Hypervalent Iodine(III) Promoted Tandem Reaction of *o*-Fluoroanilines with Formamides to Construct 2-Aminobenzoxazoles

Lipeng Long,* Jieyan Wang, Xin Li, ShunFeng Peng, Liang Qiao, Guotian Luo, Zhengwang Chen*

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China.

Supporting Information List of Contents

A. General method	S2
B. ¹⁹ F NMR Experiments	S2
C. General procedure for the synthesis of <i>N</i> , <i>N</i> -dimethylbenzo[<i>d</i>]oxazol-2-amine	S4
D. Analytical data	S5
E. Reference	S14
F. Copies of ¹ H and ¹³ C NMR spectra	S15
G. X-ray crystallographic data	

A. General method

Melting points were investigated using a melting point instrument and are uncorrected. ¹H and ¹³C NMR spectra were obtained on a 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively, chloroform is solvent with TMS as the internal standard unless otherwise noted. Mass spectra were recorded on a GC-MS spectrometer at an ionization voltage of 70 eV equipped with a DB-WAX capillary column (internal diameter: 0.25 mm, length: 30 m). High resolution mass spectra (HRMS) (TOF) were measured using an electrospray ionization (ESI) mass spectrometry. Silica gel (300-400 mesh) was used for flash column chromatograph, eluting (unless otherwise stated) with ethyl acetate/petroleum ether (PE) (60-90 °C) mixture.

B.¹⁹F NMR Experiments

Figure S1 ¹⁹F NMR (376.5 MHz) study on commercial PIFA using $C_6H_5CF_3$ as the internal standard (0.16 M in CDCl₃).

Figure S2 ¹⁹F NMR (376.5 MHz) study on a mixture of commercial PIDA and 2 eqiv of CF₃COOH after 16 h using C₆H₅CF₃ as the internal standard (0.16 M in CDCl₃).

Figure S3 ¹⁹F NMR (376.5 MHz) study on the experiment in Figure 2 added 40 eqiv DMF using $C_{6}H_{5}CF_{3}$ as the internal standard (0.16 M in CDCl₃).

Note: For the commercial PIFA shown in Figure S1, the major proton signals correspond to PIFA while the minor signals correspond to μ -oxo-[bis(trifluoroacetoxy)iodo]benzene, which could be formed via the decomposition of PIFA. As showed in Figure S2, upon the addition of CF₃COOH in the solution of $PhI(OAc)_2$ after 16 h, the signal of CF₃COOH (-75.94 ppm in ¹⁹F NMR) diminished and the signal of PIFA (-73.49 ppm in ¹⁹F NMR), the signal of PhI(OOCCF₃)(OAc) (-74.14 ppm in ¹⁹F NMR) emerged, which correspond to transesterification of PIDA with trifluoroacetic acid and intermediate A and B generated. When 40 eqiv DMF was added to the mixture of PIDA and CF₃COOH, as showed in Figure S3, the signal of PIFA was disappeared, and the content of hypervalent iodine with one CF₃COO ligand was reduced from 0.26 to 0.09 (with the ratio of external standard PhCF₃). However, the content of trifluoroacetic acid increased from 0.3 to 0.89. These ¹⁹F NMR experiments indicate that DMF substituted trifluoroacetic acid and coordinated with hypervalent iodine.

C. General procedure for the synthesis of *N*,*N*dimethylbenzo[*d*]oxazol-2-amine

To a suspension of arylamine (0.2 mmol) and DMF (8.0 mmol) in DCM (1.0 mL) $PhI(OAc)_2$ (0.2 mmol) was added, followed by CF₃COOH (0.4 mmol). The mixture was stirred in the air at room temperature for 8 h. After the reaction was finished, ethyl acetate (5mL) was added. Washed with saturated NaHCO₃ solution (3 × 5 ml), then the aqueous layers were extracted with ethyl acetate (3 × 5 ml). The organic layer was dried by Na₂SO₄ and concentrated under reduced pressure. The residue was separated by column chromatography to obtain pure sample.

Note: Reaction quenching must be performed in a well-ventilated fume hood wearing appropriate protective equipment.

D. Analytical data

6-bromo-N,N-dimethylbenzo[d]oxazol-2-amine (3a)¹

The title compound was achieved as a beige solid, 41.3 mg, 86% yield; m.p. 95-96 °C; $R_f = 0.57$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.32 (d, J = 1.8 Hz, 1H), 7.21 (dd, J = 8.3, 1.8 Hz, 1H), 7.13 (d, J = 8.3 Hz, 1H), 3.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.2, 149.5, 143.0, 126.9, 116.8, 112.1, 112.0, 37.6.

6-fluoro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3b)

The title compound was achieved as a white solid, 23.0 mg, 64% yield; m.p. 84-85 °C; $R_f = 0.50$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.22 (dd, J = 8.6, 4.8 Hz, 1H), 7.00 (dd, J = 8.1, 2.5 Hz, 1H), 6.88 (ddd, J = 9.9, 8.6, 2.5 Hz, 1H), 3.17 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ = 163.4, 157.7 (d, J = 240.1 Hz), 148.7 (d, J = 14.4 Hz), 139.6, 115.5 (d, J = 9.5 Hz), 110.6 (d, J = 23.0 Hz), 97.5 (d, J = 29.0 Hz), 37.7. HRMS (ESI): m/z calcd. for C₉H₁₀FN₂O [M + H]⁺: 181.0772, found: 181.0777.

6-chloro-N,N-dimethylbenzo[d]oxazol-2-amine (3c)^{1, 2}

The title compound was achieved as a yellow solid, 28.2 mg, 72% yield; m.p. 101-102 °C; $R_f = 0.48$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.23$ (d, J = 2.0 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 1H), 3.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.3$, 149.2, 142.4, 125.2, 124.1, 116.2, 109.4, 37.7. HRMS (ESI): m/z calcd. for C₉H₁₀ClN₂O [M + H]⁺: 197.0476, found: 197.0482.

6-iodo-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3d)

The title compound was achieved as a fuchsia solid, 43.4 mg, 75% yield; m.p. 122-123 °C; $R_f = 0.19$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.54 (d, J = 1.6 Hz, 1H), 7.43 (dd, J = 8.2, 1.6 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 3.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.9, 149.8, 143.7, 132.9, 117.6, 81.1, 37.7. HRMS (ESI): m/z calcd. for C₉H₁₀IN₂O [M + H]⁺: 288.9832, found: 288.9840.

2-(dimethylamino)benzo[*d*]oxazol-6-yl acetate (3e)

The title compound was achieved as an orange solid, 18.5 mg, 42% yield; m.p. 115-116 °C; $R_f = 0.32$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.92$ (dd, J = 7.9, 1.3 Hz, 2H), 7.32 (dd, J = 7.7, 1.1 Hz, 1H), 3.90 (s, 3H), 3.24 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 167.1$, 164.5, 148.7, 148.1, 126.7, 122.2, 115.1, 110.0, 52.0, 37.7. HRMS (ESI): m/z calcd. for C₁₁H₁₃N₂O₃ [M + H]⁺: 221.0921, found: 221.0928.

N,N-dimethyl-6-(trifluoromethyl)benzo[*d*]oxazol-2-amine (3f)

The title compound was achieved as a yellow solid, 23.1 mg, 50% yield; m.p. 114-115 °C; $R_f = 0.22$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.49 (s, 1H), 7.44 (dd, J = 8.2, 0.9 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 3.24 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 164.2, 148.5, 146.6, 124.6 (q, $J_I = 271.2$ Hz), 122.4 (q, $J_2 = 32.9$ Hz), 115.61 (s, 4H), 106.1 (q, $J_3 = 3.8$ Hz), 37.7. HRMS (ESI): m/z calcd. for $C_{10}H_{10}F_3N_2O$ [M + H]⁺: 231.0740, found: 231.0733.

N,*N*-dimethylbenzo[*d*]oxazol-2-amine (3g)^{1, 2}

The title compound was achieved as a brown solid, 19.8 mg, 61% yield; m.p. 87-88 °C; $R_f = 0.51$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.34$ (dd, J = 7.8, 0.6 Hz, 1H), 7.23 (dd, J = 7.9, 0.4 Hz, 1H), 7.14 (td, J = 7.7, 1.1 Hz, 1H), 6.98 (td, J = 7.8, 1.2 Hz, 1H), 3.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.1$, 149.1, 143.5, 123.9, 120.2, 116.0, 108.6, 37.7.

6-methoxy-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3h)

The title compound was achieved as a orange solid, 34.2 mg, 89% yield; m.p. 94-95 °C; $R_f = 0.38$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.22 (d, J = 8.6 Hz, 1H), 6.88 (d, J = 2.4 Hz, 1H), 6.76 – 6.73 (m, 1H), 3.80 (s, 3H), 3.17 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 162.8, 154.8, 149.5, 136.9, 115.6, 110.0, 96.0, 56.1, 37.8. HRMS (ESI): m/z calcd. for $C_{10}H_{13}N_2O_2$ [M + H]⁺: 193.0972, found: 193.0966.

N,*N*,6-trimethylbenzo[*d*]oxazol-2-amine (3i)²

The title compound was achieved as a orange solid, 30.6 mg, 87% yield; m.p. 57-58 °C; $R_f = 0.49$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.20 (d, J = 7.9 Hz, 1H), 7.05 – 7.02 (m, 1H), 6.93 (ddd, J = 7.9, 1.5, 0.6 Hz, 1H), 3.14 (s, 6H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.9, 149.3, 141.1, 130.1, 124.5, 115.4, 109.2, 37.7, 21.4. HRMS (ESI): m/z calcd. for C₁₀H₁₃N₂O [M + H]⁺: 177.1022, found: 177.1021.

4-fluoro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3j)

The title compound was achieved as a yellow solid, 18.1 mg, 50% yield; m.p. 107-108 °C; $R_f = 0.72$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.07 - 7.03$ (m, 1H), 6.93 - 6.88 (m, 2H), 3.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.9$, 151.3 (d, J = 9.0 Hz), 151.2 (d, J = 248.0 Hz), 131.7 (d, J = 16.0 Hz), 120.1 (d, J = 7.0 Hz), 110.6 (d, J = 18.0 Hz), 104.9 (d, J = 4.0 Hz), 37.7. HRMS (ESI): m/z calcd. for C₉H₁₀FN₂O [M + H]⁺: 181.0772, found: 181.0777.

4-chloro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3k)

The title compound was achieved as a brown solid, 21.6 mg, 55% yield; m.p. 77-78 °C; $R_f = 0.53$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.14 (dd, J = 2.5, 0.9 Hz, 1H), 7.12 (d, J = 1.7 Hz, 1H), 6.90 (t, J = 8.0 Hz, 1H), 3.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.2, 149.5, 141.5, 124.1, 120.5, 120.0, 107.1, 37.8. HRMS (ESI): m/z calcd. for C₉H₁₀ClN₂O [M + H]⁺: 197.0476, found: 197.0483.

4-bromo-N,N-dimethylbenzo[d]oxazol-2-amine (31)

The title compound was achieved as a reddish-brown solid, 34.6 mg, 72% yield; m.p. 84-85 °C; $R_f = 0.67$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.28$ (dd, J = 8.1, 0.8 Hz, 1H), 7.15 (dd, J = 7.9, 0.8 Hz, 1H), 6.84 (t, J = 8.0 Hz, 1H), 3.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.0$, 148.9, 143.2, 127.0, 120.9, 108.0, 107.6, 37.8. HRMS (ESI): m/z calcd. for C₉H₁₀BrN₂O [M + H]⁺: 240.9971, found: 240.9979.

N,*N*,4-trimethylbenzo[*d*]oxazol-2-amine (3m)²

The title compound was achieved as a brown solid, 18.3 mg, 52% yield; m.p. 53-54 °C; $R_f = 0.71$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.08 (dd, J = 7.8, 0.6 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.89 (t, J = 7.7 Hz, 1H), 3.20 (s, 6H), 2.49 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 162.7, 148.7, 142.5, 126.2, 124.7, 119.9, 106.0, 37.8, 16.5.

5-chloro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3n)²

The title compound was achieved as a brown solid, 29.8 mg, 76% yield; m.p. 85-86 °C; $R_f = 0.18$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.27 (d, J = 2.1 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.92 (dd, J = 8.4, 2.1 Hz, 1H), 3.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.8, 147.7, 145.0, 129.2, 120.0, 116.0, 109.1, 37.6.

5-bromo-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (30)²

The title compound was achieved as a brown solid, 38.5 mg, 80% yield; m.p. 66-67 °C; $R_f = 0.30$ (petroleum ether / ethyl acetate = 20:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.43 (t, *J* = 1.2 Hz, 1H), 7.07 (d, *J* = 1.2 Hz, 2H), 3.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.6, 148.1, 145.5, 122.8, 119.0, 116.6, 109.6, 37.7.

2-(dimethylamino)benzo[d]oxazol-5-yl acetate (3p)

The title compound was achieved as a orange solid, 19.4 mg, 44% yield; m.p. 113-114 °C; $R_f = 0.35$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.02 - 7.98$ (m, 1H), 7.77 (dd, J = 8.4, 1.7 Hz, 1H), 7.25 (d, J = 8.5 Hz, 1H), 3.90 (s, 3H), 3.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 167.2$, 163.6, 152.2, 143.7, 126.3, 122.8, 117.4, 108.2, 52.1, 37.7. HRMS (ESI): m/z calcd. for C₁₁H₁₃N₂O₃ [M + H]⁺: 221.0921, found: 221.0928.

7-chloro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3q)

The title compound was achieved as a reddish-brown solid, 21.2 mg, 54% yield; m.p. 88-89 °C; $R_f = 0.58$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.22$ (dd, J = 7.8, 1.0 Hz, 1H), 7.06 (dd, J = 8.0, 2.7 Hz, 1H), 6.97 (dd, J = 8.1, 1.0 Hz, 1H), 3.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.9$, 145.4, 144.9, 124.7, 120.8, 114.4, 113.9, 37.8. HRMS (ESI): m/z calcd. for C₉H₁₀ClN₂O [M + H]⁺: 197.0476, found: 197.0482.

7-bromo-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3r)

The title compound was achieved as a reddish-brown solid, 39.4 mg, 82% yield; m.p. 96-97 °C; $R_f = 0.49$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.25$ (dd, J = 7.8, 1.1 Hz, 1H), 7.11 (dd, J = 8.1, 1.1 Hz, 1H), 7.01 (dd, J = 10.5, 5.3 Hz, 1H), 3.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.6$, 147.0, 144.4, 125.1, 123.4, 114.9, 100.6, 37.8. HRMS (ESI): m/z calcd. for C₉H₁₀BrN₂O [M + H]⁺: 240.9971, found: 240.9963.

N,*N*-dimethyl-7-(trifluoromethyl)benzo[*d*]oxazol-2-amine (3s)

The title compound was achieved as a yellow solid, 17.5 mg, 38% yield; m.p. 83-84 °C; $R_f = 0.56$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.49 - 7.46$ (m, 1H), 7.23 - 7.17 (m, 2H), 3.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.4$, 145.0, 123.8, 123.1 (q, $J_1 = 271.1$ Hz), 119.3, 116.9 (q, $J_3 = 4.3$ Hz), 112.7 (q, $J_2 = 34.6$ Hz), 37.7. HRMS (ESI): m/z calcd. for C₁₀H₁₀F₃N₂O [M + H]⁺: 231.0740, found: 231.0747.

N,*N*,7-trimethylbenzo[*d*]oxazol-2-amine (3t)²

The title compound was achieved as a reddish-brown oil, 23.9 mg, 68% yield; $R_f = 0.6$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.18 (dd, J = 7.8, 0.5 Hz, 1H), 7.04 (t, J = 7.7 Hz, 1H), 6.80 (d, J = 7.5 Hz, 1H), 3.20 (s, 6H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.9, 148.1, 143.1, 123.7, 121.8, 119.0, 113.5, 37.7, 14.9.

6-chloro-4-fluoro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3u)

The title compound was achieved as a light brown solid, 24.8 mg, 58% yield; m.p. 99-100 °C; $R_f = 0.24$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.02$ (dd, J = 1.7, 0.7 Hz, 1H), 6.89 (dd, J = 9.8, 1.8 Hz, 1H), 3.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.1, 151.0$ (d, J = 11.0 Hz), 150.2 (d, J = 252.1 Hz), 130.8 (d, J = 16.1 Hz), 124.7 (d, J = 9.4 Hz), 111.8 (d, J = 21.7 Hz), 106.0 (d, J = 5.0 Hz), 37.7. HRMS (ESI): m/z calcd. for C₉H₉ClFN₂O [M + H]⁺: 215.0382, found: 215.0389.

6,7-difluoro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3v)

The title compound was achieved as a yellow solid, 17.0 mg, 43% yield; m.p. 86-87 °C; $R_f = 0.50$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.00 - 6.93$ (m, 2H), 3.21 (d, J = 0.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.43$ (s), 145.9 (dd, $J_I = 239.1$, $J_2 = 10.1$ Hz), 141.74 (s, 4H), 135.9 (dd, J = 6.1, J = 5.9 Hz), 135.5 (dd, $J_I = 251.1$ $J_2 = 18.3$ Hz), 111.78 (d, J = 19.7 Hz), 109.93 (dd, J = 7.3, 3.8 Hz), 37.78 (s). HRMS (ESI): m/z calcd. for C₉H₉F₂N₂O [M + H]⁺: 199.0677, found: 199.0668.

4,5,6,7-tetrafluoro-*N*,*N*-dimethylbenzo[*d*]oxazol-2-amine (3w)

The title compound was achieved as a yellow solid, 16.8 mg, 36% yield; m.p. 85-86 °C; $R_f = 0.67$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 3.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.53 (s), 139.86 (m), 137.58 – 136.65 (m), 135.07 – 134.48 (m), 133.96 – 133.54 (m), 132.17 (m), 131.25 (m), 37.86 (s). HRMS (ESI): m/z calcd. for C₉H₇F₄N₂O [M + H]⁺: 235.0489, found: 235.0482.

6-bromo-N,N-diethylbenzo[d]oxazol-2-amine (4a)³

The title compound was achieved as a white solid, 45.0 mg, 84% yield; m.p. 49-50 °C; $R_f = 0.73$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.35 (d, J = 1.8 Hz, 1H), 7.23 (dd, J = 8.3, 1.8 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 3.54 (q, J= 7.1 Hz, 4H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.3, 149.2, 142.8, 126.8, 116.6, 112.0, 111.8, 43.1, 13.4.

6-bromo-N,N-dibutylbenzo[d]oxazol-2-amine (4b)⁴

The title compound was achieved as a brown oil, 51.8 mg, 80% yield; $R_f = 0.64$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.37 (d, J = 1.6 Hz, 1H), 7.24 (dd, J = 8.3, 1.8 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 3.50 – 3.45 (m, 4H), 1.64 (dd, J = 9.0, 6.2 Hz, 4H), 1.37 (dd, J = 15.1, 7.5 Hz, 4H), 0.95 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.8, 149.2, 143.1, 126.8, 116.6, 112.0, 111.7, 48.4, 30.1, 20.0, 13.8.

6-bromo-N,N-diisopropylbenzo[d]oxazol-2-amine (4c)

The title compound was achieved as a brown solid, 42.6 mg, 72% yield; m.p. 52-53 °C; $R_f = 0.48$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.39 (d, *J* = 1.8 Hz, 1H), 7.24 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.17 (d, *J* = 8.3 Hz, 1H), 4.19 (dt, *J* = 13.7, 6.8 Hz, 2H), 1.36 (s, 6H), 1.35 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.4, 149.0, 142.3, 126.7, 116.4, 111.9, 111.7, 47.9, 20.8. HRMS (ESI): m/z calcd. for $C_{13}H_{18}BrN_2O [M + H]^+$: 297.0597, found: 297.0606.

6-bromo-2-(pyrrolidin-1-yl)benzo[d]oxazole (4d)

The title compound was achieved as a white solid, 43.1 mg, 81% yield; m.p. 132-133 °C; $R_f = 0.22$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.36 (d, J = 1.4 Hz, 1H), 7.24 (dt, J = 8.3, 1.6 Hz, 1H), 7.17 (dd, J = 8.3, 1.1 Hz, 1H), 3.63 – 3.59 (m, 4H), 2.02 (dd, J = 7.5, 5.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.1, 149.5, 143.0, 126.9, 116.8, 112.1, 111.9, 47.5, 25.6. HRMS (ESI): m/z calcd. for C₁₁H₁₂BrN₂O [M + H]⁺: 267.0128, found: 267.0116.

6-bromo-2-(piperidin-1-yl)benzo[d]oxazole (4e)

The title compound was achieved as a brown solid, 47.6 mg, 85% yield; m.p. 76-77 °C; $R_f = 0.32$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.33 (d, J = 1.7 Hz, 1H), 7.22 (dd, J = 8.3, 1.7 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H), 3.61 (s, 4H), 1.65 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.5, 149.1, 142.6, 126.9, 116.8, 112.2, 112.1, 46.6, 25.2, 24.0. HRMS (ESI): m/z calcd. for C₁₂H₁₄BrN₂O [M + H]⁺: 281.0284, found: 281.0292.

6-bromo-2-morpholinobenzo[d]oxazole (4f)

The title compound was achieved as a light brown solid, 49.6 mg, 88% yield; m.p. 111-112 °C; $R_f = 0.21$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.37$ (d, J = 1.8 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.18 (d, J = 8.3 Hz, 1H), 3.79 – 3.76 (m, 4H), 3.65 – 3.62 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.2$, 149.2, 142.2, 127.2, 117.3, 112.9, 112.4, 66.1, 45.7. HRMS (ESI): m/z calcd. for C₁₁H₁₂BrN₂O₂ [M + H]⁺: 283.0077, found: 283.0084.

6-bromo-N-methyl-N-phenylbenzo[d]oxazol-2-amine (4g)

The title compound was achieved as a white solid, 49.5 mg, 82% yield; m.p. 104-105 °C; $R_f = 0.48$ (petroleum ether / ethyl acetate = 1:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.47 - 7.42$ (m, 2H), 7.42 - 7.37 (m, 3H), 7.32 - 7.26 (m, 3H), 3.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.6$, 149.2, 142.6, 142.1, 129.4, 127.3, 126.5, 124.7, 117.6, 113.2, 112.6, 39.2. HRMS (ESI): m/z calcd. for C₁₄H₁₂BrN₂O [M + H]⁺: 303.0128, found: 303.0117.

6-bromo-N-(tert-butyl)benzo[d]oxazol-2-amine (4h)

The title compound was achieved as a brown solid, 45.5 mg, 85% yield; m.p. 96-97 °C; $R_f = 0.66$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.38 (d, J = 1.8 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.18 (d, J = 8.3 Hz, 1H), 5.65 (s, 1H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.1, 148.6, 142.3, 126.8, 117.0, 112.6, 112.1, 52.3, 29.1. HRMS (ESI): m/z calcd. for C₁₁H₁₄BrN₂O [M + H]⁺: 269.0284, found: 269.0279.

6-bromo-N-phenylbenzo[d]oxazol-2-amine (4i)⁵

The title compound was achieved as a brown solid, 34.0 mg, 59% yield; m.p. 172-174 °C; $R_f = 0.67$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.15 (s, 1H), 7.60 – 7.56 (m, 2H), 7.50 (d, J = 1.7 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.34 (dd, J = 11.7, 5.0 Hz, 2H), 7.15 – 7.11 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 158.6, 148.3, 141.5, 137.4, 129.4, 127.5, 123.7, 118.6, 117.9, 114.0, 112.7.

6-bromo-N-cyclohexylbenzo[d]oxazol-2-amine (4j)

The title compound was achieved as a brown solid, 39.4 mg, 67% yield; m.p. 129-130 °C; $R_f = 0.58$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.37 (d, J = 1.4 Hz, 1H), 7.26 (dd, J = 5.3, 2.9 Hz, 1H), 7.19 (d, J = 8.3 Hz, 1H), 5.33 (s, 1H), 3.72 (s, 1H), 2.11 (dd, J = 11.8, 2.7 Hz, 2H), 1.80 – 1.74 (m, 2H), 1.68 – 1.62 (m, 1H), 1.42 (ddd, J = 13.2, 10.0, 4.0 Hz, 2H), 1.33 – 1.25 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.7, 148.8, 142.3, 127.0, 116.9, 112.6, 112.2, 52.2, 33.4, 25.4, 24.7.

HRMS (ESI): m/z calcd. for $C_{13}H_{16}BrN_2O [M + H]^+$: 295.0441, found: 295.0428.

6-bromo-N-methylbenzo[d]oxazol-2-amine (4k)

The title compound was achieved as a brown solid, 34.3 mg, 76% yield; m.p. 155-156 °C; $R_f = 0.30$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, DMSO- d_6) $\delta = 7.95$ (d, J = 4.5 Hz, 1H), 7.57 (d, J = 1.8 Hz, 1H), 7.24 (dd, J = 8.3, 1.9 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 2.90 (d, J = 4.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 163.8$, 149.3, 143.4, 126.9, 117.0, 112.2, 111.6, 29.3. HRMS (ESI): m/z calcd. for C₈H₈BrN₂O [M + H]⁺: 226.9815, found: 226.9806.

6-bromo-N-cyclopropylbenzo[d]oxazol-2-amine (41)

The title compound was achieved as a white solid, 33.2 mg, 66% yield; m.p. 118-119 °C; $R_f = 0.28$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.42$ (s, 1H), 7.31 – 7.24 (m, 2H), 5.86 (s, 1H), 2.84 (tt, J = 6.9, 3.5 Hz, 1H), 0.89 (q, J = 6.7 Hz, 2H), 0.75 – 0.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.0$, 149.1, 142.2, 127.1, 117.3, 113.0, 112.4, 24.4, 7.3. HRMS (ESI): m/z calcd. for C₁₀H₁₀BrN₂O [M + H]⁺: 252.9971, found: 252.9962.

6-bromobenzo[d]oxazol-2-amine (4m)⁶

The title compound was achieved as a brown solid, 22.0 mg, 52% yield; m.p. 152-153 °C; $R_f = 0.32$ (petroleum ether / ethyl acetate = 1:1); ¹H NMR (400 MHz, DMSO- d_6) δ = 7.57 (d, J = 1.7 Hz, 1H), 7.55 (s, 2H), 7.24 (dd, J = 8.3, 1.9 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ = 163.6, 149.1, 143.7, 126.8, 116.9, 112.2, 111.5.

N,*N*-dimethyl-6-(phenylethynyl)benzo[*d*]oxazol-2-amine (5)

The title compound was achieved as a yellow solid, 44.6 mg, 85% yield; m.p. 136-137 °C; $R_f = 0.23$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.54 – 7.51 (m, 2H), 7.40 (d, J = 1.2 Hz, 1H), 7.38 – 7.35 (m, 1H), 7.34 (d, J = 5.6 Hz, 1H), 7.32 (dt, J = 3.8, 1.8 Hz, 2H), 7.27 (s, 1H), 3.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.7, 148.7, 144.3, 131.5, 128.4, 128.3, 128.0, 123.6, 115.7, 114.7, 111.7, 90.1, 88.0, 37.7. HRMS (ESI): m/z calcd. for C₁₇H₁₅N₂O [M + H]⁺: 263.1179, found: 263.1173.

N,*N*-dimethyl-6-phenylbenzo[*d*]oxazol-2-amine (6)

The title compound was achieved as a yellow solid, 41.9 mg, 88% yield; m.p. 125-126 °C; $R_f = 0.22$ (petroleum ether / ethyl acetate = 3:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (dt, J = 8.2, 1.7 Hz, 2H), 7.49 (d, J = 0.9 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.41 – 7.40 (m, 2H), 7.34 – 7.29 (m, 1H), 3.22 (d, J = 0.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.4, 149.8, 143.1, 141.4, 134.1, 128.8, 127.1, 126.7, 123.2, 115.9, 107.4, 37.7. HRMS (ESI): m/z calcd. for C₁₅H₁₅N₂O [M + H]⁺: 239.1179, found: 239.1174.

methyl (E)-3-(2-(dimethylamino)benzo[d]oxazol-6-yl)acrylate (7)

The title compound was achieved as a yellow solid, 44.8 mg, 91% yield; m.p. 104-106 °C; $R_f = 0.28$ (petroleum ether / ethyl acetate = 1:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.71 (d, J = 15.9 Hz, 1H), 7.41 (d, J = 1.3 Hz, 1H), 7.33 (dd, J = 8.2, 1.5 Hz, 1H), 7.30 – 7.27 (m, 1H), 6.51 – 6.11 (m, 1H), 3.79 (s, 3H), 3.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 167.8, 164.0, 149.5, 146.3, 145.4, 127.1, 125.7, 115.8, 115.1, 107.4, 51.6, 37.7. HRMS (ESI): m/z calcd. for C₁₃H₁₅N₂O₃ [M + H]⁺: 247.1077, found: 247.1073.

E. Reference

1. A. Lukin, N. Kalinchenkova, T. Vedekhina, N. Zhurilo and M. Krasavin, Diversityoriented synthesis of N,N-dimethylamino-substituted azoles employing TBTU, *Tetrahedron Lett.*, 2018, **59**, 2732-2735.

2. W. Xu, M.-T. Zeng, S.-S. Liu, Y.-S. Li and Z.-B. Dong, Copper catalyzed synthesis of benzoxazoles and benzothiazoles via tandem manner, *Tetrahedron Lett.*, 2017, **58**, 4289-4292.

3. M. Pattarawarapan, D. Yamano, N. Wiriya and W. Phakhodee, Metal-Free Synthesis of 2-N,N-Dialkylaminobenzoxazoles Using Tertiary Amines as the Nitrogen Source, *J. Org. Chem.*, 2019, **84**, 6516-6523.

4. M. Pattarawarapan, N. Wiriya, S. Yimklan, S. Wangngae and W. Phakhodee, Zwitterionic Ring-Opened Oxyphosphonium Species from the Ph_3P-I_2 Mediated Reactions of Benzo[*d*]oxazol-2(3H)-ones with Secondary Amines, *J. Org. Chem.*, 2020, **85**, 6151-6158.

5. Y. Xu, F. Li, N. Zhao, J. Su, C. Wang, C. Wang, Z. Li and L. Wang, Environment-friendly and efficient synthesis of 2-aminobenzo-xazoles and 2-aminobenzothiazoles catalyzed by Vitreoscilla hemoglobin incorporating a cobalt porphyrin cofactor, *Green Chemistry*, 2021, **23**, 8047-8052.

6. M. Kasthuri, H. S. Babu, K. S. Kumar, C. Sudhakar and P. V. N. Kumar, A Facile Synthesis of 2-Aminobenzoxazoles and 2-Aminobenzimidazoles Using N-Cyano-N-phenylp-toluenesulfonamide (NCTS) as an Efficient Electrophilic Cyanating Agent, *Synlett*, 2015, **26**, 897-900.

F. Copies of ¹H and ¹³C NMR spectra

Figure S2. ¹³C NMR Spectrum of 3a (100 MHz, CDCl₃)

Figure S4. ¹³C NMR Spectrum of 3b (100 MHz, CDCl₃)

Figure S6. ¹³C NMR Spectrum of 3c (100 MHz, CDCl₃)

Figure S8. ¹³C NMR Spectrum of 3d (100 MHz, CDCl₃)

Figure S10. ¹³C NMR Spectrum of 3e (100 MHz, CDCl₃)

Figure S12. ¹³C NMR Spectrum of 3f (100 MHz, CDCl₃)

Figure S14. ¹³C NMR Spectrum of 3g (100 MHz, CDCl₃)

Figure S16. ¹³C NMR Spectrum of 3h (100 MHz, CDCl₃)

Figure S18. ¹³C NMR Spectrum of 3i (100 MHz, CDCl₃)

Figure S20. ¹³C NMR Spectrum of 3j (100 MHz, CDCl₃)

Figure S22. ¹³C NMR Spectrum of 3k (100 MHz, CDCl₃)

Figure S24. ¹³C NMR Spectrum of 3l (100 MHz, CDCl₃)

Figure S26. ¹³C NMR Spectrum of 3m (100 MHz, CDCl₃)

Figure S28. ¹³C NMR Spectrum of 3n (100 MHz, CDCl₃)

Figure S30. ¹³C NMR Spectrum of 3o (100 MHz, CDCl₃)

Figure S32. ¹³C NMR Spectrum of 3p (100 MHz, CDCl₃)

Figure S34. ¹³C NMR Spectrum of 3q (100 MHz, CDCl₃)

Figure S36. ¹³C NMR Spectrum of 3r (100 MHz, CDCl₃)

zio 200 190 180 170 160 150 140 130 120 110 100 90 60 70 60 50 40 30 20 10 0 -10 fl (sps)

Figure S38. ¹³C NMR Spectrum of 3s (100 MHz, CDCl₃)

Figure S40. ¹³C NMR Spectrum of 3t (100 MHz, CDCl₃)

Figure S42. ¹³C NMR Spectrum of 3u (100 MHz, CDCl₃)

Figure S44. ¹³C NMR Spectrum of 3v (100 MHz, CDCl₃)

Figure S45. ¹H NMR Spectrum of 3w (400 MHz, CDCl₃)

Figure S46. ¹³C NMR Spectrum of 3w (100 MHz, CDCl₃)

Figure S48. ¹³C NMR Spectrum of 4a (100 MHz, CDCl₃)

Figure S50. ¹³C NMR Spectrum of 4b (100 MHz, CDCl₃)

Figure S52. ¹³C NMR Spectrum of 4c (100 MHz, CDCl₃)

Figure S54. ¹³C NMR Spectrum of 4d (100 MHz, CDCl₃)

Figure S56. ¹³C NMR Spectrum of 4e (100 MHz, CDCl₃)

Figure S58. ¹³C NMR Spectrum of 4f (100 MHz, CDCl₃)

Figure S59. ¹H NMR Spectrum of 4g (400 MHz, CDCl₃)

Figure S60. ¹³C NMR Spectrum of 4g (100 MHz, CDCl₃)

Figure S62. ¹³C NMR Spectrum of 4h (100 MHz, CDCl₃)

Figure S64. ¹³C NMR Spectrum of 4i (100 MHz, CDCl₃)

Figure S66. ¹³C NMR Spectrum of 4j (100 MHz, CDCl₃)

Figure S68. ¹³C NMR Spectrum of 4k (100 MHz, DMSO-*d*₆)

Figure S70. ¹³C NMR Spectrum of 4l (100 MHz, CDCl₃)

Figure S72. ¹³C NMR Spectrum of 4m (100 MHz, DMSO-*d*₆)

Figure S74. ¹³C NMR Spectrum of 5 (100 MHz, CDCl₃)

Figure S76. ¹³C NMR Spectrum of 6 (100 MHz, CDCl₃)

Figure S78. ¹³C NMR Spectrum of 7 (100 MHz, CDCl₃)

G. X-ray crystallographic data

Figure S79. The Diamond diagram of 3c (thermal ellipsoids are shown at 50% probability)

Sample Preparation: A crystalline solid was obtained via slow evaporation of compound 3c in EA: hexane= 1: 5 at room temperature.

Table S1 Crystal data and structure refinement for 3c.		
Identification code	3c	
Empirical formula	$C_9H_{10}ClN_2O$	
Formula weight	197.64	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P21/c	
a/Å	10.2788(8)	
b/Å	7.8203(7)	
c/Å	12.2421(10)	
α/°	90	
β/°	100.159(8)	
$\gamma^{/\circ}$	90	
Volume/Å3	968.63(14)	
Z	4	
pcalcg/cm3	1.355	
μ/mm-1	0.355	
F(000)	412.0	
Crystal size/mm3	$0.15\times0.15\times0.15$	
Radiation	Mo Ka ($\lambda = 0.71073$)	
2Θ range for data collection/°	4.026 to 60	
Index ranges	$-13 \le h \le 14, -10 \le k \le 10, -17 \le l \le 16$	
Reflections collected	8357	
Independent reflections	2667 [Rint = 0.0702, Rsigma = 0.0650]	
Data/restraints/parameters	2667/0/120	
Goodness-of-fit on F2	1.015	
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0622, wR2 = 0.1612	
Final R indexes [all data]	R1 = 0.1121, wR2 = 0.1956	
Largest diff. peak/hole / e Å-3	0.25/-0.42	

Crystal data and structure refinement for compound **3c** (CCDC: 2132707)

Figure S80. The Diamond diagram of 3x (thermal ellipsoids are shown at 50% probability)

Sample Preparation: A crystalline solid was obtained via slow evaporation of compound 3c in EA: hexane= 1: 5 at room temperature.

Table S1 Crystal data and structure refinement for 3w.		
Identification code	3w	
Empirical formula	$C_9H_6F_4N_2O$	
Formula weight	234.16	
Temperature/K	293(2)	
Crystal system	triclinic	
Space group	P-1	
a/Å	6.2144(4)	
b/Å	8.2329(4)	
c/Å	10.3279(6)	
$\alpha/^{\circ}$	70.410(5)	
β/°	72.569(6)	
$\gamma^{/\circ}$	86.651(5)	
Volume/Å3	474.44(5)	
Z	2	
pcalcg/cm3	1.639	
μ/mm-1	0.162	
F(000)	236.0	
Crystal size/mm3	$0.15 \times 0.14 \times 0.13$	
Radiation	MoKα (λ = 0.71073)	
2Θ range for data collection/°	4.384 to 52.986	
Index ranges	$-7 \le h \le 7, -10 \le k \le 10, -12 \le l \le 12$	
Reflections collected	6312	
Independent reflections	1934 [Rint = 0.0236, Rsigma = 0.0315]	
Data/restraints/parameters	1934/0/147	
Goodness-of-fit on F2	1.055	
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0488, wR2 = 0.1287	
Final R indexes [all data]	R1 = 0.0851, wR2 = 0.1503	
Largest diff. peak/hole / e Å-3	0.16/-0.24	

Crystal data and structure refinement for compound **3w** (CCDC: 2131243)