Supporting information

Frustrated Behavior of Lewis/Brønsted Pairs inside Molecular Cages

C. Li,^{a,b} A.-D. Manick,^b J.-P. Dutasta,^c X. Bugaut,^b B. Chatelet, *^b and A. Martinez*^b

Table

I/ General method	2
II/ Experimental section	3
III / NMR spectra	6
V / Kinetics experiment	46
VI/ Mass spectra	48
VII/ Crystallographic data	54

I/ General method

Commercial reagents were used directly as received without further purification. All reactions were performed in oven-dried glassware under a positive pressure of argon, unless otherwise noted. Fritted glass was subsequently neutralized with saturated NaHCO₃ solution, twice rinsed with distilled water and acetone, then oven-dried. Dichloromethane, tetrahydrofuran and toluene were dried prior to use through standard procedures or obtained from a solvent drying System BRAUN MB-SPS800. ¹H and ¹³C NMR spectra were recorded on a Brucker AC 400 (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR, and 162 MHz for ³¹P NMR in CDCl₃ or CD₂Cl₂). Chemical shifts were reported in ppm on the δ scale relative to residual CDCl₃ (δ = 7.26 for 1H NMR and δ = 77.16 for ¹³C NMR), CD₂Cl₂ (δ = 5.32 for ¹H NMR and 53.84 for ¹³C NMR) as the internal references. Coupling constant (J) are reported in Hertz unit (Hz). Multiplicities are described with standard following abbreviations: s = singlet, br = broad, d = doublet, t = triplet, q = quadruplet, m = multiplet. Column chromatographies were performed with gel 60 (Macherey-Nagel® Si 60, 0.040-0.063 mm). Analytical thin layer chromatography (TLCs) were carried out on Merck®Kieselgel 60 F254 plates and achieved under a 254 nm UV light. High-resolution mass spectra (HRMS) were performed on a SYNAPT G2 HDMS (Waters) spectrometer equipped with atmospheric pressure ionization source (API) pneumatically assisted.

II/ Experimental section

Simplified examples of frustrated pairs.

Scheme S1 : Top: simplified examples of frustrated Lewis behavior involving pro-azaphosphatrane (green: Lewis basic site, purple: Lewis acid site) ; bottom: simplified examples of frustrated Brønsted behavior involving azaphosphatrane (red: Brønsted acid site, pink Brønsted basic site)

MBH reactions between cyclopentenone (n = 1) or cyclohexenone (n = 2) and benzaldehyde derivatives.

General procedure.

Para-substituted benzaldehyde (0.3 mmol) was placed in a 5 mL oven-dried Schlenk tube and dissolved in anhydrous dichloromethane (1 mL). 2-Cyclopenten-1-one or 2-cyclohexen-1-one (0.9 mmol) was added and a solution of P@4 (30 mg, 0.03 mmol) in anhydrous dichloromethane (1 mL) was added drop-wise. The mixture was stirred under argon atmosphere at room temperature, and a solution of

titanium chloride in anhydrous dichloromethane (1 M) (0.3 mL, 0.3 mmol) was then added. The mixture was stirred for 0.5 hour and then quenched with a saturated aqueous solution of NaHCO₃ (3.0 mL). The mixture was stirred for an additional 0.5 hour. The inorganic precipitate was filtered and the organic phase was dried over Na₂SO₄, filtered, and evaporated under vacuum to give the crude product, which was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to give the pure compound (Table S1).

,		n = 1		n = 2				
	Cl	CH ₃	NO ₂	Cl	CH ₃	NO ₂		
Eluent: petroleum ether: ethyl acetate	2.5:1	3:1	1:1	2:1	5:1	2:1		
Yield % (mg)	74% (47)	51% (30)	55% (37)	71% (50)	66% (42)	86% (63)		

• 2-((4-chlorophenyl)(hydroxy)methyl)cyclopent-2-en-1-one:

OH

OH

4-chlorobenzaldehyde (42 mg, 0.3 mmol) 2-Cyclopenten-1-one (76 μL, 0.9 mmol)

¹H NMR (400 MHz, CDCl₃) δ = 7.27-7.22 (m, 4H), 7.20 (td, *J* = 1.3 Hz, 2.6 Hz, 1H), 5.43 (s, 1H), 3.63 (br s, 1H), 2.54-2.48 (m, 2H), 2.36 (dd, *J* = 2.0 Hz, 6.75 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ = 209.6, 159.6, 147.6, 140.0, 133.6, 128.7, 127.8, 69.2, 35.3, 26.8.

These data are consistent with literature.¹

4-chlorobenzaldehyde (42 mg, 0.3 mmol) 2-Cyclohexen-1-one (91 μL, 0.9 mmol)

¹H NMR (400 MHz, CDCl₃) δ = 7.32-7.20 (m, 4H), 6.72 (t, *J* = 4.3 Hz, 1H), 5.48 (s, 1H), 3.48 (br s, 1H), 2.40 (dd, *J* = 5.8 Hz, 7.1 Hz, 2H), 2.36 (dd, *J* = 4.3 Hz, 10.3 Hz, 2H), 1.96 (quintuplet, *J* = 6.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 200.3, 147.5, 140.9, 140.5, 133.3, 128.5, 127.9, 72.0, 38.6, 25.9, 22.6. These data are consistent with literature.¹

2-(hydroxy(p-tolyl)methyl)cyclopent-2-en-1-one:

4-methylbenzaldehyde (36 μL, 0.3 mmol) 2-cyclopenten-1-one (75 μL, 0.9 mmol)

```
<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) \delta = 7.35 – 7.22 (m, 3H), 7.22 – 7.08 (m, 2H), 5.53
```

(s, 1H), 3.43 (br s, 1H), 2.62-2.55 (m, 2H), 2.48 – 2.43 (m, 2H), 2.35 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ = 209.7, 159.3, 147.9, 138.6, 137.7, 129.3, 126.4, 69.9, 35.4, 26.7, 21.2. These data are consistent with literature.¹

2-(hydroxy(p-tolyl)methyl)cyclohex-2-en-1-one:

4-methylbenzaldehyde (36 μL, 0.3 mmol) 2-cyclohexen-1-one (91 μL, 0.9 mmol)

¹H NMR (400 MHz, CDCl₃) δ = 7.24 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H),

6.75 (td, J = 1.1 Hz, 4.2 Hz, 1H), 5.53 (d, J = 3.6 Hz, 1H), 3.36 (d, J = 5.3 Hz,

1H), 2.45 (dd, *J*= 6.3 Hz, 8.1 Hz, 2H), 2.42-2.36 (m, 2H), 2.34 (s, 3H), 1.99 (quintuplet, *J* = 5.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 200.6, 147.3, 141.3, 138.9, 137.3, 129.2, 126.5, 72.6, 38.8, 25.9, 22.7, 21.3.

These data are consistent with literature.¹

2-(hydroxy(4-nitrophenyl)methyl)cyclopent-2-en-1-one:

4-nitrobenzaldehyde (45 mg, 0.3 mmol) 2-cyclopenten-1-one (76 μL, 0.9 mmol)

O₂N

¹H NMR (300 MHz, CDCl₃) δ = 8.21 (dt, *J* = 3.1 Hz, 8.8 Hz, 2H), 7.58 (dt, *J* = 2.3 Hz, 9.6 Hz, 2H), 7.29 (td, *J* = 1.2 Hz, 2.7 Hz, 1H), 5.67 (s, 1H), 3.61 (br s, 1H), 2.67-2.59 (m, 2H), 2.52 – 2.45 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 209.4, 159.9, 148.6, 146.8, 127.2, 123.9, 69.2, 35.3, 26.9. These data are consistent with literature.¹

2-(hydroxy(4-nitrophenyl)methyl)cyclohex-2-en-1-one:

4-nitrobenzaldehyde (45 mg, 0.3 mmol) 2-cyclohexen-1-one (87 μL, 0.9 mmol)

 $O_2 N$ ¹H NMR (300 MHz, CDCl₃) $\delta = 8.17$ (dt, J = 2.4 Hz, 8.8 Hz, 2H), 7.54 (dtd, J = 0.6 Hz, 2.2 Hz, 9.2 Hz, 2H), 6.82 (td, J = 1.0 Hz, 4.2 Hz, 1H), 5.60 (d, J = 5.2 Hz, 1H), 3.58 (d, J = 5.9 Hz, 1H), 2.49 – 2.38 (m, 4H), 2.00 (quintuplet, J = 6.1 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 200.2$, 149.5, 148.2, 147.4, 140.4, 127.3, 123.6, 72.1, 38.5, 25.9, 22.5.

These data are consistent with literature.¹

¹ J. Yang, B. Chatelet, V. Dufaud, D. Herault, S. Michaud-Chevallier, V. Robert, J.-P. Dutasta, A. Martinez, *Angew. Chem. Inter. Ed.*, 2018, **57**, 4212-14215

Figure S1 1 H NMR (400 MHz, CDCl₃) spectrum of 8

Figure S2 ¹³C NMR (101 MHz, CDCl₃) spectrum of 8

Figure S4¹³C NMR (75 MHz, CDCl₃) spectrum of 9

Figure S6 13 C NMR (75 MHz, CDCl₃) spectrum of 7

Figure S7¹H NMR (400 MHz, CD₂Cl₂) spectrum of hemicryptophane 4

Figure S8¹³C NMR (101 MHz, CD₂Cl₂) spectrum of hemicryptophane 4

Figure S9¹H NMR (300 MHz, CD₂Cl₂) spectrum of P-H⁺@4

Figure S10¹³C NMR (75 MHz, CDCl₃) spectrum of P-H⁺@4

Figure S11 ^{31}P CPD NMR (162 MHz, CDCl₃) spectrum of PH+@4

Figure S12 ³¹P NMR (162 MHz, CDCl₃) spectrum of PH⁺@4

Figure S13 ¹H NMR (162 MHz, Toluene-*d*₈) spectrum of hemicryptophane P@4

Figure S14¹³C NMR (101 MHz, toluene-*d*₈) spectrum of hemicryptophane P@4

.50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2! f1 (ppm)

Figure S15 ³¹P CPD NMR (121 MHz, toluene- d_8) spectrum of P@4

Figure S16¹H NMR (400 MHz, CDCl₃) spectrum of 13

Figure S17¹³C NMR (100 MHz, CDCl₃) spectrum of 13

unt il	an tang ang ang ang ang ang ang ang ang ang	er felgeleg gesterfeste er segen gegen gesterfeste		ller og bland for sederasjoner dep	d Rolawin I. Dad ganada			n fan sen fra film Fra fan sen fra film	n attentiele geographiend	legentigentister kommen Hand Typest kommen	Anthon I an Prost I pros	erendersystem signered gespis	n bing tablah panan Ang tablah panang pan Ang tabupat panang panang pang panang pang panang pang p	nastiganet kardi		analas) ng bita aga ga istang atang	na kiraja tajaka ajjaan fatjainaja	a disktorenen 1941 bergenen		
50	130	110	90	70	50	30	10	-10	-30	-50 f1 (ppm)	-70	-90	-110	-130	-150	-170	-190	-210	-230	-25

Figure S18 ³¹P NMR (162 MHz, CDCl₃) spectrum of 13

140 -40 -60 f1 (ppm) -140 120 100 80 -100 -120 -160 -180 -200 -240 60 40 20 -20 -80 -220 0

Figure S19 ³¹P CPD NMR (162 MHz, CDCl₃) spectrum of 13

Figure S21¹³C NMR (101 MHz, CDCl₃) spectrum of 10

Figure S23 ¹³C NMR (101 MHz, CDCl₃) spectrum of 11

Figure S25¹³C NMR (75 MHz, CDCl₃) spectrum of 12

Figure S27¹³C NMR (75 MHz, CDCl₃) spectrum of 5

7.26 CDCI3 7.21 (5.29) 7.21 (5.20) 7.21 (5.20) 7.20 (5.31) 7.20 (5.32) 7.20 (5

Figure S28¹H NMR (400 MHz, CDCl₃) spectrum of hemicryptophane 2

Figure S29 13 C NMR (101 MHz, CDCl₃) spectrum of hemicryptophane 2

Figure S30 ¹H NMR (300 MHz, CDCl₃) spectrum of PH⁺@2

Figure S31 ¹C NMR (75 MHz, CDCl₃) spectrum of PH⁺@2

∠ -30.16 ~ -34.32

.50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2! f1 (ppm)

Figure S32 ^{31}P NMR (121 MHz, CDCl₃) spectrum of PH+@2

Figure S33 ^{31}P CPD NMR (121 MHz, CDCl₃) spectrum of PH+@2

chlorophenyl)(hydroxy)methyl)cyclopent-2-en-1-one

chlorophenyl)(hydroxy)methyl)cyclohex-2-en-1-one

chlorophenyl)(hydroxy)methyl)cyclohex-2-en-1-one

Figure S38 ¹H NMR (400 MHz, CDCl₃) spectrum of 2-(hydroxy(p-tolyl)methyl)cyclohex-2-en-1-one

Figure S39 ¹³C NMR (101 MHz, CDCl₃) spectrum of 2-(hydroxy(p-tolyl)methyl)cyclohex-2-en-1one

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

Figure S41 ³¹P NMR (162 MHz, CD₃CN) spectrum of competition experiment

 $\frac{K_{a}^{PH^{+}@3}}{K_{a}^{PH^{+}@1a}} = \frac{[P@4][PD^{+}@1a]}{[PD^{+}@4][P@1a]} = \frac{1 \times 1.8953}{0.1586 \times 3.1581} = 3.78$

with
$$K_a^{PH^+@1a} = 1.26 \times 10^{-33}$$

 $K_a^{PH^+@4} = 4.77 \times 10^{-33}$

V / Kinetics experiment

Rate constants of proton exchange of P@4

$$PH^{+}@\mathbf{4} + CNCD_{2}^{-} \stackrel{k_{1}/k_{-1}}{\Longleftrightarrow} P@\mathbf{4} + CNCHD_{2}$$
(1)

$$P@4 + CNCD_3 \stackrel{k_2/k_2}{\iff} PD^+@4 + CNCD_2^-$$
(2)

$$-\frac{d([PH^+@4])}{dt} = k_I [PH^+@4] [CD_2 CN^-] = +\frac{d([P@4])}{dt}$$

$$\frac{d(\frac{[P@4]}{[PH^+@4]})}{dt} = \frac{d[P@4]}{dt} [PH^+@4] - \frac{d[PH^+@4]}{dt} [P@4]}{([PH^+@4])^2}$$

$$= k_{I} [CD_{2}CN^{-}] + \frac{k_{I} [CD_{2}CN^{-}][P@4]}{[PH^{+}@4]}$$

$$= k_{I} [CD_{2}CN^{-}](1 + \frac{[P@4]}{[PH^{+}@4]})$$

with
$$[CD_2CN^-] = \frac{K_e}{K_a^{PH^+@1a}} \frac{[P@1a]}{[PH^+@1a]}$$

$$\rightarrow \frac{d\left(\frac{[P@4]}{[PH^+@4]}\right)}{dt} = \frac{k_I K_e}{K_a^{PH^+@1a}} \times \frac{[P@1a](1+[P@4]/[PH^+@4])}{[PH^+@1a]}$$

and
$$k_{-I} = \frac{K_e k_I}{K_a^{PH^+@4}}$$

	t(min)	[P@4]	[PH+@4]	[PH+@1a]	[P@1a]	[P@4]/[PH+@4]	$d([P@4]/[PH^+@4])/dt$	$(1+[P@4]/[PH^+@4])$	[PH+1a]/[P@1a]	$k_1 \text{K}_{e}/\text{K}_{a}^{\text{PH+@1a}}$
1	0	0.8791	5.1547	3.3261	18.0362	0.170543388	-	1.170543388	0.184412459	-
2	30	1.0141	7.6105	5.4794	27.5649	0.133250115	0.000781901	1.133250115	0.198781784	0.000137152
3	60	0.0715	0.3288	0.263	1.2295	0.217457421	0.001361967	1.217457421	0.213908093	0.000239299
4	90	0.0675	0.314	0.2787	1.2281	0.214968153	0.000773014	1.214968153	0.226935917	0.000144386
5	120	0.0796	0.3017	0.2875	1.2192	0.26383825	0.001394787	1.26383825	0.235810367	0.000260243
6	150	0.0844	0.2826	0.2977	1.1809	0.298655343	0.001481176	1.298655343	0.252095859	0.000287527
7	180	1.8574	5.2661	5.7805	23.0259	0.352708836	0.001344158	1.352708836	0.25104339	0.000249456
8	210	1.8955	4.9973	5.8713	22.0822	0.379304825	0.001005577	1.379304825	0.265883834	0.000193842
9	240	0.1045	0.253	0.3176	1.1688	0.413043478	0.001711783	1.413043478	0.271731691	0.00032918
10	270	2.2723	4.7142	6.1381	21.9193	0.482011794	0.002335643	1.482011794	0.280031753	0.000441329
11	300	2.2478	4.0634	5.8139	20.0513	0.553182064	0.001052017	1.553182064	0.289951275	0.000196393
12	330	2.1566	3.9561	5.9179	19.8868	0.545132833	0.001394391	1.545132833	0.297579299	0.000268548
13	360	2.547	3.9994	6.2663	20.2325	0.636845527	0.00162535	1.636845527	0.309714568	0.00030754
14	390	2.1678	3.3732	5.6442	17.9871	0.64265386	0.00125138	1.64265386	0.313791551	0.000239048
15	420	0.151	0.2121	0.3646	1.1543	0.711928336	0.00142173	1.711928336	0.315862427	0.000262319
16	450	2.3093	3.1723	5.7199	17.8746	0.727957633	0.001933399	1.727957633	0.320001566	0.000358047
17	480	2.6647	3.2185	6.267	18.9661	0.827932267	0.002488504	1.827932267	0.330431665	0.000449842
18	510	0.1644	0.1874	0.3737	1.1224	0.877267876	0.00232931	1.877267876	0.332947256	0.00041312
19	540	2.8723	2.9682	6.1574	18.2002	0.967690856	0.002008543	1.967690856	0.338314964	0.000345339
20	570	2.8771	2.8835	6.2613	18.1298	0.997780475	0.001347088	1.997780475	0.345359574	0.000232873
21	600	2.9219	2.7867	6.3152	18.0553	1.048516166	0.002732266	2.048516166	0.349769874	0.000466515
22	630	3.043	2.6194	6.2539	17.2318	1.161716424	0.001425204	2.161716424	0.362927843	0.000239276
23	660	2.991	2.6375	6.5362	18.0737	1.134028436	0.002910767	2.134028436	0.361641501	0.000493271
24	690	3.0441	2.2779	5.9077	16.0721	1.336362439	0.003806461	2.336362439	0.367574866	0.000598862
26	750	2.8877	2.2432	6.2449	16.8988	1.287312767	0.001059781	2.287312767	0.36954695	0.000171222
27	780	3.0853	2.1636	6.0147	16.1186	1.426002958	0.003658205	2.426002958	0.373152755	0.000562682
28	810	3.0778	2.0426	6.2022	15.9919	1.506805052	0.001054464	2.506805052	0.387833841	0.000163139
29	840	2.9635	1.9899	6.3054	16.0508	1.489270818	0.002360166	2.489270818	0.392840232	0.000372466

Table S2 Proton	transfer	kinetic d	ata betweer	n PH+@ 4	and F	P@4 (P	P@1a as	monitor)

Defining
$$X_i = \frac{k_I K_e}{K_a^{PH^+@1a}}$$
 (i=1,2,3,...,29.)

so
$$\sum_{i=1}^{29} X_i = 0.008422915$$
 X= 0.00031196

According to

$$\frac{d\left(\frac{[P@4]}{[PH^+@4]}\right)}{dt} = \frac{k_I K_e}{K_a^{PH^+@1a}} \times \frac{[P@1a](1+[P@4]/[PH^+@4])}{[PH^+@1a]}$$

$$\frac{k_I K_e}{K_a^{PH^+@1a}} = \frac{X}{60} = 5.2 \times 10^{-6} \text{ L.mol}^{-1}.\text{ s}^{-1}$$

with
$$K_e = 10^{-32.2} K_a^{PH^+@4} = 4.77 \times 10^{-33}$$

 $k_l = 1.04 \times 10^{-6} \text{ L.mol}^{-1}.\text{s}^{-1}$

$$k_{-1} = 1.37 \times 10^{-6} \text{ L.mol}^{-1} \text{ s}^{-1}$$

VI/ Mass spectra

Figure S42 Positive ESI-HRMS spectra of 8: m/z [M+Na]⁺ calcd for C₁₁H₁₅BrO₃, 297.0097; found at 297.0094

795.0153

Figure S44 Positive ESI-HRMS spectra of 7: m/z [M+Na]⁺ calcd for C₅₄H₅₄O₁₂, 917.3507; found at 917.3505

993.5372; found at 993.5376

Figure S46 Positive ESI-HRMS spectra of $PH^+@4: m/z [M]^+$ calcd for $C_{60}H_{70}N_4O_9P^+$, 1021.4875; found at 1021.4874

205.0297

311.0893

Figure S50 Positive ESI-HRMS spectra of hemicryptophane 2: m/z [M+2H]⁺ calcd for C₅₄H₆₀N₄O₉, 455.2253; found at 455.2252

Figure S51 Positive ESI-HRMS spectra of $PH^+@2: m/z [M+Na]^+$ calcd for $C_{54}H_{58}N_4O_9P^+$, 937.3936; found at 937.3936

VII/ Crystallographic data

Table S3	Crystallographic	data for $P-H^+@2$ and 13
I able 55	Crystanographic	

Reference	P-H ⁺ @ 2 (CCDC: 2093016)	13 (CCDC: 2099451)
Empirical formula	C58H68ClN4O10P	$C_{61}H_{66.6}Br_{0.6}Cl_3N_4O_{10}P$
Formula weight	1047.58	1201.04
Temperature/K	180.01(10)	153.01(10)
Crystal system	triclinic	monoclinic
Space group	P-1	P2 ₁ /n
a/Å	10.2610(2)	12.4213(8)
b/Å	10.87103(19)	29.5258(19)
c/Å	26.4434(4)	17.9736(8)
α/°	82.7150(14)	90
β/°	86.3036(16)	102.414(6)
γ/°	77.2137(17)	90
Volume/Å ³	2851.32(10)	6437.7(7)
Ζ	2	4
p _{calc} g/cm ³	1.220	1.239
µ/mm ⁻¹	1.340	2.419
F(000)	1112.0	2510.0
Crystal size/mm ³	0.24 imes 0.22 imes 0.06	$0.16 \times 0.08 \times 0.04$
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.744 to 141.766	5.858 to 141.642
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -32 \le l \le 32$	$-13 \le h \le 15, -33 \le k \le 35, -21 \le l \le 20$
Reflections collected	49135	29490
Independent reflections	10867 [$R_{int} = 0.0415$, $R_{sigma} = 0.0260$]	11984 [$R_{int} = 0.0899, R_{sigma} = 0.1362$]
Data/restraints/parameters	10867/16/690	11984/56/757
Goodness-of-fit on F ²	1.048	1.135
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0641, wR_2 = 0.1779$	$R_1 = 0.1294, wR_2 = 0.2712$
Final R indexes [all data]	$R_1 = 0.0717, wR_2 = 0.1845$	$R_1 = 0.2146, wR_2 = 0.3175$
Largest diff. peak/hole / e Å ⁻³	1.26/-0.59	0.53/-0.41