# **Supporting Information**

Self-assembled Organic Nonlinear Optical Crystals Based on Pyridine

Derived Fluorenone

Yongshen Zheng, Puxin Cheng, Xiaodong Qian, Junjie Guan, Rongchao Shi, Mingyang Xin, Jialiang Xu\* and Xian-He Bu

School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China

\*E-mail: jialiang.xu@nankai.edu.cn

#### **Experimental Section**

#### 1. Materials and Methods

All the chemicals and solvents are of reagent grade commercially purchased. Powder X-ray diffraction (PXRD) patterns and variable-temperature powder X-ray diffraction (VT-PXRD) patterns were collected by a Rigaku MiniFlex600. The UV-vis absorbance spectra were obtained on a UV-vis spectrophotometer (UV 2600). The photoluminescence spectra were obtained on a fluorescence spectrophotometer (F-7000). Single crystal data were collected on a Rigaku XtalAB PRO MM007 DW diffractometer with Cu K $\alpha$  radiation ( $\lambda = 1.5418$  Å) or Mo K $\alpha$  radiation ( $\lambda = 0.71073$ Å). Thermogravimetric analyses (TGA) measurements were carried out under air atmosphere in a TA instruments Q50 thermal analyzer, with a constant heating rate of 10 °C/min. Differential scanning calorimetry (DSC) data were obtained on a TA DSC-25 instrument with cooling and heating rates both of 5 °C/min. <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a Bruker 400 MHz. The mass spectrometry (MS) was obtained on a Shimadzu LCMS-IT-TOF. The elemental analysis was characterized by CHONS elemental analyzer (Vario EL cube). The time-resolved PL decay curves and PLQYs were collected by spectrofluorometer (Edinburgh FS-C05) at RT. NLO measurements were performed using a home-built set-up in the reflection geometry.<sup>1</sup> All the DFT/TD-DFT calculations were carried out in the E.01 version of Gaussian09.<sup>2</sup> The B3LYP functional and 6-31G++ basis were adopted to obtain the HOMO and LUMO wavefunctions and the molecular dipole moments of 3-DPyFO and 4-DPyFO S<sub>0</sub> state. We have selected B3LYP/6-31G+(d) basis to calculate the transition density of states from S<sub>0</sub> to different excited states. The visualizations were displayed by VMD software.<sup>3</sup> The Hirshfeld surface calculations were implemented in CrystalExplorer.<sup>4</sup> The overall permanent dipole moments in a unit cell have been performed in the first-principles code Vienna ab initio simulation package (VASP).<sup>5</sup>

#### 2. Synthesis



Scheme S1. Synthesis route of the target compound 3-DPyFO and 4-DPyFO.

**2.1 Preparation of 2,7-dibromo-9-fluorenone**: The synthetic route to the precursors 2,7-dibromo-9-fluorenone was shown in Scheme S1.<sup>6</sup> Pure Br<sub>2</sub> (7.15 mL, 138.7 mmol) was added to the aqueous suspension (70 mL) of 9-fluorenone (5.0 g, 27.7 mmol)

drop by drop at 0 °C, and then the system was stirred at 80 °C for 10 hours. After cooling to room temperature, 100 mL of H<sub>2</sub>O was added to the reaction system, then an appropriate amount of saturated Na<sub>2</sub>SO<sub>3</sub> solution was added. The yellow precursor 2,7-dibromo-9-fluorenone (9.07 g, 27.15 mmol) was obtained by filtration and washing with water several times. The crude product was then purified by recrystallization in n-hexane to give the yellow powder. Yield: ~95%. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, δ): 7.78 (s, 2H, Ar H), 7.63 (d, 2H, Ar H), 7.39 (d, 2H, Ar H). <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>, δ): 190.94, 142.27, 137.49, 135.28, 127.86, 123.34, 121.86. 2.2 Synthesis of 3-DPyFO: Under an argon atmosphere, Pd(PPh<sub>3</sub>)<sub>4</sub> (233 mg, 0.2 mmol) was added to a stirred mixture of precursors 2,7-dibromo-9-fluorenone (1.36 g, 4.0 mmol), 3-pyridineboronic acid (989.0 mg, 8.0 mmol) and Na<sub>2</sub>CO<sub>3</sub> (4.26 g, 40.0 mmol) in 50.0 mL of N,N-dimethylformamide (DMF) and 5.0 mL of water. The reaction mixture was refluxed at 150 °C for 24h. After cooling and removing most of the solvent in vacuum, the mixture was dissolved in 200 mL of CH<sub>2</sub>Cl<sub>2</sub>, and the organic phase was washed with saturated NaCl aqueous solution several times and dried over Na<sub>2</sub>SO<sub>4</sub>. The crude product was purified by column chromatography (silicagel, ethyl acetate) to give yellow powder (884 mg, 2.64 mmol). Yield: ~66%. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, δ): 8.88 (d, 2H, Ar H), 8.64 (dd, 2H, Ar H), 7.90 (m, 4H, Ar H), 7.73 (dd, 2H, Ar H), 7.67 (d, 2H, Ar H), 7.40 (q, 2H, Ar H). <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>, δ): 191.98, 148.00, 146.77, 142.53, 138.03, 134.36, 134.28, 133.17, 132.44, 122.76, 122.08, 120.28. MS (ESI+) m/z: [M+H]+ Calcd for C23H14N2O, 334.36; found 335.28. Anal. Calcd for C23H14N2O: C 82.64, H 4.19, N 8.38, O 4.79; found: C 82.46, H 4.19, N 8.46, O 4.89.

**2.3 Synthesis of 4-DPyFO**: Under an argon atmosphere,  $Pd(PPh_3)_4$  (233 mg, 0.2 mmol) was added to a stirred mixture of precursors 2,7-dibromo-9-fluorenone (1.36 g, 4.0 mmol), 4-pyridineboronic acid (989.0 mg, 8.0 mmol) and Na<sub>2</sub>CO<sub>3</sub> (4.26 g, 40.0 mmol) in 50.0 mL of DMF and 5.0 mL of water. The reaction mixture was refluxed at 150 °C for 24h. After cooling and removing most of the solvent in vacuum, the mixture was dissolved in 200 mL of CH<sub>2</sub>Cl<sub>2</sub>, and the organic phase was washed with saturated NaCl aqueous several times and dried over Na<sub>2</sub>SO<sub>4</sub>. The crude product was purified by column chromatography (silicagel, ethyl acetate) to give yellow powder (965 mg, 2.85 mmol). Yield: ~71%. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.70 (dd, 4H, Ar H), 7.98 (d, 2H, Ar H), 7.82 (dd, 2H, Ar H), 7.71 (d, 2H, Ar H), 7.54 (dd, 4H, Ar H). <sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>,  $\delta$ ): 192.72, 150.38, 146.96, 144.31, 139.55, 135.38, 133.56, 123.10, 121.46, 121.28. MS (ESI+) m/z: [M+H]+ Calcd for C23H14N2O, 334.36; found 335.12. Anal. Calcd for C23H14N2O: C 82.64, H 4.19, N 8.38; O 4.79; found: C 82.80, H 4.18, N 8.40, O 4.63.

## **Supporting Figures**



Figure S1. Molecular packing of 3-DPyFO- $\alpha$  in a unit cell along the crystallographic (a) *a*-axis, (b) *b*-axis and (c) *c*-axis, respectively.



Figure S2. Molecular packing of 3-DPyFO- $\beta$  in a unit cell along the crystallographic (a) *a*-axis, (b) *b*-axis and (c) *c*-axis, respectively. The disordered solvent molecule (toluene) in the structure is not shown here.



Figure S3. Molecular packing of 3-DPyFO- $\gamma$  in a unit cell along the crystallographic (a) *a*-axis, (b) *b*-axis and (c) *c*-axis, respectively.



Figure S4. Molecular packing of 4-DPyFO- $\alpha$  in a unit cell along the crystallographic (a) *a*-axis, (b) *b*-axis and (c) *c*-axis, respectively.



Figure S5. Molecular packing of 4-DPyFO- $\beta$  in a unit cell along the crystallographic (a) *a*-axis, (b) *b*-axis and (c) *c*-axis, respectively. The shown "non-bond Cl atom" is caused by the disordered solvent (trichloromethane) in the structure.



Figure S6. Molecular packing of 4-DPyFO- $\gamma$  in a unit cell along the crystallographic (a) *a*-axis, (b) *b*-axis and (c) *c*-axis, respectively.



Figure S7. PXRD patterns with face indexation of the as-prepared (a) 3-DPyFO- $\alpha$  and (b) 3-DPyFO- $\beta$ , in comparison with the simulated patterns. The obtained 4-DPyFO- $\gamma$  crystals were too few for PXRD measurements.



Figure S8. PXRD patterns with face indexation of the as-prepared (a) 4-DPyFO- $\alpha$ , (b) 4-DPyFO- $\beta$  and (c) 4-DPyFO- $\gamma$ , in comparison with the simulated patterns.



Figure S9. The calculated morphologes with face indexation of (a) 3-DPyFO- $\alpha$  (view along the crystallographic *c*-axis) and (b) 4-DPyFO- $\alpha$  (view along the crystallographic *b*-axis) using the single crystal data and attachment theory.



Figure S10. (a) The C=O...H hydrogen bonds driving the molecules to align zig-zag along the crystallographic *b*-axis. (b) Three C-H...N hydrogen bonds of varying strength contribute to the arrangement of the four 4-DPyFO molecules into a paddlewheel shape and (c) stacking along the crystallographic *c*-axis.



Figure S11. The hirshfeld surfaces and the 2D fingerprint plots of 4-DPyFO- $\alpha$ . (a) Full 2D fingerprint plot of 4-DPyFO- $\alpha$ . (b) C...C interactions fingerprint. (c) N...H interactions fingerprint. (d) O...H interactions fingerprint. The red area means a strong interaction, while the blue area refers to a weak one.



Figure S12. The hirshfeld surfaces and the 2D fingerprint plots of 3-DPyFO- $\alpha$ . (a) Full 2D fingerprint plot of 3-DPyFO- $\alpha$ . (b) C...C interactions fingerprint. (c) N...H interactions fingerprint. (d) O...H interactions fingerprint. The red area means a strong interaction, while the blue area refers to a weak one.



Figure S13. TGA curves of 3-DPyFO powder and 3-DPyFO-α.



Figure S14. PXRD pattern with face indexation of the 3-DPyFO- $\delta$  compared to the simulated patterns.



Figure S15. Molecular packing of 3-DPyFO- $\delta$  in a unit cell along the crystallographic (a) *a*-axis, (b) *b*-axis and (c) *c*-axis. The shown "non-bond atom" is caused by the disordered pyridine in the molecule.



Figure S16. (a) TGA curves of 4-DPyFO powder and 4-DPyFO- $\alpha$ ; (b) DCS curves of 4-DPyFO- $\alpha$ .



Figure S17. PL spectra of (a) 3-DPyFO and (b) 4-DPyFO. Concentration:  $10^{-5}$  mol L<sup>-1</sup> in CH<sub>2</sub>Cl<sub>2</sub>.



Figure S18. PL decay curves of (a) 3-DPyFO (@582 nm) and (b) 4-DPyFO (@565 nm) powders. The samples were excited by a 365 nm pulsed diode laser at RT.



Figure S19. PXRD patterns of 3-DPyFO- $\alpha$  before and after grinding, in comparison with the simulation patterns.



Figure S20. The comparison of SHG intensity between 3-DPyFO- $\alpha$  and 4-DPyFO- $\alpha$  under the same measure conditions. Incident power: 50 mW at 920 nm.



Figure S21. Magnitude and direction of permanent dipole moment of (a) 3-DPyFO and (b) 4-DPyFO molecules.



Figure S22. The calculated direction of the overall inherent dipole moment in the cell of 4-DPyFO- $\alpha$  along the crystallographic *c*-axis, in line with the long axis of the microrod crystal. Blue arrow: direction of the overall permanent dipole moment in the unit cell.

## **Supporting Tables**

| Compound                                  | 3-DPyFO-α                                                                                          | 3-DPyFO-β                                                                                      | 3-DPyFO-γ                                                                                   |
|-------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Formula                                   | $C_{23}H_{14}N_2O$                                                                                 | C <sub>53</sub> H <sub>40</sub> N <sub>4</sub> O <sub>4</sub>                                  | $C_{23}H_{14}N_2O$                                                                          |
| CCDC                                      | 2106430                                                                                            | 2106425                                                                                        | 2106424                                                                                     |
| Formula mass                              | 334.36                                                                                             | 755.82                                                                                         | 334.36                                                                                      |
| Temperature (K)                           | 293(2)                                                                                             | 99.96(10)                                                                                      | 300.78(10)                                                                                  |
| Crystal system                            | orthorhombic                                                                                       | triclinic                                                                                      | monoclinic                                                                                  |
| Space group                               | $P2_{1}2_{1}2_{1}$                                                                                 | <i>P</i> -1                                                                                    | $P2_{1}/c$                                                                                  |
| <i>a</i> (Å)                              | 8.52570(10)                                                                                        | 8.5136(10)                                                                                     | 7.5282(2)                                                                                   |
| <i>b</i> (Å)                              | 13.4455 (2)                                                                                        | 13.5667(2)                                                                                     | 27.6641(6)                                                                                  |
| <i>c</i> (Å)                              | 27.9047(4)                                                                                         | 15.9278(3)                                                                                     | 8.6003(2)                                                                                   |
| α (°)                                     | 90                                                                                                 | 88.41(10)                                                                                      | 90                                                                                          |
| eta (°)                                   | 90                                                                                                 | 84.09(10)                                                                                      | 113.78(3)                                                                                   |
| γ (°)                                     | 90                                                                                                 | 81.09(10)                                                                                      | 90                                                                                          |
| $V(Å^3)$                                  | 3198.78(8)                                                                                         | 1807.66(5)                                                                                     | 1639.00(8)                                                                                  |
| Ζ                                         | 8                                                                                                  | 2                                                                                              | 4                                                                                           |
| $D_{\rm c}$ (g/cm <sup>3</sup> )          | 1.389                                                                                              | 1.389                                                                                          | 1.355                                                                                       |
| $\mu$ (mm <sup>-1</sup> )                 | 0.682                                                                                              | 0.089                                                                                          | 0.665                                                                                       |
| Final <i>R</i> indexes [I > = 2sigma (I)] | $R_1 = 0.0314, wR_2$<br>= 0.0809                                                                   | $R_1 = 0.0544, wR_2 = 0.1539$                                                                  | $R_1 = 0.0410, wR_2 = 0.1104$                                                               |
| Final <i>R</i> indexes [all data]         | $R_1 = 0.0339, wR_2$<br>= 0.0827                                                                   | $R_1 = 0.0593, wR_2 = 0.1650$                                                                  | $R_1 = 0.0586, wR_2 = 0.1204$                                                               |
| <i>F</i> (000)                            | 1392.00                                                                                            | 790.00                                                                                         | 696.00                                                                                      |
| Index ranges                              | $\begin{array}{l} -10 \leq h \leq 5, \ -16 \\ \leq k \leq 16, \ -34 \leq 1 \\ \leq 33 \end{array}$ | $\begin{array}{l} -10 \leq h \leq 10,  -13 \leq \\ k \leq 16,  -19 \leq l \leq 19 \end{array}$ | $\begin{array}{l} -9 \leq h \leq 9,  -34 \leq k \\ \leq 32,  -10 \leq l \leq 8 \end{array}$ |
| GDF on F <sup>2</sup>                     | 1.088                                                                                              | 1.054                                                                                          | 1.056                                                                                       |
| Reflections collected                     | 15473                                                                                              | 18640                                                                                          | 8101                                                                                        |
| Flack                                     | 0.16(13)                                                                                           | -                                                                                              | -                                                                                           |

Table S1. Crystal data and refinement results for 3-DPyFO.

| Compound                                  | 4-DPyFO-α                                                                                    | 4-DPyFO- <i>β</i>                                                                              | 4-DPyFO-γ                                                                                                    |
|-------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Formula                                   | $C_{23}H_{14}N_2O$                                                                           | C <sub>24</sub> H <sub>15</sub> Cl <sub>3</sub> N <sub>2</sub> O                               | $C_{23}H_{18}N_2O_3$                                                                                         |
| CCDC                                      | 2106428                                                                                      | 2106429                                                                                        | 2106427                                                                                                      |
| Formula mass                              | 334.36                                                                                       | 453.73                                                                                         | 368.38                                                                                                       |
| Temperature (K)                           | 100.02(1)                                                                                    | 100.10(1)                                                                                      | 293(2)                                                                                                       |
| Crystal system                            | orthorhombic                                                                                 | monoclinic                                                                                     | triclinic                                                                                                    |
| Space group                               | Fdd2                                                                                         | $P2_{1}/n$                                                                                     | <i>P</i> -1                                                                                                  |
| a (Å)                                     | 42.8575(1)                                                                                   | 13.4267(4)                                                                                     | 7.8189(9)                                                                                                    |
| <i>b</i> (Å)                              | 39.7716(1)                                                                                   | 10.5667(3)                                                                                     | 8.8169(1)                                                                                                    |
| <i>c</i> (Å)                              | 3.71790(1)                                                                                   | 15.7768(5)                                                                                     | 14.555(1)                                                                                                    |
| α (°)                                     | 90                                                                                           | 90                                                                                             | 82.99(8)                                                                                                     |
| β (°)                                     | 90                                                                                           | 113.05(3)                                                                                      | 77.87(8)                                                                                                     |
| γ (°)                                     | 90                                                                                           | 90                                                                                             | 67.35(1)                                                                                                     |
| $V(Å^3)$                                  | 6337.2(4)                                                                                    | 2059.63(1)                                                                                     | 904.37(1)                                                                                                    |
| Ζ                                         | 16                                                                                           | 4                                                                                              | 2                                                                                                            |
| $D_{\rm c}$ (g/cm <sup>3</sup> )          | 1.402                                                                                        | 1.463                                                                                          | 1.353                                                                                                        |
| $\mu$ (mm <sup>-1</sup> )                 | 0.688                                                                                        | 4.183                                                                                          | 0.737                                                                                                        |
| Final <i>R</i> indexes [I > = 2sigma (I)] | $R_1 = 0.0479, wR_2 = 0.12338$                                                               | $R_1 = 0.0644, \ wR_2 = 0.1905$                                                                | $R_1 = 0.0913, wR_2 = 0.2522$                                                                                |
| Final <i>R</i> indexes [all data ]        | $R_1 = 0.0494, wR_2 = 0.1353$                                                                | $R_1 = 0.0700, \ wR_2 = 0.1971$                                                                | $R_1 = 0.1032, \ wR_2 = 0.2649$                                                                              |
| <i>F</i> (000)                            | 2784.0                                                                                       | 928.0                                                                                          | 384.0                                                                                                        |
| Index ranges                              | $\begin{array}{l} -52 \leq h \leq 46,  -48 \leq \\ k \leq 48,  -2 \leq l \leq 4 \end{array}$ | $\begin{array}{l} -13 \leq h \leq 16,  -10 \leq k \\ \leq 12,  -18 \leq l \leq 19 \end{array}$ | $\begin{array}{l} -9 \leq h \leq 8, \ \text{-10} \leq k \\ \leq 10, \ \text{-18} \leq l \leq 17 \end{array}$ |
| GDF on F <sup>2</sup>                     | 1.092                                                                                        | 1.044                                                                                          | 1.093                                                                                                        |
| Reflections collected                     | 15986                                                                                        | 10116                                                                                          | 7777                                                                                                         |

Table S2. Crystal data and refinement results for 4-DPyFO.

| Compound                                        | 3-DPyFO-α                                             | 3-DPyFO- $\delta$                                         |
|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|
| Formula                                         | $C_{23}H_{14}N_2O$                                    | $C_{23}H_{14}N_2O$                                        |
| CCDC                                            | 2106430                                               | 2106426                                                   |
| Formula mass                                    | 334.36                                                | 334.36                                                    |
| Temperature (K)                                 | 293(2)                                                | 100.00(10)                                                |
| Crystal system                                  | orthorhombic                                          | orthorhombic                                              |
| Space group                                     | $P2_{1}2_{1}2_{1}$                                    | Pccn                                                      |
| <i>a</i> (Å)                                    | 8.52570(10)                                           | 30.1793(7)                                                |
| <i>b</i> (Å)                                    | 13.4455 (2)                                           | 13.6976(3)                                                |
| <i>c</i> (Å)                                    | 27.9047(4)                                            | 7.76620(10)                                               |
| α (°)                                           | 90                                                    | 90                                                        |
| eta (°)                                         | 90                                                    | 90                                                        |
| γ (°)                                           | 90                                                    | 90                                                        |
| $V(Å^3)$                                        | 3198.78(8)                                            | 3210.42(1)                                                |
| Ζ                                               | 8                                                     | 8                                                         |
| $D_{\rm c}$ (g/cm <sup>3</sup> )                | 1.389                                                 | 1.384                                                     |
| $\mu$ (mm <sup>-1</sup> )                       | 0.682                                                 | 0.680                                                     |
| Final $R$ indexes $[I > = 2 \text{ sigma (I)}]$ | $R_1 = 0.0314, wR_2 = 0.0809$                         | $R_1 = 0.0579, wR_2 = 0.1695$                             |
| Final <i>R</i> indexes [all data ]              | $R_1 = 0.0339, wR_2 = 0.0827$                         | $R_1 = 0.0688, wR_2 = 0.1795$                             |
| <i>F</i> (000)                                  | 1392.00                                               | 1392.0                                                    |
| Index ranges                                    | $-10 \le h \le 5, -16 \le k \le 16, -34 \le 1 \le 33$ | $-37 \le h \le 34, -11 \le k \le 17,$<br>$-5 \le l \le 9$ |
| GDF on F <sup>2</sup>                           | 1.088                                                 | 1.064                                                     |
| Reflections collected                           | 15473                                                 | 7980                                                      |

Table S3. Crystal data of 3-DPyFO- $\alpha$  and 3-DPyFO- $\delta$ .

### **Supporting References**

- J. Xu, S. Semin, D. Niedzialek, P. H. Kouwer, E. Fron, E. Coutino, M. Savoini, Y. Li, J. Hofkens, I. H. Uji, D. Beljonne, T. Rasing and A. E. Rowan, Self-assembled organic microfibers for nonlinear optics, *Adv. Mater.*, 2013, 25, 2084-2089.
- J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 3. W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics, *J. Mol. Graphics*, 1996, **14**, 33-38.
- 4. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis o molecular crystals, *J. Appl. Crystallogr.*, 2021, **54**, 1006-1011.
- G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, *Phys. Rev. B*, 1993, 47, 558-561.
- D. M. E. Freeman, A. J. Musser, J. M. Frost, H. L. Stern, A. K. Forster, K. J. Fallon, A. G. Rapidis, F. Cacialli, I. McCulloch, T. M. Clarke, R. H. Friend and H. Bronstein, Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap, J. Am. Chem. Soc., 2017, 139, 11073-11080.