# Catalytic asymmetric synthesis of 3,4'-indole-pyrazole derivatives featuring axially chiral bis-pentatomic heteroaryls

Chenghao Li, Wei-Fang Zuo, Jin Zhou, Wu-Jingyun Zhou, Meng Wang, Xiang Li, Gu Zhan,\* and Wei Huang\*

State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. Email: <a href="mailto:zhangu@cdutcm.edu.cn">zhangu@cdutcm.edu.cn</a>; <a href="mailto:huangwei@cdutcm.edu.cn">huangwei@cdutcm.edu.cn</a>; <a href="mailto:huangwei@cdutcm.edu">huangwei@cdutcm.edu</a>; <a href="mailto:huangwei@cdutcm.edu">huangwei@cdutcm.edu</a>; <a href="mailto:huangwei@cdutcm.edu">huangwei@cdutcm.edu</a>; <a href="mailto:huangwei@cdutcm.edu">huangwei@cdutcm.edu</a>; <a href="mailto:huangwei@cdutcm.edu">huangwei@cdutcm.edu</a>; <a href="mailto:huangwei@cdutcm.edu">huangwei@cdutcm.edu</a>; <a href="mail

# **Supporting Information**

# Table of Contents

| 1. General methods and materials                 | 2  |
|--------------------------------------------------|----|
| 2. Optimization of the reaction conditions       | 2  |
| 3. Experimental procedures                       | 4  |
| 4. Investigation of configurational stability    | 17 |
| 5. Control experiments                           | 18 |
| 6. 1 mmol Scale synthesis of compound <b>3aa</b> | 19 |
| 7. Crystal data for compound <b>3fa</b>          | 20 |
| 8. HPLC chromatograms                            | 22 |
| 9. NMR Spectra                                   | 44 |

# 1.General methods and materials

High Performance Liquid Chromatography (HPLC) was analyzed by chiral column in comparison with authentic racemates, using a Daicel Chiralpak AD-H Column (250 x 4.6 mm), Daicel Chiralpak AD-H Column (250 x 4.6 mm), Daicel Chiralpak IC-H Column (250 x 4.6 mm) or OD-H Column (250 x 4.6 mm). UV detection was performed at 220 nm or 254 nm. Nuclear magnetic resonance (NMR) spectra were recorded in CDCl<sub>3</sub> on Bruker 400, 600, 700 MHz, or JEOL 600 NMR instrument (at 600 or 700 MHz for <sup>1</sup>H, and at 150, or 175 MHz for <sup>13</sup>C). Proton chemical shifts are reported in parts per million ( $\delta$  scale). The <sup>1</sup>H NMR chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as standard. The <sup>13</sup>C NMR chemical shifts were given using CDCl<sub>3</sub> as the internal standard (CDCl<sub>3</sub>:  $\delta = 77.00$ ppm). High-resolution mass spectra (HRMS) were obtained using Agilent P/N G1969-90010 or Waters/Acquity UPLC-Synapt G2HDMS. High-resolution mass spectra were reported for the molecular ion [M+H]<sup>+</sup> or [M+Na]<sup>+</sup>. Melting points were recorded on BUCHI Melting Point M-565 instrument. X-ray diffraction experiment was carried out on an Agilent Gemini and the data obtained were deposited at the Cambridge Crystallographic Data Centre. Column chromatography was performed on silica gel (200-300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates; products were visualized using UV light. All reagents and solvents were obtained from commercial sources and used without further purification. Pyrazolon-Derived N-Boc Ketimines<sup>[1]</sup> were prepared according to the literature procedures. Oil baths were used as the heat source.

#### Reference

1. U. Kaya, P. Chauhan, S. Mahajan, K. Deckers, A. Valkonen, K. Rissanen and D. Enders, Squaramide-Catalyzed Asymmetric aza-Friedel–Crafts/N,O-Acetalization Domino Reactions Between 2-Naphthols and Pyrazolinone Ketimines, *Angew. Chem., Int. Ed.*, **2017**, *56*, 15358-15362.

# 2. Optimization of the reaction conditions

Table 1. Optimization of the Reaction Conditions



| Entry <sup>a</sup>     | catalyst        | Solvent                         | T (°C) | Yield $(\%)^b$ | $dr^c$ | $ee~(\%)^d$ |
|------------------------|-----------------|---------------------------------|--------|----------------|--------|-------------|
| 1                      | C1              | CH <sub>2</sub> Cl <sub>2</sub> | r.t.   | 78             | >19:1  | 5           |
| 2                      | C2              | $CH_2Cl_2$                      | r.t.   | 68             | >19:1  | 53          |
| 3                      | C3              | $CH_2Cl_2$                      | r.t.   | 49             | >19:1  | 5           |
| 4                      | C4              | $CH_2Cl_2$                      | r.t.   | 39             | >19:1  | 39          |
| 5                      | C5              | $CH_2Cl_2$                      | r.t.   | 44             | >19:1  | 45          |
| 6                      | C6              | $CH_2Cl_2$                      | r.t.   | 75             | >19:1  | 93          |
| 7                      | C6              | DCE                             | r.t.   | 37.4           | >19:1  | 93          |
| $8^e$                  | C6              | CHCl <sub>3</sub>               | r.t.   | 93             | >19:1  | 95          |
| 9                      | C6              | Toluene                         | r.t.   | 53             | >19:1  | 69          |
| 10                     | C6              | CH <sub>3</sub> CN              | r.t.   | 55             | >19:1  | 39          |
| 11                     | C6              | THF                             | r.t.   | N.R.           | -      | -           |
| 12                     | C6              | CH <sub>3</sub> CN              | r.t.   | N.R.           | -      | -           |
| 13                     | C6              | EtOAc                           | r.t.   | N.R.           | -      | -           |
| 14                     | C6              | Ether                           | r.t.   | N.R.           | -      | -           |
| 15                     | C6              | DMSO                            | r.t.   | N.R.           | -      | -           |
| 16                     | C6              | Dioxane                         | r.t.   | N.R.           | -      | -           |
| 17                     | C6              | DMF                             | r.t.   | N.R.           | -      | -           |
| 18 <sup>f</sup>        | C6              | CHCl <sub>3</sub>               | r.t.   | 90             | >19:1  | 91          |
| 19 <sup>g</sup>        | C6              | CHCl <sub>3</sub>               | r.t.   | 93             | >19:1  | 93          |
| $20^{h}$               | C6              | CHCl3                           | r.t.   | 93             | >19:1  | 95          |
| $21^{i}$               | C6              | CHCl <sub>3</sub>               | 0      | 93             | >19:1  | 97          |
| 23 <sup><i>j</i></sup> | C6              | CHCl <sub>3</sub>               | -20    | 78             | >19:1  | 99          |
| 24                     | ( <i>S</i> )-C6 | CHCl <sub>3</sub>               | 0      | 88             | >19:1  | -97         |

<sup>*a*</sup>Conditions: **1** (0.1 mmol), **2** (0.12 mmol), and catalyst 20 mol % in solvent (1.0 mL) at r.t. for 36 h. <sup>*b*</sup>Isolated yield. <sup>*c*</sup>Determined by NMR. <sup>*d*</sup>The enantiomeric excess was determined by HPLC. <sup>*e*</sup>For 9h. <sup>*f*</sup>10 mol% C6 was used, for 34h. <sup>*g*</sup>15 mol % C6 was used, for 8h. <sup>*h*</sup>20 mol % C6 was used, for

12 h.  ${}^{i}15 \mod \% C6$  was used, for 12 h.  ${}^{j}15 \mod \% C6$  was used, for 36h.

# 3. Experimental procedures

#### 3.1 Preparation of substrates 1



2,5-Diphenyl-2,4-dihydro-3*H*-pyrazol-3-one (S1) (10.0 mmol) and 4methylbenzenesulfonyl azide (12.0 mmol) was dissolved in a 250 ml flask. Et<sub>3</sub>N (2 mmol) was added at 0 °C. After the reaction completed (monitored by TLC), the solvent was removed under reduced and the crude product was directly purified by flash column chromatography (petroleum:EtOAc = 10:1), to afford the S2 (Orage solid yield 59%).

4-Diazo-2,5-diphenyl-2,4-dihydro-3*H*-pyrazol-3-one (**S2**) (2.0 mmol) indole (2.0mmol) and Rhodium(II) acetate dimmer (0.04 mmol) was dissolved in toluence under argon. The mixture was refluxed at 100 °C for 4 hours. After the reaction completed (monitored by TLC), filtration of the reaction mixture afforded **S3** (pink solid, 62% yield).

Et<sub>3</sub>N (2.4 mmol) was added to a solution of 4-(7,7a-dihydro-1*H*-indol-3-yl)-1,3diphenyl-1*H*-pyrazol-5-ol (**S3**) (2.0 mmol) in DCM. After 20 min, acetyl chloride (2.0 mmol) was added dropwise. After the reaction completed (monitored by TLC), water was added. The reaction mixture was extracted with DCM (3 times) and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under vacuo and the crude product was directly purify by flash column chromatography (petroleum:EtOAc = 10:1), to afford the desired product **1a** (white solid, 73% yield).



R<sub>f</sub> = 0.3 (petroleum/EtOAc = 3:1, v/v); White solid; 73% yield. <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.28 (s, 1H), 7.63 – 7.59 (m, 2H), 7.57 – 7.53 (m, 2H), 7.41 – 7.35 (m, 2H), 7.35 (d, *J* = 7.8 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.18 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.15 – 7.10 (m, 3H), 7.09 – 7.05 (m, 1H), 6.97 – 6.94 (m, 1H), 6.87 (d, *J* = 2.5 Hz, 1H), 1.90 (s, 3H). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.5, 166.5, 149.0, 141.5, 137.1, 135.0, 132.4, 128.3, 127.1, 126.8, 126.6, 126.6, 126.5, 125.6, 122.8, 122.0, 121.1, 119.1, 118.8, 118.8, 110.2, 104.8, 102.8, 19.2. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>19</sub>N<sub>3</sub>NaO<sub>2</sub><sup>+</sup> 416.1370; Found 416.1367.



R<sub>f</sub> = 0.3 (petroleum/EtOAc = 1:1, v/v); White solid; 53% yield. <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 11.16 (s, 1H), 7.38 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.23 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.19 (d, *J* = 1.9 Hz, 1H), 7.08 – 7.04 (m, 1H), 6.97 – 6.93 (m, 1H), 3.67 (s, 3H), 2.09 (s, 3H), 2.01 (s, 3H). <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 144.8, 136.8, 136.7, 127.4, 124.4, 121.5, 119.7, 119.2, 112.2, 111.8, 107.8, 36.3, 13.0, 10.6. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>15</sub>N<sub>3</sub><sup>+</sup> 226.1139; Found 226.1146.



R<sub>f</sub> = 0.3 (petroleum/EtOAc = 10:1, v/v); White solid; 76% yield. <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.62 – 7.59 (m, 2H), 7.59 – 7.55 (m, 2H), 7.39 – 7.36 (m, 2H), 7.34 (dt, *J* = 7.7, 0.7 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.23 (dt, *J* = 8.4, 1.4 Hz, 1H), 7.15 – 7.10 (m, 5H), 6.98 – 6.94 (m, 1H), 6.85 (s, 1H), 3.65 (s, 3H), 1.92 (s, 3H). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.6, 150.0, 142.5, 138.3, 137.0, 133.6, 129.3, 129.3, 128.3, 128.3, 128.2, 127.8, 127.8, 127.7, 127.6, 127.6, 127.3, 127.3, 123.1, 121.8, 120.5, 119.5, 109.3, 104.4, 103.9, 32.9, 20.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>21</sub>NaN<sub>3</sub>O<sub>2</sub><sup>+</sup> 430.1526; Found 430.1518.



 $R_f$  = 0.4 (petroleum/EtOAc = 3:1, v/v); White solid; 86% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ = 8.32 (s, 1H), 7.70 (dd, *J* = 9.0, 1.8 Hz, 2H), 7.67 – 7.63 (m, 2H), 7.52 – 7.47 (m, 2H), 7.40 – 7.36 (m, 1H), 7.26 – 7.21 (m, 3H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.83 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.75 (d, *J* = 2.4 Hz, 1H), 3.62 (s, 3H), 2.07 (s, 3H).<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ = 167.7, 154.3, 150.2, 142.5, 138.2, 133.7, 131.2, 129.4, 128.3, 128.0, 127.8, 127.2, 124.3, 123.2, 113.0, 112.0, 105.8, 104.0, 101.5, 55.7, 20.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>21</sub>N<sub>3</sub>NaO<sub>3</sub><sup>+</sup> 446.1476; Found 446.1477.



R<sub>f</sub>= 0.3 (petroleum/EtOAc = 3:1, v/v); White solid; 77% yield. <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.5 (s, 1H), 7.7 – 7.7 (m, 2H), 7.7 – 7.6 (m, 2H), 7.5 – 7.5 (m, 2H), 7.4 – 7.4 (m, 3H), 7.3 – 7.2 (m, 3H), 7.1 (d, *J* = 2.8 Hz, 1H), 6.9 (t, *J* = 7.7 Hz, 1H), 2.1 (s, 3H). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.7, 145.3, 137.9, 133.3, 130.1, 128.5, 124.6, 123.5, 123.3, 123.10 (d, *J* = 46.1 Hz), 122.8, 119.79 (d, *J* = 58.4 Hz), 118.4, 116.4, 114.8, 102.7, 100.0, 98.6, 15.6, 15.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>18</sub>FN<sub>3</sub>NaO<sub>2</sub><sup>+</sup> 434.1276; Found 434.1284.



R<sub>f</sub> = 0.4 (petroleum/EtOAc = 3:1, v/v); White solid; 83% yield. <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.21 (s, 1H), 7.75 – 7.69 (m, 2H), 7.69 – 7.64 (m, 2H), 7.53 – 7.47 (m, 2H), 7.41 – 7.36 (m, 1H), 7.34 (dd, *J* = 9.8, 2.8 Hz, 1H), 7.27 – 7.20 (m, 3H), 7.04 – 6.99 (m, 3H), 2.48 (s, 3H), 2.03 (s, 3H).<sup>13</sup>C NMR (171 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.6, 150.2, 142.6, 138.2, 135.7, 133.6, 129.4, 128.3, 127.9, 127.8, 127.7, 126.4, 123.7, 123.2, 122.9, 120.4, 120.2, 118.1, 106.5, 104.0, 20.4, 16.7. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>21</sub>N<sub>3</sub>O<sub>2</sub><sup>+</sup> 430.1526; Found 430.1522.



R<sub>f</sub> = 0.2 (petroleum/EtOAc = 3:1, v/v); White solid; 43% yield. <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 11.32 (s, 1H), 7.59 – 7.54 (m, 2H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.41 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.35 – 7.32 (m, 2H), 7.13 – 7.09 (m, 1H), 7.04 – 7.00 (m, 1H), 2.24 (s, 3H), 2.07 (s, 3H). <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 168.2, 147.9, 141.2, 138.4, 136.7, 130.0, 127.5, 126.4, 124.6, 122.2, 121.9, 119.7, 119.6, 112.4, 105.5, 104.5, 20.5, 14.1. **HRMS** (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>17</sub>NaN<sub>3</sub>O<sub>2</sub><sup>+</sup> 354.1213; Found 354.1212.



R<sub>f</sub> = 0.3 (petroleum/EtOAc = 3:1, v/v); White solid; 77% yield. <sup>1</sup>H NMR (600 MHz, CDCI3)  $\delta$  = 8.34 (s, 1H), 7.66 – 7.62 (m, 2H), 7.54 (ddd, J = 8.4, 3.0, 1.2 Hz, 1H), 7.51 (dt, J = 9.6, 2.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.32 (dt, J = 8.4, 1.2 Hz, 1H), 7.26 – 7.21 (m, 3H), 7.21 – 7.18 (m, 1H), 7.09 – 7.05 (m, 2H), 6.99 (d, J = 2.4 Hz, 1H), 2.06 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCI3)  $\delta$  = 167.5, 163.0 (d, J = 247.1 Hz), 150.6, 142.6, 139.6 (d, J = 10.2 Hz), 136.1, 133.3, 130.7 (d, J = 9.2 Hz), 128.4, 128.2, 127.8, 126.7, 124.0, 122.4, 120.2, 120.1, 118.1 (d, J = 3.0 Hz), 114.5, 114.3, 111.4, 110.4, 110.2, 105.7, 104.5, 20.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>18</sub>FN<sub>3</sub>NaO<sub>2</sub><sup>+</sup> 412.1276. Found 434.1277.



R<sub>f</sub> = 0.3 (petroleum/EtOAc = 3:1, v/v); White solid; 73% yield. <sup>1</sup>H NMR (700 MHz, CDCl3)  $\delta$  = 8.37 (s, 1H), 7.73 – 7.68 (m, 2H), 7.69 – 7.65 (m, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.23 – 7.19 (m, 3H), 7.13 – 7.08 (m, 1H), 7.04 (d, *J* = 2.4 Hz, 1H), 2.05 (d, 3H). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.8, 157.1 (d, *J* = 247.5 Hz), 145.4, 137.8, 131.3, 129.5 (d, *J* = 3.1 Hz), 128.6, 123.5, 123.2, 122.9, 121.9, 120.4, 120.4, 119.1, 117.5, 115.3 (d, *J* = 34.3 Hz), 111.5 (d, *J* = 22.9 Hz), 106.5, 101.1, 99.0, 15.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>18</sub>FN<sub>3</sub>NaO<sub>2</sub><sup>+</sup> 412.1276; Found 434.1281.

#### 3.2 Synthesis of 3



A mixture of 1 (0.1 mmol), 2 (0.12 mmol), C6 (15 mmol%) and CHCl<sub>3</sub> (1.0 mL)

was stirred at 0 °C until the reaction completed (monitored by TLC). The reaction mixture was purified by flash chromatography on silica gel to give compound **3** and further analyzed by NMR, HRMS and HPLC.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 93% yield (63.4 mg, 0.093 mmol); M.P. 153.4 – 154.8 °C; [α]D<sup>20</sup> = +8.50 (c = 0.25, CH<sub>3</sub>OH); HPLC (Daicel chiracel® AD-H, n-Hexane/i-PrOH = 88/12, flow rate: 1.0 mL/min,  $\lambda$  = 254 nm, T = 25°C),  $t_R$  = 8.709 min (minor), 37.281 min (minor); 97% ee; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.21 (s, 1H), 8.21 (d, *J* = 7.7 Hz, 2H), 7.74 – 7.66 (m, 4H), 7.50 (t, *J* = 7.7 Hz, 3H), 7.43 – 7.38 (m, 3H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.22 – 7.12 (m, 5H), 7.03 (t, *J* = 7.7 Hz, 1H), 6.79 (s, 1H), 1.80 (s, 3H), 1.27 (s, 3H), 1.16 (s, 9H). <sup>13</sup>C NMR (176 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 169.7, 167.1, 157.9, 154.8, 148.8, 144.3, 139.0, 137.9, 136.6, 133.2, 129.9, 129.3, 128.7, 128.4, 128.2, 128.2, 128.1, 127.3, 127.3, 126.6, 124.6, 122.8, 122.3, 119.9, 119.7, 117.5, 112.5, 102.0, 101.9, 101.9, 80.2, 66.2, 28.4, 19.5, 14.2. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>36</sub>N<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 703.2640; Found 703.2637.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 95% yield (66.2 mg, 0.095 mmol); M.P. 149.6 − 151.8 °C. HPLC (Daicel Chiralpak OD-H, n-hexane/2-propanol = 85:15, 1.0 mL/min, at 254nm):  $t_R$  = 4.497 min (minor),  $t_R$  = 6.786 min (major); 96% ee [α]<sub>D</sub><sup>20</sup> = −35.7 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.92 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 7.2 Hz, 4H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.22 − 7.11 (m, 6H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.48 (s, 1H), 2.34 (s, 3H), 1.77 (s, 3H), 1.31 (s, 3H), 1.24 (s, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 169.0, 165.4, 157.3, 152.5, 148.2, 143.6, 136.9, 135.9, 135.1, 133.4, 132.0, 128.3, 128.2, 127.6, 127.4, 127.0, 126.7, 125.4, 124.7, 122.8, 122.0, 119.8, 119.7, 116.7, 111.0, 104.1, 100.3, 65.3, 62.0, 26.9, 19.9, 18.5, 13.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>38</sub>N<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 717.2796; Found 717.2791.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 94% yield (65.9 mg, 0.094 mmol); M.P. 154.6 − 155.8 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm):  $t_R$  = 7.564 min (minor),  $t_R$  = 34.014min (major); 93% ee [α]<sub>D</sub><sup>20</sup> = −32.2 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H **NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  = 9.90 (s, 1H), 7.97(d, *J* = 12.0 Hz, 2H), 7.69 (t, *J* = 8.4 Hz, 4H), 7.53 − 7.46 (m, 3H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.25 − 7.13 (m, 5H), 7.03 (t, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.2 Hz, 1H), 6.49 (s, 1H), 2.39 (s, 3H), 1.78 (s, 3H), 1.28 (d, *J* = 1.4 Hz, 3H), 1.24 (s, 9H). <sup>13</sup>C **NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  = 169.2, 165.4, 157.4, 152.4, 148.2, 143.7, 137.7, 137.5, 136.9, 135.9, 132.0, 128.2, 127.7, 127.6, 127.4, 127.0, 126.7, 125.4, 124.6, 124.5, 122.9, 122.0, 119.8, 119.7, 117.4, 113.9, 111.0, 104.3, 100.3, 65.4, 59.4, 26.9, 20.6, 18.3, 13.5. **HRMS** (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>38</sub>N<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 717.2796; Found 717.2987.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 92% yield (64.2 mg, 0.092 mmol); M.P. 153.6 − 154.8 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 220nm):  $t_R$  = 14.304 min (major),  $t_R$  = 55.674 min (minor); 93% ee [α]<sub>D</sub><sup>20</sup> = −42.2 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  = 9.85 (s, 1H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.74 − 7.65 (m, 4H), 7.49 (t, *J* = 7.8 Hz, 3H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.25 − 7.13 (m, 5H), 7.03 (t, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.43 (s, 1H), 2.39 (s, 3H), 1.77 (s, 3H), 1.27 (s, 3H), 1.24 (s, 9H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  = 170.2, 166.5, 153.3, 149.3, 144.8, 138.8, 138.6, 138.0, 137.0, 133.1, 129.4, 128.8, 128.7, 128.6, 128.1, 127.9, 126.5, 125.8, 125.7, 124.1, 123.2, 121.0, 120.9, 118.5, 115.6, 114.9, 112.1, 105.4, 101.4, 67.5, 60.5, 28.0, 21.8, 19.5, 14.6. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>38</sub>N<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 717.2796; Found 717.2795.



$$\begin{split} R_f &= 0.40 \text{ (petroleum/EtOAc} = 3:1, \text{ v/v}\text{); White solid; 99\% yield (68.9 mg, 0.096 mmol); M.P. 146.8 \\ &- 150.7^\circ\text{C} \text{. HPLC (Daicel Chiralpak IG-, n-hexane/2-propanol} = 88:12, 1.0 \text{ mL/min, at 254nm}\text{): t}_R \\ &= 13.204 \text{ min (minor), t}_R = 34.990 \text{ min (major); 97\% ee } [\alpha]_D^{20} = -21.7 \text{ (c} = 0.25 \text{ , CH}_3\text{OH}\text{). }^1\text{H} \end{split}$$

**NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta = 9.7$  (s, 1H), 8.0 (t, J = 9.0, 4.8 Hz, 2H), 7.7 (d, J = 8.4 Hz, 2H), 7.6 (d, J = 7.8 Hz, 2H), 7.5 (t, J = 7.8 Hz, 2H), 7.4 – 7.4 (m, 2H), 7.4 (d, J = 7.8 Hz, 1H), 7.2 – 7.1 (m, 4H), 7.1 – 7.0 (m, 3H), 6.3 (s, 1H), 1.8 (s, 3H), 1.4 (s, 3H), 1.3 (s, 9H). <sup>13</sup>C **NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta = 169.8$ , 166.2, 159.5 (d, J = 244.5 Hz), 158.4, 153.5, 149.2, 144.5, 137.8, 136.6, 134.6, 132.9, 129.2, 129.2, 128.6, 128.4, 127.9 (d, J = 34.7 Hz), 126.3, 125.5, 123.9, 122.9, 120.8 (d, J = 12.8 Hz), 119.3, 115.4 (d, J = 22.5 Hz), 111.7, 105.1, 101.1, 66.2, 27.9, 19.5, 14.4. **HRMS** (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>35</sub>FN<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 721.2546; Found 721.2546.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 93% yield (66.5 mg, 0.093 mmol); M.P. 170.2 – 174.5°C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 7.230 min (major), t<sub>R</sub> = 39.801 min (minor); 93% ee [α]<sub>D</sub><sup>20</sup> = -38.0 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>**H NMR (700 MHz, CDCl<sub>3</sub>)**  $\delta$  = 9.74 (s, 1H), 8.07 (t, *J* = 2.1 Hz, 1H), 7.95 (d, *J* = 7.4 Hz, 1H), 7.69 – 7.51 (m, 4H), 7.50 – 7.40 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.33 – 7.29 (m, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 7.16 – 7.02 (m, 6H), 6.96 (t, *J* = 7.7 Hz, 1H), 6.33 (s, 1H), 1.70 (s, 3H), 1.23 (s, 3H), 1.21 (s, 9H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  = 169.2, 165.2, 157.9, 152.6, 148.2, 143.6, 138.4, 136.8, 135.8, 133.7, 132.0, 129.0, 128.4, 127.7, 127.4, 127.0, 126.8, 125.4, 124.2, 123.7, 123.0, 121.9, 120.0, 119.8, 117.0, 114.5, 110.9, 104.4, 100.1, 81.9, 65.4, 26.9, 18.4, 13.4. **HRMS** (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>35</sub>ClN<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 737.2250; Found 737.2250.



R<sub>f</sub>= 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 85% yield (59.5 mg, 0.085 mmol); M.P. 170.0 – 172.8 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 6.164 min (major), t<sub>R</sub> = 32.515 min (minor); 96% ee  $[\alpha]_D^{20} = -25.0$  (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  = 9.66 (s, 1H), 8.35 – 8.24 (m, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.70 – 7.64 (m, 4H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 6.6 Hz, 1H), 7.24 – 7.14 (m, 5H), 7.06 – 7.01 (m, 1H), 6.27 (s, 1H), 1.77 (s, 3H), 1.30 (s, 3H), 1.29 (s, 9H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  = 169.0, 165.2, 161.8 (d, *J* = 247.2 Hz), 157.3, 152.5, 148.5, 143.6, 138.2 (d, *J* = 90.6 Hz), 137.5, 135.8, 131.7, 129.5 (d, *J* = 15.1 Hz), 127.9, 127.5, 127.2, 125.4, 124.7, 123.8, 123.0, 119.8 (d, *J* = 30.2 Hz), 117.0 (d, *J* = 3.2 Hz), 116.6, 113.4 (d, *J* = 21.0 Hz), 110.9, 109.1 (d, *J* = 25.7 Hz), 103.9, 100.8, 65.3, 26.9, 18.4, 13.5. **HRMS** (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>35</sub>FN<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 721.2546; Found 721.2546.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 91% yield (64.9 mg, 0.091 mmol); M.P. 127.0 − 129.4 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm):  $t_R$  = 12.423 min (minor),  $t_R$  = 19.844 min (major); 97% ee [α]<sub>D</sub><sup>20</sup> = −35.0 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H **NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  = 10.03 (s, 1H), 8.07 (d, *J* = 7.7 Hz, 2H), 7.67 (d, *J* = 7.0 Hz, 2H), 7.60 (s, 2H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.37 − 7.31 (m, 3H), 7.22 − 7.09 (m, 7H), 7.03 (t, *J* = 7.7 Hz, 1H), 6.60 (s, 1H), 1.77 (s, 3H), 1.29 (s, 3H), 1.26 (s, 9H). <sup>13</sup>C **NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  = 166.8, 159.5, 150.5, 144.2, 137.9, 135.7, 134.8, 132.7, 130.2, 129.5, 129.4, 129.1, 128.7, 128.5, 128.4, 128.1, 128.1, 128.0, 127.7, 127.6, 126.9, 125.4, 124.1, 123.4, 123.3, 120.9, 120.7, 111.3, 105.5, 101.6, 66.3, 65.2, 28.1, 20.2, 20.1, 14.2. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>35</sub>ClN<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 737.2250; Found 737.2251.



R<sub>f</sub> = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 81% yield(60.9 mg, 0.081 mmol); M.P. 127.7 – 129.8 °C. HPLC (Daicel Chiralpak OD-H, n-hexane/2-propanol = 85:15, 1.0 mL/min, at 254nm): t<sub>R</sub> = 4.731 min (minor), t<sub>R</sub> = 6.592 min (major); 97% ee [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -50.0 (c =0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.18 (s, 1H), 8.42 (s, 1H), 8.39 (s, 1H), 7.69 (d, *J* = 7.0 Hz, 2H), 7.68 – 7.62 (m, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 7.24 – 7.11 (m, 4H), 7.04 (t, *J* = 7.8 Hz, 1H), 1.82 (s, 3H), 1.27 (s, 9H), 1.24 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 171.1, 166.2, 149.4, 144.8, 139.1, 137.9, 133.1, 129.8, 129.5, 128.8, 128.6, 128.2, 128.1, 126.6, 125.0, 124.3, 123.08, 121.36, 121.1, 121.0, 120.5, 114.8, 112.3, 101.4, 66.8, 60.5, 27.9, 19.4, 14.7. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>35</sub>F<sub>3</sub>N<sub>6</sub>O<sub>5</sub><sup>+</sup> 771.2514; Found 771.2514.



$$\begin{split} R_{f} &= 0.40 \text{ (petroleum/EtOAc} = 3:1, \text{ v/v}\text{); White solid; 82\% yield(62.9 mg, 0.82 mmol); M.P. 152.8 \\ &- 154.8^{\circ}\text{C} \text{. HPLC (Daicel Chiralpak IG, n-hexane/2-propanol} = 80:20, 1.0 \text{ mL/min, at 254nm}\text{): }t_{R} \\ &= 7.016 \text{ min (minor), }t_{R} = 23.349 \text{ min (major); }98\% \text{ ee }[\alpha]_{D}^{20} = -39.0 \text{ (c} = 0.25, \text{CH}_{3}\text{OH}\text{). }^{1}\text{H NMR} \end{split}$$

(600 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.85 (s, 1H), 8.13 (d, *J* = 9.2 Hz, 2H), 7.64 (d, *J* = 7.8 Hz, 2H), 7.62 (d, *J* = 7.8 Hz, 2H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.40. (t, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.24 – 7.20 (m, 3H), 7.18 (d, *J* = 6.6 Hz, 1H), 7.16 – 7.1. (m, 2H), 7.06 (t, *J* = 7.8 Hz, 1H), 6.58 (s, 1H), 1.75 (s, 3H), 1.32 (s, 3H), 1.22 (s, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.1, 166.2, 158.9, 154.0, 149.3, 145.6, 144.6, 137.9, 136.9 (d, *J* = 45.9 Hz), 133.0, 129.3, 128.7, 128.5, 128.0 (d, *J* = 29.0 Hz), 126.4, 125.2, 124.0, 122.9, 121.5, 121.5, 120.9 (d, *J* = 20.8 Hz), 120.5 (d, *J* = 257.0 Hz), 118.8, 111.9, 105.1, 101.2, 66.5, 60.5, 28.0, 19.4, 14.5. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>35</sub>F<sub>3</sub>N<sub>6</sub>O<sub>6</sub><sup>+</sup>787.2463; Found 787.2457.



 $R_f$  = 0.60 (petroleum/EtOAc = 3:1, v/v); White solid; 86% yield (61.4 mg, 0.086 mmol); M.P. 139.7 − 140.8°C. HPLC (Daicel Chiralpak OD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm):  $t_R$  = 6.908 min (major),  $t_R$  = 10.736 min (minor); 96% ee [α]<sub>D</sub><sup>20</sup> = −57.1 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H **NMR (700 MHz, CDCl<sub>3</sub>)**  $\delta$  = 10.36 (s, 1H), 8.10 (d, *J* = 9.0 Hz, 2H), 7.70 (d, *J* = 7.8 Hz, 4H), 7.54 − 7.47 (m, 3H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.23 − 7.09 (m, 4H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.90 (d, *J* = 9.6 Hz, 3H), 3.82 (s, 3H), 1.78 (s, 3H), 1.35 (s, 3H), 1.16 (s, 9H). <sup>13</sup>C **NMR (176 MHz, CDCl<sub>3</sub>)**  $\delta$  = 168.9, 165.1, 157.9, 152.5, 148.2, 143.5, 136.7, 136.6, 135.5, 131.9, 131.8, 129.5, 128.4, 127.7, 127.6, 127.1, 126.9, 126.9, 125.3, 124.1, 123.1, 121.9,1 120.1, 119.9, 115.7, 110.6, 104.4, 99.9, 65.2, 54.5, 27.0, 18.6, 13.3. **HRMS** (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C4<sub>1</sub>H<sub>38</sub>NaN<sub>6</sub>O<sub>6</sub><sup>+</sup> 733.2746; Found 733.2753.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 95% yield (65.7 mg, 0.095 mmol); M.P. 168.9 – 170.3 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 6.901 min (major), t<sub>R</sub> = 17.438 min (minor); 98% ee. [α]<sub>D</sub><sup>20</sup> = 18.3 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ = 9.97 (s, 1H), 8.15 (d, *J* = 7.8 Hz, 2H), 7.78 – 7.60 (m, 4H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.41 – 7.34 (m, 3H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.23 – 7.09 (m, 5H), 7.02 (t, *J* = 7.8 Hz, 1H), 6.46 (s, 1H), 2.13 (q, *J* = 7.2 Hz, 2H), 1.26 (s, 9H), 1.22 (s, 3H), 0.93 (d, *J* = 7.2 Hz, 3H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)** δ = 170.2, 166.3, 162.0, 148.9, 144.6, 138.6, 137.8, 132.8, 129.1, 128.7, 128.6, 128.3, 127.9, 127.6, 126.2, 125.7, 124.6, 123.8, 122.8, 120.7, 120.6, 117.6, 111.9, 105.0, 101.2, 66.3, 60.3, 27.8, 22.1, 19.1, 8.0. **HRMS** (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>38</sub>NaN<sub>6</sub>O<sub>5</sub><sup>+</sup> 717.2796; Found.717.2795.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 92% yield (65.2 mg, 0.092 mmol); M.P. 149.7 − 151.5 °C. HPLC (Daicel Chiralpak IG, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 7.016 min (major), t<sub>R</sub> = 23.349 min (minor); 97% ee [α]<sub>D</sub><sup>20</sup> = −7.1 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.12 (s, 1H), 8.21 (d, *J* = 8.2 Hz, 2H), 7.70 (t, *J* = 7.0 Hz, 4H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.42 (d, *J* = 7.8 Hz, 2H), 7.40 − 7.35 (m, 2H), 7.20 (t, *J* = 7.2 Hz, 2H), 7.16 (d, *J* = 7.2 Hz, 2H), 6.83 (dd, *J* = 9.0, 3.6 Hz, 1H), 6.78 (s, 1H), 6.72 (d, *J* = 2.4 Hz, 1H), 3.64 (s, 3H), 1.77 (s, 3H), 1.30 (s, 3H), 1.15 (s, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.9, 166.5, 158.9, 154.9, 149.4, 144.9, 138.7, 138.1, 133.2, 132.4, 129.4, 129.3, 129.0, 128.6, 128.1, 127.8, 126.6, 125.9, 125.0, 123.1, 117.9, 115.2, 113.4, 105.2, 101.6, 101.3, 66.7, 55.8, 27.9, 19.5, 14.6. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> C<sub>41</sub>H<sub>38</sub>NaN<sub>6</sub>O<sub>6</sub><sup>+</sup> 733.2746; Found 733.2750.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 90% yield (62.9 mg, 0.090 mmol); M.P. 172.9 − 174.3 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm):  $t_R$  = 3.539 min (major),  $t_R$  = 11.223 min (minor); 96% ee [α]<sub>D</sub><sup>20</sup> = −33.3 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H **NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  = 10.19 (s, 1H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 7.0 Hz, 2H), 7.65 (d, *J* = 7.7 Hz, 2H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.42 − 7.31 (m, 4H), 7.23 − 7.12 (m, 4H), 6.98 (dd, *J* = 9.1, 2.8 Hz, 1H), 6.89 (s, 1H), 6.50 (s, 1H), 1.78 (s, 3H), 1.29 (s, 3H), 1.26 (s, 9H). <sup>13</sup>C **NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  = 170.9, 166.5, 161.8, 160.2, 149.2, 144.8, 138.5, 138.0, 137.4, 133.0, 129.4, 129.1, 128.6, 128.2, 127.9, 126.4, 125.8, 125.3, 125.1, 123.2, 122.0, 121.9, 117.9, 110.2, 110.1, 105.9, 101.2, 98.9, 98.7, 66.7, 60.5, 27.9, 19.4, 14.7. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>35</sub>FN<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 721.2546; Found 721.2551.



R<sub>f</sub> = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 58% yield (43.8 mg, 0.058 mmol); M.P.164-167.3 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 5.194 min (minor), t<sub>R</sub> = 16.300 min (major); 96% ee  $[\alpha]_D^{20} = -52.9$  (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.18 (s, 1H), 8.42 (s, 1H), 8.39 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.2 Hz, 2H), 7.66 (d, *J* = 6.6 Hz, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.43 (t, *J* = 3.6 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.24 – 7.12 (m, 4H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.55 (s, 1H), 1.82 (s, 3H), 1.27 (s, 9H), 1.24 (s, 3H). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.2, 166.4, 158.4, 153.8, 149.2,

144.7, 138.5, 137.9, 136.9, 133.0, 129.3, 128.9, 128.7, 128.5, 128.0, 127.7, 126.4, 125.7, 124.8, 124.0, 123.0, 120.9, 120.8, 117.8, 112.0, 105.3, 101.3, 66.4, 60.4, 27.9, 19.4, 14.5. **HRMS** (ESI-TOF) m/z:  $[M+Na]^+$  Calcd for  $C_{40}H_{35}BrNaN_6O_5^+$  781.1745; Found 781.1739.



 $R_f$  = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 90% yield (62.7 mg, 0.090 mmol); M.P.172.9-174.3 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 11.582 min (minor), t<sub>R</sub> = 56.377 min (major); 96% ee [α]<sub>D</sub><sup>20</sup> = −33.3 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.34 (s, 1H), 8.03 (s, 2H), 7.75 − 7.50 (m, 4H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.35 − 7.21 (m, 3H), 7.20 − 7.00 (m, 6H), 6.69 (s, 1H), 6.52 (s, 1H), 1.71 (s, 3H), 1.21 (s, 3H), 1.18 (s, 9H).1.17 (s, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 169.1, 165.2, 162.0 (d, *J* = 244.9 Hz), 157.7, 152.6, 148.2, 143.6, 138.8 (d, *J* = 10.7 Hz), 136.8, 135.7, 131.9, 129.2 (d, *J* = 9.1 Hz), 128.3, 127.6, 127.4, 127.0, 126.8, 125.4, 124.2, 123.0, 121.9, 119.9 (d, *J* = 18.2 Hz), 112.1, 110.8, 110.4 (d, *J* = 21.1 Hz), 104.3 (d, *J* = 25.0 Hz), 100.1, 65.4, 26.9, 18.4, 13.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> C<sub>40</sub>H<sub>35</sub>FN<sub>6</sub> NaO<sub>5</sub><sup>+</sup> 721.2546; Found 721.2546.



R<sub>f</sub> = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 78% yield (54.4 mg, 0.078 mmol);M.P.168.9-170.3 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 8.211 min (minor), t<sub>R</sub> = 48.264 min (major); 96% ee [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -23.3 (c = , CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  =9.35 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.72 – 7.61 (m, 4H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.08 (m, 4H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.97 (t, *J* = 7.8 Hz, 1H), 6.46 (s, 2H), 2.52 (s, 3H), 1.76 (s, 3H), 1.31 (s, 9H), 1.28 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 168.7, 165.3, 152.3, 148.2, 143.5, 137.5, 136.9, 135.1, 131.9, 128.2, 127.8, 127.45, 127.40, 127.0, 126.7, 125.4, 124.6, 123.7, 123.6, 122.0, 120.2, 119.7, 117.6, 116.8, 104.8, 100.3, 65.2, 59.4, 27.0, 18.4, 15.7, 13.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>38</sub>N<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 717.2796; Found 717.2795.



R<sub>f</sub>= 0.20 (petroleum/EtOAc = 3:1, v/v); White solid; 87% yield (54.1 mg, 0.087 mmol); M.P.168.9-170.3 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 7.647 min (major), t<sub>R</sub> = 38.338 min (minor); -98% ee. [α]<sub>D</sub><sup>20</sup> = -10.7 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.16 (s, 1H), 8.06 (s, 2H), 7.60 (d, J = 7.7 Hz, 2H), 7.46 (d, J = 7.7 Hz, 2H), 7.43 – 7.28 (m, 5H), 7.24 – 7.11 (m, 2H), 7.08 (d, J = 7.7 Hz, 1H), 6.42 (s, 1H), 2.19 (s, 3H), 1.85 (s, 3H), 1.30 (s, 9H), 1.26 (s, 3H). <sup>13</sup>C NMR (176MHz, CDCl<sub>3</sub>)  $\delta$  = 169.1, 165.5, 157.1, 147.9, 142.5, 137.4, 136.9, 135.6, 128.2, 127.8, 127.3, 126.3, 124.5, 123.7, 122.8, 121.7, 119.6, 119.1, 116.7, 110.9, 103.5, 101.6, 65.4, 26.9, 18.3, 13.1, 12.1. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>34</sub>N<sub>6</sub>O<sub>5</sub><sup>+</sup> 641.2483; Found 641.2491



R<sub>f</sub> = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 92% yield (64.1 mg, 0.092mmol); M.P.177.0-172.5°C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 6.806 min (minor), t<sub>R</sub> = 62.221 min (major); 96% ee [α]<sub>D</sub><sup>20</sup> = −8.7 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ = 9.78 (s, 1H), 7.95 − 7.83 (m, 2H), 7.66 (t, J = 7.8 Hz, 4H), 7.49 (t, J = 7.8 Hz, 2H), 7.42 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.26 − 7.12 (m, 5H), 7.04 (t, J = 7.8 Hz, 1H), 6.87 (t, J = 8.4 Hz, 1H), 6.41 (s, 1H), 1.77 (s, 3H), 1.32 (s, 3H), 1.28 (s, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ = 169.1, 165.2, 162.0 (d, J = 244.9 Hz), 157.7, 152.6, 148.2, 143.6, 138.8 (d, J = 10.7 Hz), 136.8, 135.7, 131.9, 129.2 (d, J = 9.2 Hz), 128.3, 127.6, 127.4, 127.0, 126.8, 125.4, 124.2, 123.0, 121.9, 119.9, 119.8, 112.1, 110.8, 110.4 (d, J = 21.1 Hz), 104.4, 104.2, 100.1. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> C<sub>40</sub>H<sub>35</sub>FNaN<sub>6</sub>O<sub>5</sub><sup>+</sup> 721.2546; Found.721.2543



R<sub>f</sub> = 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 92% yield(63.9 mg, 0.092 mmol), m.p.176.9-177.5 °C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 6.164 min (minor), t<sub>R</sub> = 32.515 min (major); 95% ee [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -58.3 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (700 MHz,CDCL<sub>3</sub>)  $\delta$  = 9.95 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 7.0 Hz, 2H), 7.53 (s, 1H), 7.47 (d, *J* = 7.4 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 3H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.22 - 7.12 (m, 6H), 7.02 (t, *J* = 7.7 Hz, 1H), 6.48 (s, 1H), 2.46 (s, 3H), 1.78 (s, 3H), 1.26 (s, 3H), 1.25 (s, 9H). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  = 169.2, 165.3, 157.49, 152.52, 148.1, 143.6, 138.3, 137.6, 136.8, 135.9, 132.0, 128.0, 127.8, 127.6, 127.5, 127.4, 126.9, 125.4, 124.6, 123.8, 122.9, 122.5, 119.8, 119.8, 119.0, 116.7, 111.0, 104.3, 100.2, 65.4, 26.9, 20.4, 18.3, 13.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>38</sub>NaN<sub>6</sub>O<sub>5</sub><sup>+</sup> 717.2796; Found 717.2790.



R<sub>f</sub>= 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 68% yield (49.8 mg, 0.068 mmol); M.P.160.9-163.5°C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 4.671 min (minor), t<sub>R</sub> = 30.692 min (major); 97% ee [α]<sub>D</sub><sup>20</sup> = −15.0 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.12 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 7.8 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.22 – 7.16 (m, 5H), 7.14 (t, *J* = 7.8 Hz, 2H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.70 (s, 1H), 1.77 (s, 3H), 1.28 (s, 3H), 1.17 (s, 9H).<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.2, 166.3, 158.6, 153.7, 149.7, 144.7, 138.9, 138.5, 137.0, 134.9, 132.7, 130.4, 129.1, 128.5, 128.2, 127.6, 126.4, 125.6, 124.9, 124.0, 122.7, 120.9, 120.8, 120.7, 117.5, 112.1, 104.9, 101.9, 66.5, 53.5, 27.9, 19.4, 14.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> C<sub>40</sub>H<sub>35</sub>ClNaN<sub>6</sub>O<sub>5</sub><sup>+</sup> 737.2250; Found 737.2250.



R<sub>f</sub>= 0.40 (petroleum/EtOAc = 3:1, v/v); White solid; 70% yield (47.6 mg, 0.070 mmol); M.P.175.9-177.5°C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 88:12, 1.0 mL/min, at 254nm): t<sub>R</sub> = 5.104 min (minor), t<sub>R</sub> = 41.556 min (major); 91% ee [α]<sub>D</sub><sup>20</sup> = −16.6 (c = 0.25, CH<sub>3</sub>OH). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.12 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 2H), 7.71 − 7.61 (m, 4H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.23 − 7.11 (m, 7H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.70 (s, 1H), 1.77 (s, 3H), 1.28 (s, 3H), 1.17 (s, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.7, 166.4, 162.0 (d, *J* = 248.1 Hz), 158.8, 149.5, 144.8, 138.6, 137.2, 134.1 (d, *J* = 3.0 Hz), 133.0, 129.0, 128.7 (d, *J* = 23.6 Hz), 128.2, 126.5, 125.7, 125.2 (d, *J* = 8.8 Hz), 125.1, 124.1, 120.9 (d, *J* = 26.6 Hz), 117.8, 116.9 (d, *J* = 23.0 Hz), 112.3, 105.4, 101.4, 66.6, 53.5, 27.9, 19.4, 14.7. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>35</sub>FN<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 721.2546; Found 721.2549.

# 4. Investigation of configurational stability



| Entry | T (°C) | <i>t</i> (h) | Yield (%) <i>a</i> | <b>3aa:4a</b> <sup>b</sup> | ee <sup>c</sup> |
|-------|--------|--------------|--------------------|----------------------------|-----------------|
| 1     | 80     | 3            | 94                 | >19:1                      | 99              |
| 2     | 80     | 6            | 91                 | 15:1                       | 99              |
| 3     | 80     | 12           | 86                 | 12:1                       | 99              |
| 4     | 100    | 3            | 96                 | 15:1                       | 99              |
| 5     | 100    | 6            | 91                 | 12:1                       | 99              |
| 6     | 100    | 12           | 85                 | 5:1                        | 99              |

 Table3. Investigation of Configurational Stability

<sup>a</sup>Isolated yield. <sup>b</sup>Determined by crude NMR. <sup>c</sup> The enantiomeric excess was determined by HPLC.

The compound **3aa** (67.7 mg, 0.099 mmol) in toluene (1 mL) was stirred at 80°C or 100°C for 3 h, 6 h and 12 h, purified by flash chromatography on silica gel (petroleum/EtOAc = 5:1, v/v) to give recovered **3aa** and **4aa** then further analyzed by NMR, HRMS and HPLC.



 $R_f$  = 0.30 (petroleum/EtOAc = 5:1, v/v); White solid; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ = 9.27 (s, 1H), 7.59 − 7.52 (m, 4H), 7.48 − 7.44 (m, 2H), 7.43 − 7.36 (m, 5H), 7.26 − 7.20 (m, 3H), 7.11 − 7.05 (m, 2H), 6.98 − 6.90 (m, 2H), 6.85 (s, 1H), 6.05 (s, 1H), 1.94 (s, 3H), 1.91 (s, 3H), 1.28 (s, 9H). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ = 169.1, 165.6, 156.8, 152.4, 150.1, 142.6, 136.9, 136.6, 135.1, 131.6, 128.2, 127.4, 127.3, 127.1, 126.9, 126.8, 125.3, 124.7, 123.8, 123.0, 122.1, 119.7, 119.5, 117.5, 110.5, 104.4, 100.1, 89.4, 65.2, 26.9, 19.1, 13.1. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>37</sub>N<sub>6</sub>NaO<sub>5</sub><sup>+</sup> 703.2640; Found 703.2633.

# 5. Control experiments



To further probe the stability of the chiral axis in the new 3,4'-indole-pyrazole system, we conducted the reaction of HOMO-raised 1a with azodicarboxylates 5a and 5b. Products 6a and 6b were obtained in high yields by using *p*-toluenesulfonic acid (TsOH) as the catalyst. In sharp contrast with 3aa, 5a and 5b have conformationally flexible axis between the bis-pentatomic heteroaryls, no diastereomeric isomers or enantiomers could be identified. This phenomenon indicates that the bulky quaternary carbon introduced to the C2-position of the indole is important for improving the rotation barrier. When imine 7 derived from isatin was used, no product was obtained under the standard conditions. When 1a' was used to replace 1a, no product was used to replace 1a, no product was observed under the standard conditions.



<sup>1</sup>**H** NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 11.02 (s, 1H), 9.64 (s, 1H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.56 – 7.50 (m, 4H), 7.40 – 7.33 (m, 2H), 7.16 – 7.11 (m, 3H), 7.01 (t, *J* = 7.8 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 6.75 (t, *J* = 7.2 Hz, 1H), 4.81 (s, 1H), 4.77 (s, 1H), 2.01 (s, 3H), 1.13 (d, *J* = 13.4 Hz, 12H). <sup>13</sup>C NMR (151 MHz, DMSO-*D*<sub>6</sub>)  $\delta$  = 167.636, 154.533, 149.536, 143.701, 138.607, 134.011, 133.806, 129.872, 128.471, 128.158, 127.766, 127.044, 126.681, 122.551, 122.199, 119.652, 119.572, 112.282, 102.311, 79.697, 70.719, 69.157, 22.277, 22.131, 20.429. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>33</sub>H<sub>33</sub>N<sub>6</sub>NaO<sub>6</sub><sup>+</sup> 618.2324; Found 618.2319.



<sup>1</sup>**H** NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta = 10.99$  (s, 1H), 9.24 (s, 1H), 7.75 (d, J = 7.8 Hz, 2H), 7.58 – 7.54 (m, 4H), 7.43 – 7.39 (m, 2H), 7.19 – 7.15 (m, 3H), 7.05 – 7.01 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.79 (d, J = 7.8 Hz, 1H), 2.04 (s, 3H), 1.46 – 1.40 (m, 9H), 1.34 (s, 9H). <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta = 167.660$ , 149.635, 143.783, 138.648, 134.701, 134.089, 133.762, 129.854, 128.457, 128.122, 127.712, 127.081, 122.510, 121.993, 119.470, 102.359, 80.306, 79.696, 76.572, 28.547, 28.315, 20.437. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>37</sub>N<sub>6</sub>NaO<sub>6</sub><sup>+</sup> 646.2637; Found 646.2642.

# 6.1 mmol Scale synthesis of compound 3aa



A mixture of **1a** (1 mmol, 393.4 mg), **2a** (1.2 mmol 344.8 mg), **C6** (0.15 mmol 115.9 mg), and CHCl<sub>3</sub> (10 mL) was stirred at 0 °C for 36 h. The reaction mixture was concentrated and then the residue was purified by flash chromatography on silica gel (petroleum/EtOAc = 10:1, v/v) to give main compound **3aa** in 89% yield (604.3 mg, 0.890 mmol) and **4aa** in 3% yield (19.6 mg, 0.029 mmol).

# 7. Crystal data for compound 3fa

To a 10 mL tube containing **3fa** (30.0 mg) was added a 2:1:1 mixture of ethyl acetate, dichloromethane, and petroleum ether (3 mL). A clear solution was obtained through ultrasound treatment and was kept at room temperature for 7 days to get crystals of **3fa**, which were characterized by single crystal X-ray diffraction. The data were collected by an Agilent Gemini. CCDC 2128813 (**3fa**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/cif.



| (Ellipsoid contour probability 50% | %)                                                     |                       |
|------------------------------------|--------------------------------------------------------|-----------------------|
| Identification code                | 20210519210101942                                      |                       |
| Chemical formula                   | $C_{41}H_{38}N_6O_5$                                   |                       |
| Formula weight                     | 694.77 g/mol                                           |                       |
| Temperature                        | 293(2) K                                               |                       |
| Wavelength                         | 1.54178 Å                                              |                       |
| Crystal system                     | orthorhombic                                           |                       |
| Space group                        | P 21 21 21                                             |                       |
| Unit cell dimensions               | a = 13.4858(7)  Å                                      |                       |
|                                    | b = 13.5152(8)  Å                                      | $\alpha = 90^{\circ}$ |
|                                    | c = 20.4464(11)  Å                                     | $\beta = 90^{\circ}$  |
| Volume                             | 3726.6(4) Å <sup>3</sup>                               | $\gamma = 90^{\circ}$ |
| Z                                  | 4                                                      |                       |
| Density (calculated)               | $1.238 \text{ g/cm}^3$                                 |                       |
| Absorption coefficient             | 0.673 mm <sup>-1</sup>                                 |                       |
| <b>F(000)</b>                      | 1464                                                   |                       |
| Theta range for data collection    | 3.92 to 68.40°                                         |                       |
| Index ranges                       | -16<=h<=11, -15<=k<=16, -21<=l<=24                     |                       |
| <b>Reflections collected</b>       | 72588                                                  |                       |
| Independent reflections            | 6774 [R(int) = 0.0794]                                 |                       |
| Coverage of independent            | 99.6%                                                  |                       |
| reflections                        |                                                        |                       |
| Absorption correction              | Multi-Scan                                             |                       |
| Structure solution technique       | direct methods                                         |                       |
| Structure solution program         | SHELXT 2014/5 (Sheldrick, 2014)                        |                       |
| <b>Refinement method</b>           | Full-matrix least-squares on F <sup>2</sup>            |                       |
| Refinement program                 | SHELXL-2016/6 (Sheldrick, 2016)                        |                       |
| Function minimized                 | $\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$ |                       |
| Data / restraints / parameters     | 6774 / 0 / 483                                         |                       |
| Goodness-of-fit on F <sup>2</sup>  | 1.062                                                  |                       |
| Final R indices                    | 4682 data; I>2σ(I)                                     |                       |
|                                    |                                                        |                       |

all data

R1 = 0.0563,

| Weighting scheme             | w=1/[ $\sigma^2(F_o^2)$ +(0.0883P) <sup>2</sup> +0.0385P]<br>where P=( $F_o^2$ +2 $F_c^2$ )/3 | wR2 = 0.1287<br>R1 = 0.0863,<br>wR2 = 0.1573 |
|------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------|
| Absolute structure parameter | 0.02(12)                                                                                      |                                              |
| Largest diff. peak and hole  | 0.169 and -0.291 eÅ <sup>-3</sup>                                                             |                                              |
| R.M.S. deviation from mean   | 0.055 eÅ <sup>-3</sup>                                                                        |                                              |

# 8. HPLC chromatograms



#### Peak Analysis Report

| Detector A | Channel 2 254nm | ı            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 8.681           | 819          | 63732          | 1.329         |
| 2          | 37.327          | 18147        | 4730906        | 98.671        |
| Total      |                 | 18966        | 4794637        | 100.000       |



| Detector A | Channel 2 254nm | 1            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 4.797           | 598943       | 11813857       | 49.637        |
| 2          | 6.486           | 306824       | 11986446       | 50.363        |
| Total      |                 | 905766       | 23800303       | 100.000       |





# Peak Analysis Report

| Detector A | Channel 2 254nm | ı            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 4.703           | 428          | 10765          | 2.041         |
| 2          | 6.483           | 11922        | 516806         | 97.959        |
| Total      |                 | 12350        | 527571         | 100.000       |



uV

| Detector A | Channel 2 254nm | 1            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 7.564           | 311018       | 25657033       | 50.727        |
| 2          | 34.014          | 73613        | 24922025       | 49.273        |
| Total      |                 | 384631       | 50579058       | 100.000       |

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

| Detector A | Channel 2 254nm | 1            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 7.559           | 92688        | 7264492        | 3.739         |
| 2          | 33.562          | 545475       | 187002955      | 96.261        |
| Total      |                 | 638163       | 194267447      | 100.000       |

uV

![](_page_23_Figure_7.jpeg)

| Detector A | Channel 1 220nm | ı            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 14.627          | 9669         | 1526312        | 49.472        |
| 2          | 55.284          | 13891        | 1558885        | 50.528        |
| Total      |                 | 23560        | 3085197        | 100.000       |

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

![](_page_24_Figure_4.jpeg)

# Peak Analysis Report

| Detector A | <u>Channel 1 220nm</u> | า            |                |               |
|------------|------------------------|--------------|----------------|---------------|
| No.        | Ret. Time              | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 14.304                 | 69743        | 11492348       | 96.890        |
| 2          | 55.674                 | 2992         | 368838         | 3.110         |
| Total      |                        | 72735        | 11861186       | 100.000       |

![](_page_24_Figure_8.jpeg)

uV

| Detector A Channel 2 254nm |           |              |                |               |  |
|----------------------------|-----------|--------------|----------------|---------------|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |
| 1                          | 13.204    | 79445        | 11128876       | 49.071        |  |
| 2                          | 34.990    | 38088        | 11550203       | 50.929        |  |
| Total                      |           | 117533       | 22679079       | 100.000       |  |

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

| Detector A Channel 2 254nm |           |              |                |               |  |
|----------------------------|-----------|--------------|----------------|---------------|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |
| 1                          | 13.235    | 5746         | 705914         | 1.515         |  |
| 2                          | 35.055    | 148458       | 45897276       | 98.485        |  |
| Total                      |           | 154204       | 46603189       | 100.000       |  |

![](_page_25_Figure_6.jpeg)

uV

| Detector A Channel 2 254nm |           |              |                |               |  |  |
|----------------------------|-----------|--------------|----------------|---------------|--|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |  |
| 1                          | 7.153     | 53938        | 2886969        | 50.616        |  |  |
| 2                          | 40.826    | 10069        | 2816729        | 49.384        |  |  |
| Total                      |           | 64007        | 5703698        | 100.000       |  |  |

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

| Detector A | <u>Channel 2 254nm</u> | 1            |                |               |
|------------|------------------------|--------------|----------------|---------------|
| No.        | Ret. Time              | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 7.230                  | 11919        | 286764         | 0.352         |
| 2          | 39.801                 | 331444       | 81099669       | 99.648        |
| Total      |                        | 343363       | 81386433       | 100.000       |

![](_page_26_Figure_6.jpeg)

| Detector A | Channel 2 254nn | n            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 6.086           | 355413       | 14659042       | 49.753        |
| 2          | 32.529          | 53695        | 14804882       | 50.247        |
| Total      |                 | 409109       | 29463924       | 100.000       |

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

| Detector A Channel 2 254nm |           |              |                |               |  |
|----------------------------|-----------|--------------|----------------|---------------|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |
| 1                          | 6.164     | 40257        | 1423369        | 2.181         |  |
| 2                          | 32.515    | 230548       | 63835051       | 97.819        |  |
| Total                      |           | 270805       | 65258420       | 100.000       |  |

![](_page_27_Figure_6.jpeg)

![](_page_28_Figure_0.jpeg)

| Detector A Channel 2 254nm |           |              |                |               |  |  |
|----------------------------|-----------|--------------|----------------|---------------|--|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |  |
| 1                          | 12.423    | 1849         | 70034          | 1.801         |  |  |
| 2                          | 19.844    | 23333        | 3818466        | 98.199        |  |  |
| Total                      |           | 25182        | 3888501        | 100.000       |  |  |

![](_page_28_Figure_3.jpeg)

![](_page_29_Figure_0.jpeg)

| Detector A Channel 2 254nm |           |              |                |               |  |
|----------------------------|-----------|--------------|----------------|---------------|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |
| 1                          | 4.787     | 34285        | 733096         | 48.238        |  |
| 2                          | 6.704     | 17238        | 786655         | 51.762        |  |
| Total                      |           | 51523        | 1519751        | 100.000       |  |

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

| Detector A Channel 2 254nm |           |                     |                |               |  |  |
|----------------------------|-----------|---------------------|----------------|---------------|--|--|
| No.                        | Ret. Time | Time Height (mAu) A | Area (mAu*min) | Rel. Area (%) |  |  |
| 1                          | 4.731     | 17899               | 314311         | 1.812         |  |  |
| 2                          | 6.592     | 395875              | 17034637       | 98.188        |  |  |
| Total                      |           | 413773              | 17348948       | 100.000       |  |  |

![](_page_29_Figure_6.jpeg)

![](_page_29_Figure_7.jpeg)

![](_page_30_Figure_0.jpeg)

| Detector A Channel 2 254nm |       |           |              |                |               |
|----------------------------|-------|-----------|--------------|----------------|---------------|
|                            | No.   | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
|                            | 1     | 7.016     | 1002         | 42587          | 0.845         |
|                            | 2     | 23.349    | 36780        | 4997311        | 99.155        |
|                            | Total |           | 37782        | 5039898        | 100.000       |

![](_page_30_Figure_3.jpeg)

![](_page_30_Figure_4.jpeg)

uV

| Detector A Channel 2 254nm |           |              |                |               |  |
|----------------------------|-----------|--------------|----------------|---------------|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |
| 1                          | 6.886     | 173333       | 7593544        | 50.900        |  |
| 2                          | 10.500    | 78076        | 7324948        | 49.100        |  |
| Total                      |           | 251409       | 14918492       | 100.000       |  |

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

# Peak Analysis Report

| Detector A Channel 2 254nm |           |              |                |               |  |  |
|----------------------------|-----------|--------------|----------------|---------------|--|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |  |
| 1                          | 6.908     | 112999       | 5368004        | 95.866        |  |  |
| 2                          | 10.736    | 2194         | 231481         | 4.134         |  |  |
| Total                      |           | 115192       | 5599485        | 100.000       |  |  |

![](_page_31_Figure_7.jpeg)

![](_page_32_Figure_1.jpeg)

| Detector A Channel 2 254nm |           |              |                |               |  |  |
|----------------------------|-----------|--------------|----------------|---------------|--|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |  |
| 1                          | 6.923     | 50009        | 2110645        | 49.929        |  |  |
| 2                          | 22.765    | 16838        | 2116631        | 50.071        |  |  |
| Total                      |           | 66847        | 4227276        | 100.000       |  |  |

![](_page_32_Figure_3.jpeg)

# Peak Analysis Report

| Detector A Channel 2 254nm |           |              |                |               |  |  |
|----------------------------|-----------|--------------|----------------|---------------|--|--|
| No.                        | Ret. Time | Height (mAu) | Area (mAu*min) | Rel. Area (%) |  |  |
| 1                          | 7.016     | 1002         | 42587          | 0.845         |  |  |
| 2                          | 23.349    | 36780        | 4997311        | 99.155        |  |  |
| Total                      |           | 37782        | 5039898        | 100.000       |  |  |

![](_page_32_Figure_7.jpeg)

| Detector A | Channel 2 254nm | 1            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 5.193           | 118797       | 5475010        | 49.075        |
| 2          | 16.289          | 35228        | 5681512        | 50.925        |
| Total      |                 | 154025       | 11156522       | 100.000       |

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

# Peak Analysis Report

| Detector A | <u>Channel 2 254nm</u> | 1            |                |               |
|------------|------------------------|--------------|----------------|---------------|
| No.        | Ret. Time              | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 5.194                  | 322260       | 15479352       | 98.596        |
| 2          | 16.300                 | 1713         | 220454         | 1.404         |
| Total      |                        | 323974       | 15699806       | 100.000       |

![](_page_33_Figure_7.jpeg)

![](_page_34_Figure_1.jpeg)

Ph

| Detector A | Channel 2 254nm | 1            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 11.582          | 640          | 113040         | 2.429         |
| 2          | 56.377          | 9781         | 4540822        | 97.571        |
| Total      |                 | 10420        | 4653862        | 100.000       |

![](_page_34_Figure_4.jpeg)

![](_page_35_Figure_1.jpeg)

| Detector A | Channel 2 254nr | n            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 8.211           | 8036         | 468284         | 1.658         |
| 2          | 48.264          | 72747        | 27771234       | 98.342        |
| Total      |                 | 80783        | 28239518       | 100.000       |

![](_page_35_Figure_4.jpeg)

![](_page_35_Figure_5.jpeg)
| Detector A | Channel 2 254nm | า            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 3.544           | 182493       | 2007529        | 49.628        |
| 2          | 11.217          | 10509        | 2037587        | 50.372        |
| Total      |                 | 193002       | 4045115        | 100.000       |



uV



| Detector A | Channel 2 254nr | n            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 3.539           | 36078        | 456387         | 4.481         |
| 2          | 11.223          | 49303        | 9727447        | 95.519        |
| Total      |                 | 85381        | 10183834       | 100.000       |





| Detector A | Channel 2 254nr | n            |                |               |            |           |             |
|------------|-----------------|--------------|----------------|---------------|------------|-----------|-------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |            |           |             |
| 1          | 6.982           | 119143       | 3844295        | 47.188        |            |           |             |
| 2          | 17.462          | 51983        | 4302449        | 52.812        |            |           |             |
| Total      |                 | 171126       | 8146744        | 100.000       |            |           |             |
| uV         |                 |              |                |               |            |           |             |
| 200000     |                 |              |                |               | Detector A | Channel 2 | 254nm       |
| 150000-    |                 |              |                |               |            |           |             |
| 100000-    |                 |              |                |               |            |           |             |
| 50000-     |                 |              |                |               |            | 5         |             |
| 0          | ~               |              |                |               |            | / \       |             |
| 0.0        | 2.5             | 5.0          | 7.5 10.0       | 12.5          | 15.0       | 17.5      | 20.0<br>min |



| Detector A | Channel 2 254nn | n            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 6.901           | 4173         | 135160         | 4.580         |
| 2          | 17.438          | 37778        | 2815803        | 95.420        |
| Total      |                 | 41951        | 2950964        | 100.000       |



| Detector A | Channel 2 254nm | ı            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 7.609           | 51090        | 3687167        | 52.362        |
| 2          | 34.952          | 9246         | 3354558        | 47.638        |
| Total      |                 | 60336        | 7041725        | 100.000       |







| Detector A | Channel 2 254nm | 1            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 7.647           | 357793       | 28104871       | 97.177        |
| 2          | 38.338          | 2170         | 816337         | 2.823         |
| Total      |                 | 359963       | 28921209       | 100.000       |





#### Peak Analysis Report

| Detector A | Channel 2 254nn | า            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 6.806           | 2023         | 64474          | 0.857         |
| 2          | 62.221          | 15199        | 7462702        | 99.143        |
| Total      |                 | 17222        | 7527176        | 100.000       |

uV



| Detector A ( | Channel 2 254nm | 1            |                |               |
|--------------|-----------------|--------------|----------------|---------------|
| No.          | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1            | 6.194           | 60376        | 2816365        | 50.911        |
| 2            | 32.016          | 10616        | 2715527        | 49.089        |
| Total        |                 | 70993        | 5531892        | 100.000       |





| Detector A | Channel 2 254nn | n            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 6.164           | 40257        | 1423369        | 2.181         |
| 2          | 32.515          | 230548       | 63835051       | 97.819        |
| Total      |                 | 270805       | 65258420       | 100.000       |



uV

| Detector A | Channel 2 254nm | 1            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 5.088           | 87660        | 2812551        | 50.995        |
| 2          | 41.759          | 7633         | 2702791        | 49.005        |
| Total      |                 | 95293        | 5515342        | 100.000       |





## Peak Analysis Report

| Detector A | Channel 2 254nn | า            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 5.104           | 3997         | 95397          | 1.451         |
| 2          | 41.556          | 18567        | 6481348        | 98.549        |
| Total      |                 | 22564        | 6576744        | 100.000       |

uV









#### **Peak Analysis Report**

| Detector A | Channel 2 254nm | า            |                |               |
|------------|-----------------|--------------|----------------|---------------|
| No.        | Ret. Time       | Height (mAu) | Area (mAu*min) | Rel. Area (%) |
| 1          | 4.671           | 3823         | 79975          | 4.494         |
| 2          | 30.692          | 5179         | 1699481        | 95.506        |
| Total      |                 | 9002         | 1779456        | 100.000       |

uV



# 9. NMR Spectra





















































59 / 77
























































74 / 77









77 / 77