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Computation methods

For the optimization of the CT state (with charge transfer from the xanthene scaffold to
phthalimidine moiety), we employed two methods: CT’ was obtained via free relaxation from the
Franck-Condon (FC) state; CT; was optimized with four constraints. These constraints afforded
perpendicular alignments between the xanthene scaffold and the phthalimidine moiety, thus
ensuring complete charge separation between these moieties. Upon cLR solvent effect corrections,
the CT; state has a lower energy level and smaller oscillator strength than that of CT’ state. The
CT, yielded close agreement with experimental results. We thus chose CT; instead of CT’ in our

final analysis.
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Figure S1. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the adiabatic excited states (AES) of DRHNI1. CT’ state is the charge transfer state
with free relaxation from the Franck-Condon (FC) state; CT; state represents the charge transfer
state with restricted relaxation from the FC state (the dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8
and 1-2-6-7 in CT; are fixed to the values in the FC state). LE denoted the locally excited state.
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Figure S2. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN2. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-3-6, and 1-2-3-
6 in the CT; state are fixed to the values in the FC state.
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Figure S3. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN3. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-3-6, and 1-2-3-
6 in the CT); state are fixed to the values in the FC state.
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Figure S4. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHNY. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-
7 in the CT; state are fixed to the values in the FC state.
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Figure S5. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN10. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-

7 in the CT; state are fixed to the values in the FC state.
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Figure S6. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN11. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-
7 in the CT); state are fixed to the values in the FC state.
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Figure S7. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN12. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-
7 in the CT; state are fixed to the values in the FC state.
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Figure S8. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN13. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-
7 in the CT); state are fixed to the values in the FC state.
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Figure S9. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN14. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-
7 in the CT); state are fixed to the values in the FC state.
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Figure S10. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN16. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-
7 in the CT; state are fixed to the values in the FC state.
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Figure S11. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN17. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-

7 in the CT; state are fixed to the values in the FC state.
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Figure S12. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of DRHN19. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-3-6, and 1-2-3-
9 in the CT; state are fixed to the values in the FC state.
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Figure S13. Comparison of the calculated energy levels, and the corresponding electron and hole
distributions of the AES of DRHN 14 using (a) M06-2X and (b) ®B97XD in combination with the
def2SVP basic set in water. The constrained dihedral angles in the CT; state are the same as those
in Fig. S9.
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Figure S14. Calculated HOMO and LUMO energy levels in the ground state of fragments in Fig.3a
using different functionals: M06-2X (top) and B3LYP (bottom) with the def2SVP basis set in
water.

10



OeV

The open form of BRHNS

LE(S,) 2374 eV

~
1

1.352

\ 4

Electron

Figure S15. The molecular structure, energy levels, and the corresponding electron and hole

distributions of the open form of BRHNS in the AES.
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Figure S16. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and

(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of BRHN2.
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Figure S17. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHN2. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-7
in the CT; state are fixed to the values in the FC state. CT> denoted the CT state from the F1
fragment to the F3 fragment.
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Figure S18. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHN28. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-
7 in the CT) state are fixed to the values in the FC state.
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Figure S19. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and
(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state
of BRHNS.
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Figure S20. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHNS. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-7
in the CT; state are fixed to the values in the FC state. CT> denoted the CT state from the F1
fragment to the F27 fragment.
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Figure S21. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and

(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of ProbeAC.
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Figure S22. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of ProbeAC. CT, denoted the CT state from the F50 fragment to the F21

fragment.
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Figure S23. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and
(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state
of RHN25 50.
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Figure S24. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of RHN25 50. CT> denoted the CT state from the F50 fragment to the

F25 fragment.
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Figure S25. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and

(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of RHN21 32.
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Figure S26. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of RHN21 32. CT denoted the CT state from the F21 fragment to the

F32 fragment.
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Figure S27. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and

(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of BRHNI1.
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Figure S28. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHNI1. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-7
in the CT; state are fixed to the values in the FC state.

17



F1 F25 FR40 F1 F25 FR40
1.195 eV
L 0.224 eV
-1.315eV
L L+4
PET ON (1.031ev) L+1
(CTz) (0.191 gV)‘
H——oZ H
-6.651 eV -6.502 eV H —o—o—
-8.396 eV

H-5
(-8.526 eV)

Figure S29. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and
(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of BRHN3.
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Figure S30. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHN3. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-7
in the CT; state are fixed to the values in the FC state. CT, denoted the CT state from the F1
fragment to the F25 fragment.
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Figure S31. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and

(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of BRHN4.
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Figure S32. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHN4. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-7
in the CT; are fixed to the values in the FC state. CT> denoted the CT state from the F1 fragment

to the F26 fragment.
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Figure S33. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and

(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of BRHNG6.
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Figure S34. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHNG6. The dihedral angles 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-6-7 in
the CT are fixed to the values in the FC state. CT> denoted the CT state from the F1 fragment to

the F11 fragment.
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Figure S35. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and
(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of BRHNBO.
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Figure S36. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHNBO. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-3-6, and 1-2-
3-9 in the CT; state are fixed to the values in the FC state. CT> denoted the CT state from the F1
fragment to the F23 fragment.
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Figure S37. (a) Three fragments, their HOMO and LUMO energy levels in the ground state, and

(b) the corresponding distributions and energy levels of the molecular orbitals in the ground state

of BRHNNa.
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Figure S38. Molecular structure, energy levels, and the corresponding electron and hole
distributions in the AES of BRHNNa. The dihedral angles of 5-4-3-9, 1-2-3-6, 5-4-9-8, and 1-2-
6-7 in the CT; state are fixed to the values in the FC state. CT, denoted the CT state from the F1

fragment to the F19 fragment.
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Figure S39. The molecular structure, energy level, and the corresponding electron and hole
distributions of the optimized S; state in the open form of BRHN2 in water.
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Figure S40. The molecular structure, energy level, and the corresponding electron and hole
distributions of the optimized S; state in the open form of BRHN28 in water.
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Figure S41. The molecular structure, energy level, and the corresponding electron and hole
distributions of the optimized S; state in the open form of Probe AC in water.
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Figure S42. The molecular structure, energy level, and the corresponding electron and hole
distributions of the optimized S; state in the open form of RHN25 50 in water.
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Figure S43. The molecular structure, energy level, and the corresponding electron and hole
distributions of the optimized S; state in the open form of RHN21 32 in water.
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There are two methods to define the fragment M3. One is to exclude the meso-carbon atom from
M3 (e.g., F40 in Fig. S44, Fig. S45); the other is to include the meso-carbon atom in M3 (e.g.,
FR40 in Fig. S44, Fig. 4). Both methods led to similar FMOs energy levels and afforded the
same conclusion on the tendency of PET. This is reasonable considering that the meso-carbon

atom does not strongly participate in the n-conjugation of M3.
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Figure S44. Three fragments (without meso-carbon atom from M3), their respective HOMO and
LUMO energy levels in the ground state of (a) BRHNS and (c) BRHN4. Three fragments (with
meso-carbon atom from M3), their respective HOMO and LUMO energy levels in the ground state
of (b) BRHNS and (d) BRHN4.
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in Fig.3a and different M3 fragments (without the meso-carbon atom) using different functionals:
CAM-B3LYP (top), M06-2X (middle) and B3LYP (bottom) with the def2SVP basis set in water.

Figure S45. Calculated HOMO and LUMO energy levels in the ground state of M1&M2 fragments



Table S1. The Dct indexes of the LE and several CT states as well as the dipole moment in CT;
of all rhodamines and analogs in this work.

Dcrindexes | Dcrindexes | Dcrindexes | Dcrindexes | Dipole moment in
in CT' (A) in CT; (A) in LE (A) in CT2(A) CTi(Debye)
DRHNI1 3.689 4.545 1.51 24.969988
DRHN2 3.722 4.328 1.122 26.274961
DRHN3 3.493 4413 1.281 24.122234
DRHN9 4.124 5.181 2.189 25.427926
DRHNI10 3.751 4.035 1.425 19.015353
DRHNI1 3.455 4318 0.955 23.068285
DRHNI12 3.73 4.74 1.511 25.244802
DRHN13 3.907 4.833 1.353 25.941538
DRHNI14 3.954 5.135 1.463 26.670739
DRHNI16 3.772 4.71 1.487 25.708934
DRHNI17 3.022 3.743 0.904 22.151242
DRHNI19 2.837 3.083 0.137 12.363563
BRHNI1 3.521 4414 1.457 23.283754
BRHN3 4.12 4.174 0.796 5.993 37.452829
BRHN4 4.137 4418 1.164 5.922 34.136306
BRHN6 3.103 4.496 1.563 6.07 28.103371
BRHNBO 3.54 4216 1.471 8.273 17.420493
BRHNNa 3.446 4.575 1.924 6.352 33.20138
BRHN2 3.703 4426 1.398 6.417 22.292755
BRHN28 3.857 4471 1.509 6.478 30.322985
BRHNS 4.124 4297 0.606 5.917 38.569769
ProbeAC 1.447 4912
RHN25 50 0.838 3.561
RHN21 32 0.697 4.015

Table S2. The Dct indexes of the LE and several CT states as well as the dipole moment in CT;
of DRHN14 with different functionals using def2SVP in water.

Dct indexes in | Dcr indexes in | Dcr indexes in |  Dipole moment in
Functional CT' (A) CTi (A) LE (A) CT. (Debye)
M062X 4.311 5.163 1.312 27.41854
CAM-B3LYP 3.954 5.135 1.463 26.67074
®B97XD 3.526 5.086 1.46 25.59395

27



Three generations of fluorophores for single-molecule localization microscopy

Single-molecule localization (SML) can be used to achieve super-resolution imaging beyond the
Abbe diffraction limit, but it requires the use of fluorophores that meet two specific criteria: sparse
emission and blinking between "dark" and "bright" states.

SML fluorophores can be broadly classified into three generations. The first generation of SML
fluorophores is classical fluorophores, which are mostly in "bright" states by default. These
fluorophores are typically used in conventional imaging and are not specifically designed for
super-resolution imaging. To meet the requirements of SML, harsh treatments such as the
introduction of chemical additives and intense laser radiation are often necessary to induce sparse
emissions and blinking in these fluorophores. However, these harsh treatments can compromise
biocompatibility, complicate experimental preparation, photobleach dyes quickly, and cause high
phototoxicity in live cells.

In the second generation of SML fluorophores, the fluorophores are mostly in the "dark" state. A
small fraction of these fluorophores will turn on emissions upon photoactivation or spontaneously
blinking (via thermal equilibrium between the "bright" and "dark" states). They are specifically
designed for super-resolution imaging. However, photoactivable dyes may require additional
hardware, such as two lasers, one for photoactivation and the other for producing fluorescence,
instead of a single laser. The photoactivation laser often suffers from short wavelengths and high
phototoxicity. While spontaneously blinking dyes have the potential to simplify optical setup and
enable long-lasting imaging through low-power photoexcitation, significant research efforts are
needed to increase the choice of emission colors, improve the blinking properties to suit
heterogeneous microenvironments in live cells, and enhance the brightness during imaging.
Additionally, these dyes are not suitable for conventional imaging as only a small fraction of the
dyes are in the "bright" state.

We anticipate that the third generation of SML fluorophores will have dual emissions at different
wavelengths, allowing for simultaneous conventional and super-resolution imaging. Conventional
imaging has a fast acquisition speed but low resolution, while super-resolution imaging has a high
resolution but a long acquisition time. By using conventional imaging for a general view and super-
resolution imaging only in specific areas of interest, we can take advantage of both techniques.
Existing rhodamines cannot perform both conventional and super-resolution imaging at the same
time, but dual-emission rhodamine analogs can, by using the majority of short-wavelength
emissions for conventional imaging and the minority of long-wavelength emissions for super-
resolution imaging in selected regions.

The dual-emission rhodamine analogs can blink spontaneously or through controlled
photoactivation using a laser that matches the UV-vis absorption peak of the closed form. These
new rhodamine analogs also have an expansive m-conjugation and red-shifted UV-vis absorption
in the closed form, which reduces phototoxicity in comparison to existing photoactivatable
rhodamines.

In summary, the first generation of SML fluorophores is mostly “on”, mainly designed for
conventional imaging. The second generation of SML fluorophores is mostly “off” with sparse
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and blinking emissions, specifically developed for super-resolution imaging. The third generation
of SML fluorophores could switch between two distinct “on” states with different fluorescence
wavelengths. By adjusting the proportion of these two states, we can achieve simultaneous
conventional and super-resolution imaging, maximizing imaging efficiency.
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Figure S46. Schematic illustration of the potential energy surface profiles of three generations of
SML fluorophores and representative compounds in the first two generations. The inset of (c)
illustrates the principle of dual channel imaging: the closed form emissions enable conventional
imaging, while the open form imaging allows super-resolution imaging through single-molecule
localization in a region of interest (ROI).
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