Supplementary Information for

Dinuclear Coumarin-Containing Alkynylplatinum(II) Terpyridine Complexes with Supramolecular Assembly-Assisted Photodimerization

Shishi Fang, Michael Ho-Yeung Chan, and Vivian Wing-Wah Yam*

Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)

E-mail: wwyam@hku.hk; Fax: (852) 28571586; Tel: (852) 28592153

Experimental Section

Materials and Reagents. Potassium tetrachloroplatinate(II) (K₂[PtCl₄]) was purchased from Chem. Pur., 98%. Dimethyl sulfoxide (Sigma-Aldrich Co. Ltd., spectrophotometric grade) for spectroscopic studies were used as received without further purification. DMSO- d_6 used for NMR experiments were purchased from Cambridge Isotope Laboratories, Inc. All other reagents, unless otherwise specified, were of analytical grade and were used as received. Coumarin-containing terpyridine ligands^{1,2} and substituted alkynyl ligand³ were prepared according to previously reported literature with slight modifications.

Synthesis of Dinuclear Coumarin-Containing Alkynylplatinum(II) Terpyridine Complexes

1–6. The dinuclear coumarin-containing alkynylplatinum(II) terpyridine complexes were synthesized according to modifications of procedures for the synthesis of dinuclear alkynylplatinum(II) terpyridine derivatives previously reported by Yam and coworkers in the literature.⁴

([{C₂-CM-tpy-Pt}₂-2TEG-*p*PE3](OTf)₂ (1). To a solution of 1,4-(HC=C-C₆H₄-1,4-C=C)₂-2,5-(OTEG)₂-C₆H₂ (26 mg, 0.04 mmol) and [Pt{tpy-C₆H₄-(OC₂H₄O-(4-Me-CM)-7)-4}Cl]OTf (80 mg, 0.09 mmol) in degassed dimethylformamide (30 ml) containing triethylamine (2 ml) was added a catalytic amount of CuI. The solution was stirred at room temperature in the dark under a nitrogen atmosphere overnight. After removing the solvent, the crude product was purified by the diffusion of diethyl ether vapor into a dichloromethane-chloroform mixture to give a red solid. Yield: 63 mg (66 %). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ /ppm = 2.37 (s, 6H, -CH₃), 3.23 (s, 6H, -OCH₃), 3.43 (t, *J* = 4.5 Hz, 4H, -OCH₂-), 3.53-3.57 (m, 8H, -OCH₂-), 3.70 (t, *J* = 4.5 Hz, 4H, -OCH₂-), 4.11 (s, 4H, -OCH₂-), 4.46 (s, 8H, -OCH₂-), 6.19 (s,

2H, -COCH–), 6.97–7.00 (m, 4H, -C₆H₃–), 7.09 (s, 2H, -C₆H₂–), 7.17 (d, J = 8.5 Hz, 4H, -C₆H₄–), 7.42 (d, J = 7.5 Hz, 4H, -C₆H₄–), 7.49 (d, J = 7.5 Hz, 4H, -C₆H₄–), 7.64 (d, J = 8.5 Hz, 2H, -C₆H₃–), 7.90 (t, J = 7.5 Hz, 4H, tpy), 8.10 (d, J = 8.5 Hz, 4H, -C₆H₄–), 8.48 (t, J = 7.5 Hz, 4H, tpy), 8.78 (d, J = 7.5 Hz, 4H, tpy), 8.86 (s, 4H, tpy), 9.10 (d, J = 5.5 Hz, 4H, tpy). Positive HR-ESI-MS: calcd for [C₁₀₆H₉₀N₆O₁₆Pt₂]²⁺ m/z = 1046.2850; found: 1046.2879 [M]²⁺; elemental analysis calcd (%) for C₁₀₈H₉₀F₆N₆O₂₂Pt₂S₂•CHCl₃: C 52.13, H 3.65, N 3.35; found: C 51.87, H 3.83, N 3.05.

([{C₄-CM-tpy-Pt}₂-2TEG-*p*PE3](OTf)₂ (2). The titled complex was synthesized according to the procedure similar to that described for the preparation of **1**, except that [Pt{tpy-C₆H₄-(OC₄H₈O-(4-Me-CM)-7)-4}Cl]OTf (82 mg, 0.09 mmol) was used in place of [Pt{tpy-C₆H₄-(OC₂H₄O-(4-Me-CM)-7)-4}Cl]OTf. The product was isolated as a red solid. Yield: 56 mg (57 %). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ /ppm = 1.93 (s, 8H, -CH₂-), 2.36 (s, 6H, -CH₃), 3.23 (s, 6H, -OCH₃), 3.42 (s, 4H, -OCH₂-), 3.52-3.56 (m, 8H, -OCH₂-), 3.70 (s, 4H, -OCH₂-), 3.78 (s, 4H, -OCH₂-), 4.12-4.15 (m, 12H, -OCH₂-), 6.17 (s, 2H, -COCH-), 6.92 (s, 4H, -C₆H₃-), 7.10 (s, 6H, -C₆H₂- and -C₆H₄-), 7.42 (d, *J* = 8.0 Hz, 4H, -C₆H₄-), 7.49 (d, *J* = 8.0 Hz, 4H, -C₆H₄-), 7.62 (d, *J* = 9.0 Hz, 2H, -C₆H₃-), 7.88 (t, *J* = 7.5 Hz, 4H, tpy), 8.07 (d, *J* = 8.0 Hz, 4H, -C₆H₄-), 8.48 (t, *J* = 7.5 Hz, 4H, tpy), 8.77 (d, *J* = 7.5 Hz, 4H, tpy), 8.83 (s, 4H, tpy), 9.08 (d, *J* = 5.5 Hz, 4H, tpy). Positive HR-ESI-MS: calcd for [C₁₁₀H₉₈N₆O₁₆Pt₂]²⁺ *m*/z = 1074.3164; found: 1074.3180 [M]²⁺; elemental analysis calcd (%) for C₁₁₂H₉₈F₆N₆O₂₂Pt₂S₂•CH₂Cl₂: C 53.58, H 3.98, N 3.32; found: C 53.49, H 3.82, N 3.16.

([{C₆-CM-tpy-Pt}₂-2TEG-*p*PE3](OTf)₂ (3). The titled complex was synthesized according to the procedure similar to that described for the preparation of 1, except that [Pt{tpy-C₆H₄-(OC₆H₁₂O-(4-Me-CM)-7)-4}Cl]OTf (84 mg, 0.09 mmol) was used in place of [Pt{tpy-C₆H₄-

(OC₂H₄O–(4-Me-CM)-7)-4}Cl]OTf. The product was isolated as a red solid. Yield: 51 mg (51 %). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ /ppm = 1.52 (s, 8H, –CH₂–), 1.79 (s, 8H, –CH₂–), 2.36 (s, 6H, –CH₃), 3.23 (s, 6H, –OCH₃), 3.42 (t, *J* = 5.0 Hz, 4H, –OCH₂–), 3.52–3.57 (m, 8H, –OCH₂–), 3.71 (t, *J* = 5.0 Hz, 4H, –OCH₂–), 3.80 (s, 4H, –OCH₂–), 4.08 (t, *J* = 5.0 Hz, 8H, –OCH₂–), 4.15 (s, 4H, –OCH₂–), 6.17 (s, 2H, –COCH–), 6.92–6.94 (m, 4H, –C₆H₃–), 7.10 (d, *J* = 7.5 Hz, 4H, –C₆H₄–), 7.14 (s, 2H, –C₆H₂–), 7.44 (d, *J* = 8.0 Hz, 4H, –C₆H₄–), 7.51 (d, *J* = 8.0 Hz, 4H, –C₆H₄–), 7.63 (d, *J* = 9.0 Hz, 2H, –C₆H₃–), 7.90 (t, *J* = 7.5 Hz, 4H, tpy), 8.07 (d, *J* = 7.5 Hz, 4H, –C₆H₄–), 8.50 (t, *J* = 7.5 Hz, 4H, tpy), 8.79 (d, *J* = 7.5 Hz, 4H, tpy), 8.86 (s, 4H, tpy), 9.10 (d, *J* = 5.5 Hz, 4H, tpy). Positive HR-ESI-MS: calcd for [C₁₁₄H₁₀₆N₆O₁₆Pt₂]²⁺ *m*/*z* = 1102.3477; found: 1102.3495 [M]²⁺; elemental analysis calcd (%) for C₁₁₆H₁₀₆F₆N₆O₂₂Pt₂S₂: C 55.63, H 4.27, N 3.36; found: C 55.84, H 3.97, N 3.08.

([{C₂-CM-tpy-Pt}₂-*p*PE3](OTf)₂ (4). The titled complex was synthesized according to the procedure similar to that described for the preparation of **1**, except that 1,4-(HC=C-C₆H₄-1,4-C=C)₂-C₆H₄ (16 mg, 0.05 mmol) was used in place of 1,4-(HC=C-C₆H₄-1,4-C=C)₂-2,5-(OTEG)₂-C₆H₂. The product was isolated as a red solid. Yield: 62 mg (60 %). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ /ppm = 2.35 (s, 6H, -CH₃), 4.39-4.42 (m, 8H, -OCH₂-), 6.17 (s, 2H, -COCH-), 6.92-6.95 (m, 4H, -C₆H₃-), 7.04 (s, 4H, -C₆H₄-), 7.42-7.49 (m, 12H, -C₆H₄-), 7.58 (d, *J* = 8.5 Hz, 2H, -C₆H₃-), 7.82-7.95 (m, 8H, -C₆H₄- and tpy), 8.34 (s, 4H, tpy), 8.61 (s, 8H, tpy), 8.98 (s, 4H, tpy). Positive HR-ESI-MS: calcd for [C₉₂H₆₂N₆O₈Pt₂]²⁺ *m*/*z* = 884.1958; found: 884.1918 [M]²⁺; elemental analysis calcd (%) for C₉₄H₆₂F₆N₆O₁₄Pt₂S₂•CHCl₃: C 53.00, H 3.00, N 3.90; found: C 52.76, H 2.76, N 3.99.

 $([{C_2-CM-tpy-Pt}_2-2C_4-pPE3](OTf)_2$ (5). The titled complex was synthesized according to the procedure similar to that described for the preparation of 1, except that $1,4-(HC=C-C_6H_4-1,4-1)$

C=C)₂-2,5-(OC₄H₉)₂-C₆H₂ (24 mg, 0.05 mmol) was used in place of 1,4-(HC=C-C₆H₄-1,4-C=C)₂-2,5-(OTEG)₂-C₆H₂. The product was isolated as a red solid. Yield: 65 mg (59 %). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ /ppm = 0.99 (t, *J* = 7.5 Hz, 6H, -CH₃), 1.49–1.53 (m, 4H, -CH₂-), 1.70 (s, 4H, -CH₂-), 2.36 (s, 6H, -CH₃), 3.94 (s, 4H, -OCH₂-), 4.43 (s, 8H, -OCH₂-), 6.18 (s, 2H, -COCH-), 6.95–7.01 (m, 6H, -C₆H₂- and -C₆H₃-), 7.13 (s, 4H, -C₆H₄-), 7.38 (d, *J* = 8.0 Hz, 4H, -C₆H₄-), 7.46 (d, *J* = 8.0 Hz, 4H, -C₆H₄-), 7.61 (d, *J* = 7.5 Hz, 2H, -C₆H₃-), 7.86 (s, 4H, tpy), 8.04 (s, 4H, -C₆H₄-), 8.44 (s, 4H, tpy), 8.71–8.78 (m, 8H, tpy), 9.04 (s, 4H, tpy). Positive HR-ESI-MS: calcd for [C₁₀₀H₇₈N₆O₁₀Pt₂]²⁺ *m*/*z* = 956.2533; found: 956.2577 [M]²⁺; elemental analysis calcd (%) for C₁₀₂H₇₈F₆N₆O₁₆Pt₂S₂•CH₂Cl₂: C 53.06, H 3.42, N 3.60; found: C 53.29, H 3.41, N 3.83.

([{C₂-CM-tpy-Pt}₂-*p*PE](OTf)₂ (6). The titled complex was synthesized according to the procedure similar to that described for the preparation of **1**, except that HC=C-C₆H₄-1,4-C=CH (8.0 mg, 0.06 mmol) was used in place of 1,4-(HC=C-C₆H₄-1,4-C=C)₂-2,5-(OTEG)₂-C₆H₂. The product was isolated as a red solid. Yield: 69 mg (62 %). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ /ppm = 2.32 (s, 6H, -CH₃), 4.46 (s, 8H, -OCH₂-), 6.13 (s, 2H, -COCH-), 6.90-6.93 (m, 4H, -C₆H₃-), 7.11 (s, 4H, -C₆H₄-), 7.36 (s, 4H, -C₆H₄-), 7.56 (d, *J* = 8.0 Hz, 2H, -C₆H₃-), 7.85 (s, 4H, tpy), 8.00 (s, 4H, -C₆H₄-), 8.38 (s, 4H, tpy), 8.68-8.75 (m, 8H, tpy), 9.02 (s, 4H, tpy). Positive HR-ESI-MS: calcd for [C₇₆H₅₄N₆O₈Pt₂]²⁺ *m/z* = 784.1644; found: 784.1604 [M]²⁺; elemental analysis calcd (%) for C₇₈H₅₄F₆N₆O₁₄Pt₂S₂•CH₂Cl₂: C 48.60, H 2.89, N 4.30; found: C 48.36, H 3.06, N 4.57.

Photophysical Measurements and Instrumentation. ¹H NMR spectra were recorded on a Bruker Ascend 500 (500 MHz) Fourier-transform NMR spectrometer with chemical shifts reported relative to tetramethylsilane, (CH₃)₄Si. Positive-ion high-resolution electrospray

ionization (HR-ESI) mass spectra were recorded on a Bruker maXis II High Resolution Liquid Chromatography Quadrupole-Time of Flight (LC-QTOF) spectrometer. Elemental analyses were performed with a Carlo Erba 1106 elemental analyzer at the Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China. UV–Vis absorption spectra for variable-concentration and -temperature measurements were recorded using a Varian Cary 50 UV–vis spectrophotometer. The temperature was maintained by a Varian Cary single-cell Peltier thermostat. UV–Vis absorption spectral changes during photoirradiation were recorded on a Cary 8454 spectrophotometer. Photoirradiations were carried out with a 300 W Oriel Corporation Model 60011 Xe (ozone-free) lamp with an Applied Photophysics F 3.4 monochromator to select the monochromatic light. Transmission electron microscopy (TEM) experiments were performed on a Philips CM100 TEM equipped with a TENGRA 2.3 K × 2.3 K camera for digital imaging. All measurements were conducted at room temperature unless specified otherwise.

Figure S1. Emission spectrum of 6 in degassed DMSO solution at 298 K.

Figure S2. Normalized emission spectra of 2 in the solid state of different forms at 298 K.

Figure S3. Emission spectral changes of **1** in DMSO solutions upon increasing water content from (a) 0 to 40 % and (b) 40 to 90 % at the concentration regime of 10^{-5} M.

Figure S4. Normalized excitation spectra of **1** in DMSO solutions upon increasing water content from 0 to 40 and to 90 % monitored at 700 nm.

Figure S5. TEM images prepared from (a) 1, (b) 2 and (c) 3 in water–DMSO (90:10) mixture.

Figure S6. A TEM image prepared from 2 in water–DMSO (30:70) mixture.

Figure S7. UV–Vis absorption spectral changes of **4** in degassed water-DMSO (90:10) mixtures upon photoirradiation at 365 nm at 298 K.

Figure S8. (a) High-resolution ESI-mass spectrum of **1** after photoirradiation. (b) Expanded ion cluster $[2M]^{4+}$ of photodimer of **1** and the corresponding simulated isotopic pattern.

Figure S9. ¹H NMR spectra recorded in DMSO- d_6 for **1** (a) before and (b) after photoirradiation at 365 nm in degassed 90 % D₂O–DMSO- d_6 mixtures at 298 K. The insets show the expanded ¹H NMR spectra at the aliphatic region.

Figure S10. UV–Vis absorption spectral changes of 1 in degassed DMSO solution upon photoirradiation at 365 nm at 298 K.

Figure S11. Concentration-dependent UV–vis absorption spectra of **3** in DMSO solution in the concentration range of 1.28×10^{-6} to 3.19×10^{-5} M. Inset: Plot of apparent absorbance against concentration with error bars, monitored at 515 nm. The apparent absorbance values were obtained by correcting to 1-cm path length equivalence.

Figure S12. A TEM image prepared from 2 in water–DMSO (90:10) mixture after photoirradiation.

Table S1. Electronic absorption data of complexes 1–6 in DMSO solutions

	Absorption	
Complex	$\lambda_{\rm max}$ / nm (ε / dm ³ mol ⁻¹ cm ⁻¹)	
$[{C_2-CM-tpy-Pt}_2-2TEG-pPE3]-(OTf)_2$ (1)	378sh (54000), 469 (22300)	
$[{C_4-CM-tpy-Pt}_2-2TEG-pPE3]-(OTf)_2$ (2)	378sh (68500), 469 (31800)	
$[{C_6-CM-tpy-Pt}_2-2TEG-pPE3]-(OTf)_2$ (3)	379sh (67500), 469 (27800)	
$[{C_2-CM-tpy-Pt}_2-pPE3](OTf)_2$ (4)	343sh (91300), 368sh (81400), 471 (33000)	
$[{C_2-CM-tpy-Pt}_2-2C_4-pPE3]-(OTf)_2$ (5)	377sh (63800), 468 (29900)	
$[{C_2-CM-tpy-Pt}_2-pPE](OTf)_2$ (6)	337sh (60000), 424sh (17100), 485 (16900)	

Table S2. Emission data of complexes 1–6

Emission		
Medium (T/K)	λ_{em} / nm (τ_{o} / μs)	$\phi_{ m lum}{}^a$
DMSO (298)	d	d
Solid (298)	782 (0.12)	
Solid (77)	783 (0.26)	
Glass ^c (77)	663 (0.30), ^{<i>b</i>} 753 (0.22)	
	Medium (<i>T</i> / K) DMSO (298) Solid (298) Solid (77) Glass ^c (77)	EmissionMedium (T/K) λ_{em} / nm (τ_o / μ s)DMSO (298) $-^d$ Solid (298)782 (0.12)Solid (77)783 (0.26)Glass ^c (77)663 (0.30), ^b 753 (0.22)

$[{C_4-CM-tpy-Pt}_2-2TEG-pPE3]-(OTf)_2$	DMSO (298)	d	d
(2)	Solid (298)	777 (0.11)	
	Solid (77)	780 (0.35)	
	$\operatorname{Glass}^{c}(77)$	676 (0.27), ^{<i>b</i>} 743 (0.26)	
[{C ₆ -CM-tpy-Pt} ₂ -2TEG- <i>p</i> PE3]-(OTf) ₂ (3)	DMSO (298)	d	d
	Solid (298)	770 (0.11)	
	Solid (77)	765 (0.32)	
	$\operatorname{Glass}^{c}(77)$	675 (0.25), ^b 742 (0.22)	
[{C ₂ -CM-tpy-Pt} ₂ - <i>p</i> PE3](OTf) ₂ (4)	DMSO (298)	539 (0.40), ^{<i>b</i>} 656 (0.34)	$< 10^{-3}$
	Solid (298)	751 (0.10)	
	Solid (77)	757 (0.29)	
	$\operatorname{Glass}^{c}(77)$	749 (0.26)	
$[{C_2-CM-tpy-Pt}_2-2C_4-pPE3]-(OTf)_2$	DMSO (298)	d	d
(5)	Solid (298)	778 (<0.1)	
	Solid (77)	781 (0.20)	
	$\operatorname{Glass}^{c}(77)$	688 (0.25), ^b 764 (0.23)	
$[{C_2-CM-tpy-Pt}_2-pPE](OTf)_2$ (6)	DMSO (298)	538 (0.39), ^{<i>b</i>} 650 (0.25)	2.2×10^{-3}
	Solid (298)	716 (<0.1)	
	Solid (77)	704 (0.75)	
	$\operatorname{Glass}^{c}(77)$	684 (0.61), ^{<i>b</i>} 739 (0.30)	

^{*a*} Measured at room temperature using a degassed aqueous solution of [Ru(bpy)₃]Cl₂ as the reference.

^{*b*} Vibronic-structured emission with vibrational progressional spacings of about 1000–1300 cm^{-1} .

^c Measured in EtOH–MeOH (4:1 v/v).

^d Non-emissive.

References

- 1 Duan, Y.-C.; Ma, Y.-C.; Zhang, E.; Shi, X.-J.; Wang, M.-M.; Ye, X.-W.; Liu, H.-M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. *Eur. J. Med. Chem.* **2013**, *62*, 11–19.
- 2 Yam, V. W.-W.; Tang, R. P.-L.; Wong, K. M.-C.; Cheung, K.-K. Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes. *Organometallics*, **2001**, *20*, 4476–4482.
- 3 Bunz, U. H. F. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications. *Chem. Rev.* **2000**, *100*, 1605–1644.
- 4 Leung, S. Y.-L.; Wong, K. M.-C.; Yam, V. W.-W. Self-assembly of alkynylplatinum(II) terpyridine amphiphiles into nanostructures via steric control and metal–metal interactions. *Proc. Natl. Acad. Sci. USA* **2016**, *113*, 2845–2850.