Supporting Information for

Metal-Mediated Nanobody Assemblies as Potent Alleviator of Human Islet Amyloid Polypeptide Aggregation

Liyuan Zhao¹, Liang Luo^{1,2,3,*} and Fanling Meng^{1,2,3,*}

¹National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China ²Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

³Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding authors: <u>Fanlingmeng@hust.edu.cn</u>; <u>Liangluo@hust.edu.cn</u>

Contents	Pages
Figure S1	S-2
Figure S2	S-3
Figure S3	S-4

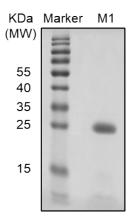


Figure S1. SDS-PAGE analysis of M1.

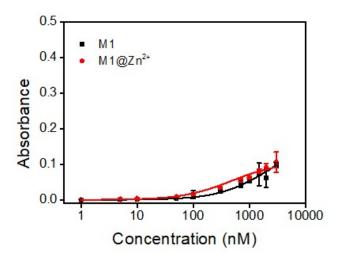
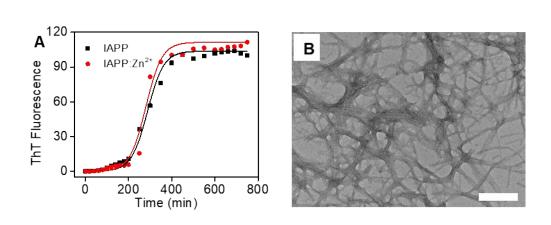



Figure S2. The binding affinity of M1 and M1@ Zn^{2+} to IAPP monomers analyzed by ELISA assay. IAPP monomer concentration was 2.5 μ M.

Figure S3. The effect of Zn^{2+} on IAPP aggregation at the equivalent Zn^{2+} concentration as that of M1@ Zn^{2+} . (A) IAPP aggregation kinetics monitored by ThT fluorescence assays upon addition of Zn^{2+} . The final concentration of IAPP was 16 μ M. (B) TEM image of end-point products of IAPP aggregation upon addition of Zn^{2+} . Scale bar: 200 nm

Samples	α-Helix (%)	β-Sheet (%)	Turns (%)	Random coils (%)
IAPP	3.2	39.4	20.3	37.1
IAPP:M1	3.2	38.7	19.9	38.1
IAPP:M1@Zn ²⁺	5.8	18.5	19.7	55.9

Table S1. Quantification of IAPP secondary structure by analyzing CD data.