38 (s, 4H, tpy), 8.68–8.75 (m, 8H, tpy), 9.02 (s, 4H, tpy). Positive HR-ESI-MS: calcd for $[C_{76}H_{54}N_6O_8Pt_2]^{2+}m/z = 784.1644$; found: 784.1604 [M]²⁺; elemental analysis calcd (%) for $C_{78}H_{54}F_6N_6O_{14}Pt_2S_2 \cdot CH_2Cl_2$: C 48.60, H 2.89, N 4.30; found: C 48.36, H 3.06, N 4.57.

Photophysical Measurements and Instrumentation. ¹H NMR spectra were recorded on a Bruker Ascend 500 (500 MHz) Fourier-transform NMR spectrometer with chemical shifts reported relative to tetramethylsilane, (CH3)4Si. Positive-ion high-resolution electrospray

ionization (HR-ESI) mass spectra were recorded on a Bruker maXis II High Resolution Liquid Chromatography Quadrupole-Time of Flight (LC-QTOF) spectrometer. Elemental analyses were performed with a Carlo Erba 1106 elemental analyzer at the Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China. UV–Vis absorption spectra for variable-concentration and -temperature measurements were recorded using a Varian Cary 50 UV–vis spectrophotometer. The temperature was maintained by a Varian Cary single-cell Peltier thermostat. UV–Vis absorption spectral changes during photoirradiation were recorded on a Cary 8454 spectrophotometer. Photoirradiations were carried out with a 300 W Oriel Corporation Model 60011 Xe (ozone-free) lamp with an Applied Photophysics F 3.4 monochromator to select the monochromatic light. Transmission electron microscopy (TEM) experiments were performed on a Philips CM100 TEM equipped with a TENGRA 2.3 K \times 2.3 K camera for digital imaging. All measurements were conducted at room temperature unless specified otherwise.

Figure S1. Emission spectrum of **6** in degassed DMSO solution at 298 K.

Figure S2. Normalized emission spectra of **2** in the solid state of different forms at 298 K.

Figure S3. Emission spectral changes of **1** in DMSO solutions upon increasing water content from (a) 0 to 40 % and (b) 40 to 90 % at the concentration regime of 10^{-5} M.

Figure S4. Normalized excitation spectra of **1** in DMSO solutions upon increasing water content from 0 to 40 and to 90 % monitored at 700 nm.

Figure S5. TEM images prepared from (a) **1**, (b) **2** and (c) **3** in water−DMSO (90:10) mixture.

Figure S6. A TEM image prepared from **2** in water−DMSO (30:70) mixture.

Figure S7. UV–Vis absorption spectral changes of **4** in degassed water-DMSO (90:10) mixtures upon photoirradiation at 365 nm at 298 K.

Figure S8. (a) High-resolution ESI-mass spectrum of **1** after photoirradiation. (b) Expanded ion cluster $[2M]^{4+}$ of photodimer of 1 and the corresponding simulated isotopic pattern.

Figure S9. ¹H NMR spectra recorded in DMSO- d_6 for **1** (a) before and (b) after photoirradiation at 365 nm in degassed 90 % D2O–DMSO-*d*⁶ mixtures at 298 K. The insets show the expanded ¹H NMR spectra at the aliphatic region.

Figure S10. UV–Vis absorption spectral changes of **1** in degassed DMSO solution upon photoirradiation at 365 nm at 298 K.

Figure S11. Concentration-dependent UV–vis absorption spectra of **3** in DMSO solution in the concentration range of 1.28×10**–**⁶ to 3.19×10**–**⁵ M. Inset: Plot of apparent absorbance against concentration with error bars, monitored at 515 nm. The apparent absorbance values were obtained by correcting to 1-cm path length equivalence.

Figure S12. A TEM image prepared from **2** in water−DMSO (90:10) mixture after photoirradiation.

Complex	Absorption
	λ_{max} / nm (ε / dm ³ mol ⁻¹ cm ⁻¹)
$[{C_2-CM-tpy-Pt}_2$-2TEG-pPE3]-(OTf)_2$ (1)	378sh (54000), 469 (22300)
$[{C_4$ -CM-tpy-Pt} ₂ -2TEG-pPE3]-(OTf) ₂ (2)	378sh (68500), 469 (31800)
$[{C_6$ -CM-tpy-Pt} ₂ -2TEG-pPE3]-(OTf) ₂ (3)	379sh (67500), 469 (27800)
$[{C_2-CM-tpy-Pt}_{2-p}PE3]$ (OTf) ₂ (4)	343sh (91300), 368sh (81400), 471 (33000)
$[{C_2$ -CM-tpy-Pt $}_2$ -2C ₄ -pPE3]-(OTf) ₂ (5)	377sh (63800), 468 (29900)
$[{C_2$ -CM-tpy-Pt} ₂ -pPE](OTf) ₂ (6)	337sh (60000), 424sh (17100), 485 (16900)

Table S2. Emission data of complexes **1**–**6**

^{*a*} Measured at room temperature using a degassed aqueous solution of $[Ru(bpy)3]Cl₂$ as the reference.

^b Vibronic-structured emission with vibrational progressional spacings of about 1000−1300 cm^{-1} .

^c Measured in EtOH−MeOH (4:1 v/v).

^d Non-emissive.

References

- 1 Duan, Y.-C.; Ma, Y.-C.; Zhang, E.; Shi, X.-J.; Wang, M.-M.; Ye, X.-W.; Liu, H.-M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. *Eur. J. Med. Chem.* **2013**, *62*, 11–19.
- 2 Yam, V. W.-W.; Tang, R. P.-L.; Wong, K. M.-C.; Cheung, K.-K. Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes. *Organometallics*, **2001**, *20*, 4476–4482.
- 3 Bunz, U. H. F. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications. *Chem. Rev.* **2000**, *100*, 1605–1644.
- 4 Leung, S. Y.-L.; Wong, K. M.-C.; Yam, V. W.-W. Self-assembly of alkynylplatinum(II) terpyridine amphiphiles into nanostructures via steric control and metal–metal interactions. *Proc. Natl. Acad. Sci. USA* **2016**, *113*, 2845–2850.