Supporting Information

Direct Access to a,a-chlorofluoro Arylketones via Mild Electrophilic Heterohalogenation of Arylalkynes

Chuyuan Lin,^a Lu Chen,^{*a} Huaping Lin,^a Yibiao Li,^a Chengshuo Shen,^{*c} and Min Zhang^{*b}

^a School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, P. R. China
 ^b Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
 ^c Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, P. R. China

Corresponding Authors

*Email: wyuchemcl@126.com; *Email: minzhang@scut.edu.cn; *Email: shenchengshuo@sjtu.edu.cn

Table of Contents

General information	S2
Substrates Preparation	S3-S4
Typical procedure for the synthesis of 2a	S4
Control experiments	S4-S8
The transformation of products	S8
Analytical data of the obtained compounds	S8-S13
Crystal data of 2 q	S13-S14
NMR spectra of obtained compounds	S15-S57
Theoretical calculations	S58-S68
References	S68-S69

General information

Chemicals and solvents were purchased from commercial sources (Energy Chemical, J&KChemic, TCI, Fluka, Acros, SCRC) and used without further purification and used as received unless noted. All products were purified by flash chromatography on silica gel. The chemical yields referred are isolated products. ¹H, ¹³C and ¹⁹F Nuclear Magnetic Resonance (¹H, ¹³C and ¹⁹F NMR) spectra were recorded on Bruker 500 MHz NMR spectrometer using Deuterated chloroform (CDCl₃) as solvent and tetramethylsilane (TMS) as an internal standard. ¹H NMR and ¹³C NMR spectra were recorded on 500MHz MHz Bruker spectrometers. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. The used abbreviations are as follows: s (singlet), d (doublet), t (triplet), quart. (quartet), quint (quintet), m (multiplet). Multiplets which arise from accidental equality of coupling constants of magnetically non-equivalent protons are marked as virtual (virt.). High resolution mass spectra (HRMS) data were measured by ESI-microTOF II. Melting points were measured by SGW® X-4B and are not corrected. Reactions were worked with a UV light at 254 nm or 365 nm. Moreover, Aromatic Alkynes are named as 1, the final products *a*,*a*-chlorofluoroketones are named **2** respectively.

Scheme S1. Substrates employed for the reaction

Substrate preparation

Synthesis of compound 1u: In a 25 mL round-bottom flask, L(-)-Borneol **s1** (2.0 mmol), 4ethynyl-benzoic acid (2.4 mmol), DMAP (0.2 mmol), CH_2Cl_2 (10 mL) and dicyclohexylcarbodiimide (4.0 mmol) were successively added. The mixture was stirred at room temperature overnight. The reaction was quenched with aqueous NH_4Cl , extracted with EtOAc (3 × 30 mL). The combined ethyl acetate layer was washed with brine (10 mL) and dried over anhydrous Na_2SO_4 . The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = 10/1) on silica gel to afford product **1u** (384.1 mg, 68% yield) as a white solid.

Scheme S2. The general procedure synthesis experiment of 1u

Synthesis of compound 1v: In a 25 mL round-bottom flask, L-Menthol s2 (2.0 mmol), 4-ethynylbenzoic acid (2.4 mmol), DMAP (0.2 mmol), CH_2Cl_2 (10 mL) and dicyclohexylcarbodiimide (4.0 mmol) were successively added. The mixture was stirred at room temperature overnight. The reaction was quenched with aqueous NH₄Cl, extracted with EtOAc (3 × 30 mL). The combined ethyl acetate layer was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = 10/1) on silica gel to afford product 1v (341.3 mg, 60% yield) with light yellow liquid.

Scheme S3. The general procedure synthesis experiment of 1v

(1) 1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-ethynylbenzoate (1u)

White solid (192.0 mg, 68%). MP: 83-85 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 5.11 (ddd, *J* = 10.0, 3.5, 2.2 Hz, 1H), 3.23 (s, 1H), 2.53 – 2.43 (m, 1H), 2.11 (ddd, *J* = 12.9, 9.5, 4.5 Hz, 1H), 1.81 (ttd, *J* = 12.1, 4.4, 3.2 Hz, 1H), 1.74 (t, *J* = 4.5 Hz, 1H), 1.45

-1.37 (m, 1H), 1.31 (ddd, J = 12.1, 9.4, 4.4 Hz, 1H), 1.11 (dd, J = 13.9, 3.5 Hz, 1H), 0.96 (s, 3H), 0.91 (d, J = 3.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 132.0, 130.8, 129.4, 126.5, 82.9, 80.8, 79.9, 49.1, 47.9, 44.9, 36.9, 28.1, 27.4, 19.7, 18.9, 13.6.

(2) (2R,5S)-2-isopropyl-5-methylcyclohexyl 4-ethynylbenzoate (1v)

1.77 – 1.68 (m, 2H), 1.55 (dddd, J = 13.8, 12.4, 6.5, 3.3 Hz, 2H), 1.17 – 1.05 (m, 2H), 0.92 (t, J = 6.5 Hz, 7H), 0.79 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.4, 132.0, 130.8, 129.40, 126.5, 82.7, 79.9, 75.1, 47.2, 40.9, 34.3, 31.4, 26.5, 23.6, 22.0, 20.7, 16.5.

Typical procedure for the synthesis of 2

Synthesis of compound 2: A solution of alkynes **1** (1.0 mmol), Selectfluor (2.2 mmol, 2.2 equiv), NaCl (1.2 mmol, 1.2 equiv), in CF₃CH₂OH/H₂O (2/1, 3.0 ml) were stirred under air atmosphere at 70 °C (heating mantle) for 3-4 h. After completion of the reaction, the solvent was removed under reduced pressure by rotary evaporation. Then, the product **2** was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 10:1).

Scheme S4. The general procedure synthesis experiment of a,a-chlorofluoro ketones

Control experiments

- (1) 2,2-dichloro-1-phenylethan-1-one (4a')
- CI CI

Light yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (dd, J = 8.4, 1.1 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.9 Hz, 2H), 6.71 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 185.8, 134.5, 131.2, 129.7, 128.9, 67.7.

(2) 2-fluoro-1-phenylethan-1-one (5a)

 \sim

Light yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 5.56 (d, J = 46.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 193.5 (d, $J_{C-F} = 7.5$ Hz), 134.2, 133.7, 129.0, 127.8 (d, $J_{C-F} = 1.3$ Hz),

83.6 (d, $J_{C-F} = 90.6$ Hz).

Scheme S5. Control experiments

Figure S2. ¹³C-NMR spectrum of 4a'

Figure S4. ¹³C-NMR spectrum of 5a

Figure S5. GC-MS analysis of control experiment (a)

Figure S6.GC-MS analysis of control experiment (d)

Figure S7. GC-MS analysis of control experiment (e)

The transformation of products General procedure for compound 3

Scheme S6. The general procedure synthesis experiment of 3

(Z)-2-fluoro-1-phenylbut-2-en-1-one: A solution of 2z (1.0 mmol), LiBr (2.4 mmol, 2.4 equiv), Li₂CO₃ (2.4 mmol, 2.4 equiv), in DMF (4.0 mL) was stirred under air atmosphere at 130 °C (heating mantle) for 8 h in Fig. 5. After completion of the reaction, the solvent was removed under reduced pressure by rotary evaporation. Then, the compound **3** was obtained (113.3 mg, 69% yield) by flash column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 5:1).

Analytic data of the obtained compounds

(1) 2-chloro-2-fluoro-1-phenylethan-1-one (2a)

Light yellow oil (139.8 mg, 81%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.9 Hz, 2H), 6.84 (d, J = 50.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 187.3 (d, J_{C-F} = 22.5 Hz), 134.7,

131.1, 129.6 (d, $J_{C-F} = 2.5$ Hz), 128.9, 95.1 (d, $J_{C-F} = 256.2$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ - 146.6 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₇FClO [M+H]⁺:173.0164; found:173.0160.

(2) 2-chloro-2-fluoro-1-(p-tolyl)ethan-1-one (**2b**)

Light yellow oil (128.8 mg, 69%, purity = 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.82 (d, J = 50.8 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 186.9 (d, J_{C-F} = 22.5 Hz), 146.0, 129.7 (d, J_{C-F} = 2.5 Hz), 129.6, 128.6, 95.1 (d, J_{C-F} = 256.3 Hz), 21.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.4 (d, J = 51.81 Hz, 1F). HRMS (ESI-TOF): calcd. for C₉H₉FCIO [M+K]⁺: 224.9879; found:224.9890.

(3) 2-chloro-2-fluoro-1-(m-tolyl)ethan-1-one (2c)

Light yellow oil (126.9 mg, 68%, purity = 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 7.8 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 50.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 187.4 (d, $J_{C-F} =$ 22.5 Hz), 138.9, 135.6, 131.1, 130.0 (d, $J_{C-F} = 2.5$ Hz), 128.7, 126.8 (d, $J_{C-F} = 2.5$ Hz), 94.9 (d, $J_{C-F} =$ F = 255.0 Hz), 21.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.7 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₉H₈FClOK [M + K]⁺: 224.9879; found: 224.9878.

(4) 2-chloro-2-fluoro-1-(o-tolyl)ethan-1-one (2d)

Light yellow oil (121.3 mg, 65%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.1 Hz, 1H), 7.36 – 7.28 (m, 2H), 6.82 (d, J = 51.0 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.7 (d, $J_{C-F} = 21.3$ Hz), 141.0, 133.1, 132.5, 131.3, 129.2 (d, $J_{C-F} = 3.8$ Hz), 125.7, 94.9 (d, $J_{C-F} = 256.3$ Hz), 21.4; ¹⁹F NMR (471 MHz, CDCl₃) δ -145.2 (d, J = 47.1 Hz, 1F). HRMS (ESI-TOF): calcd. for C₉H₈FclONa [M+Na]⁺: 209.0140; found : 209.0134.

(5) 1-(4-butylphenyl)-2-chloro-2-fluoroethan-1-one (2e)

Light yellow oil (162.4 mg, 71%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 6.83 (d, J = 50.8 Hz, 1H), 2.69 (t, J = 10.0 Hz, 2H), 1.63 (m, 2H), 1.37 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 187.0 (d, $J_{C-F} = 21.3$ Hz), 150.9, 129.8 (d, $J_{C-F} = 2.5$ Hz), 129.0, 128.8, 95.2 (d, $J_{C-F} = 256.3$ Hz), 35.8, 33.0, 22.3, 13.8; ¹⁹F NMR (471 MHz, CDCl₃) δ - 146.3 (d, J = 51.81 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₂H₁₄FclONa [M+Na]⁺ : 251.0609; found : 251.0606.

(6) 1-(4-(tert-butyl)phenyl)-2-chloro-2-fluoroethan-1-one (2f)

Light yellow oil (148.6 mg, 65%, purity = 98%). ¹H NMR (500 MHz, CDCl₃) δ ¹Bu Light yellow oil (148.6 mg, 65%, purity = 98%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 50.8 Hz, 1H), 1.35 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 186.9 (d, J_{C-F} = 22.5 Hz), 158.9, 129.6 (d, J_{C-F} = 2.5 Hz), 128.5, 125.9, 95.2 (d, J_{C-F} = 256.2 Hz), 35.3, 30.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.4 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₂H₁₅FClO [M+H]⁺ : 229.0790; found : 229.0792.

(7) 2-chloro-2-fluoro-1-(4-methoxyphenyl)ethan-1-one (2g)

Yellow oil (156.0 mg, 77%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.5 Hz, 2H), 7.00 – 6.95 (m, 2H), 6.79 (d, J = 50.9 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 185.9 (d, J_{C-F} = 22.5 Hz), 164.7, 132.1 (d, J_{C-F} = 2.5 Hz), 123.9, 114.2, 95.4 (d, J_{C-F} = 255.0 Hz), 55.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -145.5 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₉H₉FClO₂ [M+H]⁺: 203.0270; found : 203.0270.

(8) 2-chloro-1-(4-ethylphenyl)-2-fluoroethan-1-one (2h)

Light yellow oil (132.4 mg, 66%, purity = 99%). ¹H NMR(500 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 6.82 (d, J = 55.0 Hz, 1H), 2.74 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 188.0 (d, $J_{C-F} = 21.2$ Hz), 152.1, 129.8 (d, $J_{C-F} = 2.5$ Hz), 128.8, 128.4, 95.1 (d, $J_{C-F} = 255.0$ Hz), 29.1, 15.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.4 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₀H₁₁FClO [M+H]⁺: 201.0477; found : 201.0479.

(9) methyl 4-(2-chloro-2-fluoroacetyl)benzoate (2i)

White solid (168.4 mg, 73%, purity>99.5%); MP: 77-80 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.20 – 8.08 (m, 4H), 6.82 (d, J = 50.7 Hz, 1H), 3.96 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 186.92(d, $J_{C-F} = 23.8$ Hz), 165.8, 135.2, 134.3 (d, $J_{C-F} = 2.5$ Hz), 129.9, 129.6 (d, $J_{C-F} = 2.5$ Hz), 95.3 (d, $J_{C-F} = 256.3$ Hz),

52.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.6 (d, J = 47.1 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₀H₉FClO₃ [M+H]⁺ : 231.0218; found : 231.0211.

(10) methyl 3-(2-chloro-2-fluoroacetyl)benzoate (2j)

Light yellow oil (173.0 mg, 75%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 8.30 (d, J = 8.9 Hz, 1H), 8.25 (d, J = 8.6 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 6.87 (d, J = 50.6 Hz, 1H), 3.95 (d, J = 0.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 186.6 (d, $J_{C-F} = 22.5$ Hz), 165.7, 135.4, 133.7 (d, $J_{C-F} = 2.5$ Hz), 131.4, 131.0, 130.6 (d, $J_{C-F} = 2.5$ Hz), 129.2, 95.1 (d, $J_{C-F} = 256.2$ Hz), 52.6; ¹⁹F NMR (471 MHz, CDCl₃) δ - 146.9 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₀H₉FClO₃ [M+H]⁺ : 231.0219; found : 231.0219.

(11) 1-(4-bromophenyl)-2-chloro-2-fluoroethan-1-one (2k)

Light yellow oil (201.2 mg, 80%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 2H), 7.70 – 7.65 (m, 2H), 6.76 (d, J = 50.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 186.6 (d, $J_{C-F} = 23.7$ Hz), 132.3, 131.1 (d, $J_{C-F} = 2.5$ Hz), 130.3, 129.7, 95.4 (d, $J_{C-F} = 256.2$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -146.0 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₆FClBrO [M+H]⁺ : 250.9269; found : 250.9274.

(12) 1-(3-bromophenyl)-2-chloro-2-fluoroethan-1-one (2l)

 $\begin{array}{c} \mbox{Iight yellow oil (181.1 mg, 72\%, purity>99.5\%). ^{1}H NMR (500 MHz, CDCl_3) \delta \\ 8.19 (s, 1H), 8.03 - 7.97 (m, 1H), 7.78 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 6.78 (d, J = 50.7 Hz, 1H); ^{13}C NMR (125 MHz, CDCl_3) \delta 186.2 (d, J = 10.1 Mz, 10.1 Mz,$

 $J_{C-F} = 23.7 \text{ Hz}$), 137.6, 132.7 (d, $J_{C-F} = 2.5 \text{ Hz}$), 132.5 (d, $J_{C-F} = 2.5 \text{ Hz}$), 130.4, 128.2 (d, $J_{C-F} = 2.5 \text{ Hz}$), 123.1, 95.2 (d, $J_{C-F} = 256.2 \text{ Hz}$); ¹⁹F NMR (471 MHz, CDCl₃) δ -145.4 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₆FClBrO [M+H]⁺ : 250.9269; found : 250.9275.

(13) 1-(2-bromophenyl)-2-chloro-2-fluoroethan-1-one (**2m**)

Light yellow oil (188.6 mg, 75%, purity = 98%). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, J = 7.7, 1.3 Hz, 1H), 7.58 (dd, J = 7.5, 1.9 Hz, 1H), 7.47 – 7.38 (m, 2H), 6.96 (d, J = 50.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 190.7 (d, $J_{C-F} = 23.7$ Hz), 135.4, 133.9, 133.2, 130.3 (d, $J_{C-F} = 2.5$ Hz), 127.5, 119.8, 94.6 (d, $J_{C-F} = 256.2$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -145.7 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₆FClBrO [M+H]⁺ : 250.0469; found : 250.0475.

(14) 2-chloro-1-(4-chlorophenyl)-2-fluoroethan-1-one (2n)

Light yellow oil (157.3 mg, 76%, purity = 98%). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 2H), 7.54 – 7.45 (m, 2H), 6.77 (d, J = 50.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 186.3 (d, J_{C-F} = 22.5 Hz), 141.4, 131.1, 131.1, 129.3,

95.4 (d, $J_{C-F} = 256.2$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -145.9 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₆FCl₂O [M+H]⁺ : 206.9774; found : 206.9773.

(15) 2-chloro-1-(3-chlorophenyl)-2-fluoroethan-1-one (20)

Light yellow oil (128.4 mg, 62%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ8.04 (s, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 6.78 (d, J = 50.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 186.3 (d, J_{C-F} = 23.8 Hz), 135.3, 134.6, 132.6, 130.2, 129.6 (d, J_{C-F} = 2.5 Hz), 127.7 (d, J_{C-F} = 2.5 Hz), 96.3 (d, $J_{C-F} = 256.3 \text{ Hz}$; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.3 (d, J = 51.81 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₆FCl₂O [M+Na]⁺ : 228.9594; found : 228.9588.

(16) 2-chloro-1-(2-chlorophenyl)-2-fluoroethan-1-one (**2p**)

Light yellow oil (128.4 mg, 62%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ

7.68 – 7.64 (m, 1H), 7.53 – 7.45 (m, 2H), 7.40 (td, *J* = 7.7, 1.6 Hz, 1H), 7.00 (d, *J* = 50.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 190.0 (d, J_{C-F} = 23.7 Hz), 133.4, 133.3, 131.9, 130.7, 130.6 (d, $J_{C-F} = 2.5$ Hz), 127.1, 95.1 (d, $J_{C-F} = 255.0$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -145.9 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₅FCl₂O Na[M + Na]⁺: 228.9594; found : 228.9596.

(17) 1-([1,1'-biphenyl]-4-yl)-2-chloro-2-fluoroethan-1-one (2q)

White solid (184.0 mg, 74%, purity = 99%); MP: 77-80 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, *J* = 8.2 Hz, 2H), 7.76 – 7.72 (m, 2H), 7.64 (dt, *J* = 8.3, 1.8 Hz, 2H), 7.52 - 7.47 (m, 2H), 7.46 - 7.41 (m, 1H), 6.86 (d, J = 50.8 Hz, 1H); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 186.9 (d, J_{C-F} = 22.5 Hz), 147.4, 139.3, 130.3 (d, J_{C-F} = 2.5 Hz), 129.7, 129.1, 128.7, 127.5, 127.3, 95.3 (d, J_{C-F} = 255.0 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -146.3 (d, J = 47.1 Hz, 1F). HRMS (ESI-TOF): calcd. for $C_{14}H_{11}FCIO [M+H]^+$: 249.0477; found : 249.0476.

(18) 2-chloro-2-fluoro-1-(4-fluorophenyl)ethan-1-one (**2r**)

Light yellow oil (135,3 mg, 71%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.10 (m, 2H), 7.23 – 7.17 (m, 2H), 6.76 (d, J = 50.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 186.0 (d, J_{C-F} = 23.7 Hz), 166.6 (d, J_{C-F} = 256.2 Hz), 132.6 (dd, $J_{C-F} = 8.7$ Hz, 2.5 Hz), 127.4, 116.3 (d, $J_{C-F} = 22.5$ Hz), 96.5 (d, $J_{C-F} = 256.2$ Hz); ¹⁹F NMR

(471 MHz, CDCl₃) δ -101.30 – -101.25 (m, 1F), -145.5 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₆F₂ClO [M+H]⁺ : 191.0069; found : 191.0067.

(19) 2-chloro-2-fluoro-1-(3-fluorophenyl)ethan-1-one (2s)

Light yellow oil (114.3 mg, 60%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 9.2 Hz, 1H), 7.51 (td, J = 8.0, 5.5 Hz, 1H), 7.37 (tdd, J = 8.2, 2.6, 0.9 Hz, 1H), 6.78 (d, J = 50.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 186.3 (dd, $J_{C-F} = 23.8$, 2.5 Hz), 162.7 (d, $J_{C-F} = 247.5$ Hz), 133.0 (dd, $J_{C-F} = 6.3$, 1.3 Hz), 130.6 (d, $J_{C-F} = 7.5$ Hz), 125.5 (t, $J_{C-F} = 2.5$ Hz), 121.9 (d, $J_{C-F} = 21.3$ Hz), 116.5 (dd, $J_{C-F} = 23.8$, 2.5 Hz), 95.3 (d, $J_{C-F} = 256.3$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -110.5 – -110.6 (m, 1F), -146.3 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₃F₂ClOK [M+K]⁺ : 228.9629; found : 228.9634.

(20) 2-chloro-2-fluoro-1-(2-fluorophenyl)ethan-1-one (2t)

Light yellow oil (114.3 mg, 60%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (t, J = 6.7 Hz, 1H), 7.69 – 7.58 (m, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.19 (dd, J = 10.9, 8.7 Hz, 1H), 6.98 (d, J = 50.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 185.6 (dd, $J_{C-F} = 22.5$, 5.0 Hz), 161.5 (d, $J_{C-F} = 253.8$ Hz), 136.5 (d, $J_{C-F} = 8.8$ Hz), 131.7, 125.1 (d, $J_{C-F} = 2.5$ Hz), 120.6 (d, $J_{C-F} = 12.5$ Hz), 116.7 (d, $J_{C-F} = 22.5$ Hz), 95.2 (dd, $J_{C-F} = 250.0$, 12.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -107.5 – -107.6 (m, 1F), -148.4 (dd, J = 51.8, 9.4 Hz, 1F). HRMS (ESI-TOF): calcd. for C₈H₃F₂ClOK[M+K]⁺ : 228.9628; found : 228.9630.

(21) 1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-(2-chloro-2-fluoroacetyl)benzoate (2u)

Light yellow oil (264.6 mg, 75%, purity = 98%). ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 8.7 Hz, 2H), 8.14 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 50.7 Hz, 1H), 5.14 (ddd, J = 10.0, 3.5, 2.2 Hz, 1H), 2.55 – 2.45 (m, 1H), 2.10 (ddd, J = 13.5, 9.5, 4.4 Hz, 1H), 1.82 (ttd, J = 12.2, 4.5, 3.2 Hz, 1H),

1.76 (t, J = 4.5 Hz, 1H), 1.43 (dddd, J = 13.0, 12.0, 4.5, 2.2 Hz, 1H), 1.31 (ddd, J = 12.2, 9.5, 4.7 Hz, 1H), 1.13 (dd, J = 13.9, 3.5 Hz, 1H), 0.97 (s, 3H), 0.92 (d, J = 2.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 187.0 (d, $J_{C-F} = 22.5$ Hz), 165.5, 136.0, 134.2 (d, $J_{C-F} = 1.2$ Hz), 129.8, 129.6 (d, $J_{C-F} = 2.5$ Hz), 95.3 (d, $J_{C-F} = 255$ Hz), 81.5, 49.1, 47.9, 44.9, 36.8, 28.1, 27.4, 19.7, 18.9, 13.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.5 (dd, J = 51.8, 9.4 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₉H₂₃FClO₃[M+H]⁺ : 353.1314 ; found :353.1310.

(22) (2R,5S)-2-isopropyl-5-methylcyclohexyl 4-(2-chloro-2-fluoroacetyl)benzoate (2v)

Light yellow oil (170.4 mg, 48%, purity = 97%). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.6 Hz, 2H), 8.13 (d, J = 8.5 Hz, 2H), 6.82 (dd, J = 50.7, 1.4 Hz, 1H), 4.96 (td, J = 10.9, 4.4 Hz, 1H), 2.13 (dtd, J = 12.0, 4.4, 3.9, 1.8 Hz, 1H), 1.93 (ddq, J = 10.0, 7.0, 3.6, 2.8 Hz, 1H), 1.78 – 1.71 (m,

2H), 1.56 (dq, J = 12.0, 3.4 Hz, 2H), 1.18 – 1.08 (m, 2H), 0.93 (t, J = 7.3 Hz, 7H), 0.79 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 187.00 (dd, $J_{C-F} = 23.8$, 1.2 Hz), 164.8, 136.0, 134.1 (d, $J_{C-F} = 1.2$ Hz), 129.9, 129.6 (d, $J_{C-F} = 2.5$ Hz), 95.3 (dd, $J_{C-F} = 256.3$, 5.0 Hz), 75.8, 47.2, 40.8, 34.2, 31.4, 26.5, 23.6, 22.0, 20.7, 16.5; ¹⁹F NMR (471 MHz, CDCl₃) δ -146.6 (dd, J = 51.8, 23.6 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₉H₂₅FClO₃[M+H]⁺ : 355.1470; found :355.1469.

(23) 2-chloro-2-fluoro-1-(thiophen-2-yl)ethan-1-one (2w)

Light yellow oil (78.6 mg, 44%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.05 - 8.00 (m, 1H), 7.83 (d, J = 4.9 Hz, 1H), 7.22 (t, J = 5.0 Hz, 1H), 6.66 (d, J = 50.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 181.2 (d, $J_{C-F} = 23.7$ Hz), 137.0 (d, $J_{C-F} = 2.5$ Hz), 136.5, 135.2 (d, $J_{C-F} = 5.0$ Hz), 128.7, 95.8 (d, $J_{C-F} = 256.2$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ - 143.6 (d, J = 51.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₆H₃FClSO[M+H]⁺ : 178.9728; found : 178.9727.

(24) 2-chloro-2-fluoro-1,2-diphenylethan-1-one (2x)

Light yellow oil (74.6 mg, 30%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 2H), 7.69 – 7.63 (m, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.50 – 7.39 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 188.7 (d, $J_{C-F} = 33.7$ Hz), 136.3 (d, $J_{C-F} = 22.5$ Hz), 133.8, 132.0 (d, $J_{C-F} = 2.5$ Hz), 130.6 (d, $J_{C-F} = 2.5$ Hz), 130.3, 128.7, 128.4, 125.7 (d, $J_{C-F} = 62.5$ Hz), 109.8 (d, $J_{C-F} = 255.0$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -106.5 (s, 1F). HRMS (ESI-TOF): calcd. for C₁₄H₁₀FCIONa[M+Na]⁺ : 271.0296 ; found : 271.0296.

(25) 2-chloro-2-fluoro-3-hydroxy-1-phenylpropan-1-one (2y)

Light yellow oil (113.5 mg, 56%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, J = 8.3 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.9 Hz, 2H), 4.39 (dd, J = 23.6, 12.9 Hz, 1H), 4.17 (t, J = 12.7 Hz, 1H), 3.16 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 189.9 (d, $J_{C-F} = 28.7$ Hz), 134.5, 131.5 (d, $J_{C-F} = 2.5$ Hz), 130.5 (d, $J_{C-F} = 5.0$ Hz), 128.5, 106.6 (d, $J_{C-F} = 261.2$ Hz), 66.6 (d, $J_{C-F} = 25.0$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -126.3 (dd, J = 14.1, 23.5 Hz, 1F). HRMS (ESI-TOF): calcd. for C₉H₉FClO₂[M+H]⁺ : 203.0270 ; found : 203.0271.

(26) 2-chloro-2-fluoro-1-phenylbutan-1-one (2z)

Light yellow oil (86.3 mg, 43%, purity>99.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 2.56 - 2.37 (m, 2H), 1.16 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.8 (d, J_{C-F} = 28.7 Hz), 133.8, 132.0 (d, J_{C-F} = 2.5 Hz), 130.5 (d, J_{C-F} = 5.0 Hz), 128.4, 110.8 (d, J_{C-F} = 258.7 Hz), 32.8 (d, J_{C-F} = 22.5 Hz), 7.4 (d, J_{C-F} = 3.7 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -116.9 (d, J = 7.4 Hz), 130.5 (d, J_{C-F} = 2.5 Hz), 130.5 (d, J_{C-F} = 2.5 Hz), 130.5 (d, J_{C-F} = 5.0 Hz), 128.4, 110.8 (d, J_{C-F} = 258.7 Hz), 32.8 (d, J_{C-F} = 22.5 Hz), 7.4 (d, J_{C-F} = 3.7 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -116.9 (d, J = 7.4 Hz), 128.4, 110.8 (d, J_{C-F} = 2.5 Hz), 130.5 (d, J_{C-F} = 3.7 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -116.9 (d, J = 7.4 Hz), 128.4, 110.8 (d, J_{C-F} = 2.5 Hz), 128.4

18.8 Hz, 1F). HRMS (ESI-TOF): calcd. for C₁₀H₁₁FClO[M+H]⁺ : 201.0477 ; found : 201.0480.

Crystal data of 2q

Crystallographic data of compound 2q

White block-like single crystals of 2q were grown by layering DCM at ambient temperature. An ORTEP representation of the structure is shown below.

Figure S8. Molecular structure of 2q (CCDC:2105099)

Identification code	2q
Empirical formula	C ₁₄ H ₁₀ ClFO
Formula weight	248.67
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	5.1673(5)
b/Å	10.7029(11)
c/Å	10.6241(9)
$\alpha/^{\circ}$	90
β/°	102.439(9)
γ/°	90
Volume/Å ³	573.78(9)
Z	2
$ ho_{calc}g/cm^3$	1.439
μ/mm^{-1}	0.324
F(000)	256.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	^o 5.468 to 59.024
Index ranges	$-7 \le h \le 4, -14 \le k \le 11, -11 \le l \le 13$
Reflections collected	2900
Independent reflections	2014 [$R_{int} = 0.0226, R_{sigma} = 0.0429$]
Data/restraints/parameters	2014/1/155
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0364, wR_2 = 0.0806$
Final R indexes [all data]	$R_1 = 0.0420, wR_2 = 0.0848$
Largest diff. peak/hole / e Å-3	0.18/-0.24
Flack parameter	0.11(9)

Table S1 Crystal data and structure refinement for 2q

NMR spectra of the obtained compounds ¹H NMR spectrum for 2a

¹³C NMR spectrum for 2a

¹⁹F NMR spectrum for 2a

¹H NMR spectrum for 2b

¹³C NMR spectrum for 2b

¹⁹F NMR spectrum for 2b

¹H NMR spectrum for 2c

¹³C NMR spectrum for 2c

¹H NMR spectrum for 2d

¹³C NMR spectrum for 2d

¹⁹F NMR spectrum for 2d

¹³C NMR spectrum for 2e

¹H NMR spectrum for 2f

¹⁹F NMR spectrum for 2f

¹³C NMR spectrum for 2g

¹H NMR spectrum for 2h

¹⁹F NMR spectrum for 2h

¹³C NMR spectrum for 2i

¹H NMR spectrum for 2j

¹³C NMR spectrum for 2j

¹⁹F NMR spectrum for 2j

¹³C NMR spectrum for 2k

¹H NMR spectrum for 2l

¹³C NMR spectrum for 2l

¹⁹F NMR spectrum for 21

¹H NMR spectrum for 2m

¹³C NMR spectrum for 2m

¹H NMR spectrum for 2n

¹³C NMR spectrum for 2n

¹⁹F NMR spectrum for 2n

¹³C NMR spectrum for 20

¹H NMR spectrum for 2p

¹³C NMR spectrum for 2p

¹⁹F NMR spectrum for 2p

¹H NMR spectrum for 2q

¹³C NMR spectrum for 2q

¹H NMR spectrum for 2r

¹³C NMR spectrum for 2r

¹⁹F NMR spectrum for 2r

						-101 25	-101.26	-101.27 -101.27	-101.29	L-101.30		-145.47	~-145.58					
	F																	
									an a	l	******		L					
0 -10	-20 -	-30 -40	-50	-60	-70	-80	-90	-100 fl (ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

¹H NMR spectrum for 2s

¹³C NMR spectrum for 2s

¹⁹F NMR spectrum for 2t

¹H NMR spectrum for 2u

¹³C NMR spectrum for 2u

¹H NMR spectrum for 2v

¹³C NMR spectrum for 2v

¹⁹F NMR spectrum for 2v

¹³C NMR spectrum for 2w

¹⁹F NMR spectrum for 2w

¹H NMR spectrum for 2x

¹³C NMR spectrum for 2x

¹⁹F NMR spectrum for 2x

¹³C NMR spectrum for 2y

¹⁹F NMR spectrum for 2z

¹H NMR spectrum for 1u

¹³C NMR spectrum for 1u

¹H NMR spectrum for 1v

¹³C NMR spectrum for 1v

¹³C NMR spectrum for 3

Theoretical calculations

General information

Density functional theory (DFT) calculations were carried out using Gaussian 09 program ^[1]. Geometrical optimization calculations were carried out at the PBE0-D3(BJ) ^{[2], [3]}/def2-TZVPD ^{[4], [5]} level with the SMD continuum solvent model ^[6] for CF₃CH₂OH without any symmetry assumptions unless otherwise stated. Harmonic vibration frequency calculations were performed at the same level for verifying the resulting geometries as local minima (with all the frequencies real) or saddle points (with only one imaginary frequency). The assignment of the saddle points was performed using the intrinsic reaction coordinate (IRC) calculations. Free energy of **1a**, Cl⁻, F⁻ and H₂O are set as 0 kcal mol⁻¹. Free energy of H⁺ was calculated in H₅O₂⁺ form.

Energies of Stationary Points

_

Supplementary Table 1. Electronic energies (*E*), zero-point energy corrected energies (E + ZPE), electronic and thermal enthalpies (*H*), Gibbs free energies (*G*) of the stationary points calculated at the PBE0-D3(BJ)/def2-TZVPD level of theory with the SMD continuum solvent model for CF₃CH₂OH.

	E (Hartree)	E + ZPE (Hartree)	H (Hartree)	G (Hartree)
1a	-308.145566	-308.035683	-308.028339	-308.066095
Selectfluor	-943.834859	-943.610345	-943.600049	-943.644864
2a	-943.255352	-943.133098	-943.122757	-943.169445
4 a	-844.072998	-843.943010	-843.933415	-843.977988
4a'	-1303.531756	-1303.411057	-1303.400373	-1303.448211
TS-A	-1404.046970	-1403.824877	-1403.812409	-1403.863591
В	-559.773545	-559.771679	-559.768302	-559.792988
С	-768.013556	-767.900672	-767.891938	-767.934296
D	-844.452655	-844.310068	-844.300282	-844.344445
Ε	-844.058501	-843.928826	-843.919077	-843.964204
TS-F	-1787.874990	-1787.521946	-1787.501286	-1787.572515
G	-943.664972	-943.529935	-943.519535	-943.565673
ТЅ-Н	-1403.838584	-1403.706355	-1403.693399	-1403.747983
Ι	-1303.941435	-1303.807685	-1303.797020	-1303.844106
J	-844.285895	-844.067130	-844.057595	-844.100814
H ₂ O	-76.390849	-76.369615	-76.365835	-76.387263
$\mathrm{H_{5}O_{2}^{+}}$	-153.221074	-153.163412	-153.158076	-153.187721
Cl-	-460.232561	-460.232561	-460.230200	-460.247583

Table S	52
---------	----

1a			
————————————————————————————————————			
С	-2.19841300	-0.00003700	-0.00007000
С	-1.50322900	1.20231200	-0.00004500
С	-0.11852600	1.20752500	0.00000500
С	0.58657200	0.00002600	0.00003300
С	-0.11847200	-1.20750400	0.00000700
С	-1.50317400	-1.20235400	-0.00004300
С	2.01124300	0.00006100	0.00009700
С	3.21547300	0.00007400	0.00010000
Н	-3.28274700	-0.00006200	-0.00011000
Н	-2.04301100	2.14264100	-0.00006500
Н	0.42792200	2.14349700	0.00002600
Н	0.42801900	-2.14345200	0.00002900
Н	-2.04291400	-2.14270800	-0.00006100
Н	4.28388800	-0.00053100	-0.00032500

Cartesian coordinates of the optimized geometries

Selectfluor

С	0.07711300	-0.39570100	1.26500700
С	0.02425900	-0.54488600	-1.17271200
С	0.71650500	1.52310700	-0.09186000
С	2.14655600	1.00528300	0.11988000
Ν	-0.22485300	0.35255400	0.00247400
С	1.46831300	-1.02960400	1.11905600
С	1.53266300	-0.83085300	-1.24064900
С	-1.59744700	0.90940700	0.00135000
Cl	-2.84543000	-0.33540100	-0.00023600
Н	0.02740400	0.33328300	2.07381800
Н	-0.70153700	-1.14304100	1.40432000
Н	-0.55832700	-1.44941700	-1.00925500
Н	-0.34683700	-0.03007000	-2.05857100
Н	0.56669000	1.95678000	-1.08043000
Н	0.41673400	2.24315100	0.66856200
Н	2.50837900	1.28296500	1.11050800

Н	2.80398000	1.45806700	-0.62296500
Н	2.03063300	-0.87528200	2.04043000
Н	1.38059100	-2.10335900	0.94939700
Н	1.98807200	-0.27684600	-2.06222400
Н	1.68772300	-1.89490100	-1.42093500
Н	-1.71561800	1.51457500	0.89737400
Н	-1.71334200	1.51221900	-0.89679000
Ν	2.19485300	-0.44495900	-0.00099800

2a			
O H F			
С	-3.52627700	-0.33744300	-0.00957300
С	-3.08964400	0.95492900	0.26030300
С	-1.74039300	1.24921200	0.21815500
С	-0.81244100	0.24947600	-0.08384600
С	-1.25650100	-1.04732200	-0.34923600
С	-2.61098200	-1.33430800	-0.31724900
С	0.61292700	0.62418000	-0.13307900
С	1.62913200	-0.53182700	-0.17474200
0	0.99011200	1.77208200	-0.15126500
F	1.41500400	-1.35242200	0.89807000
Cl	3.28682000	0.05350500	-0.12166300
Н	-4.58564900	-0.56731800	0.02027300
Н	-3.80561400	1.73165600	0.50313000
Н	-1.38669600	2.25234000	0.42542600
Н	-0.55733400	-1.83693100	-0.59446700
Н	-2.95262000	-2.34014300	-0.53224800
Н	1.52111300	-1.11544100	-1.09075500

a

С	-3.40376100	-0.34141900	-0.00004200
С	-2.93169100	0.96601700	-0.00004100
С	-1.57041300	1.20836200	-0.00000600
С	-0.66530400	0.14565300	0.00002800
С	-1.14615300	-1.16439000	0.00002600
С	-2.51088800	-1.40400300	-0.00000900

С	0.78418300	0.45919800	0.00006500
С	1.72836900	-0.71989800	0.00002900
Cl	3.43043900	-0.24156500	-0.00002300
0	1.18868200	1.60261900	0.00001400
Н	-4.47145600	-0.53171400	-0.00007000
Н	-3.62901100	1.79619600	-0.00006700
Н	-1.19155600	2.22358000	-0.00000500
Н	-0.46528800	-2.00707500	0.00005200
Н	-2.87805400	-2.42389200	-0.00000900
Н	1.55122400	-1.33427700	0.88412600
Н	1.55116900	-1.33427300	-0.88405900

4a'

CI ^H			
С	3.67843100	-0.35720300	-0.19876500
С	3.29646500	0.84219900	0.39148800
С	1.95908400	1.18260200	0.45707600
С	0.98711100	0.32475800	-0.06401900
С	1.37752800	-0.87989000	-0.65115800
С	2.71957400	-1.21482600	-0.71921800
С	-0.42201000	0.75574100	0.02863000
С	-1.50390200	-0.26410200	-0.35914600
0	-0.74405200	1.85491000	0.41321900
Cl	-3.05045600	0.51385600	-0.65841800
Cl	-1.62252200	-1.43375300	0.97736600
Н	4.72821300	-0.62387400	-0.25209700
Н	4.04540400	1.51028500	0.80105100
Н	1.64853500	2.11369200	0.91577900
Н	0.64964700	-1.56625600	-1.06479100
Н	3.01709800	-2.14916700	-1.18080800
Н	-1.24955100	-0.82138600	-1.25631700

TS-A			
Ν	-0.95445600	0.09323800	-0.00345900
С	1.06778200	-0.28239100	-1.27004800
С	1.08459500	-0.45661100	1.17079700
С	0.82371200	1.71931100	0.10109300
С	-0.68133200	1.51151000	-0.13390100
Ν	1.50908900	0.38134500	0.00055400
С	-0.41874400	-0.64867500	-1.12978900
С	-0.45140700	-0.42286500	1.25554200
С	2.97015700	0.65194700	0.00553700
Cl	3.93776100	-0.81641400	-0.00020300
F	-2.81201800	-0.12453400	-0.00245500
Н	1.24679900	0.43184200	-2.07255600
Н	1.67930000	-1.16885400	-1.42296800
Н	1.45500100	-1.46464900	0.99816100
Н	1.54828400	-0.03974500	2.06331100
Н	1.03818000	2.10235700	1.09748000
Н	1.25989000	2.37471100	-0.65094600
Н	-0.97637000	1.83254400	-1.13132400
Н	-1.25387100	2.06100100	0.61141800
Н	-0.95853000	-0.37197500	-2.03399600
Н	-0.55097600	-1.71227000	-0.93846200
Н	-0.79206500	0.22960900	2.05766800
Н	-0.83867100	-1.42772100	1.41438100
Н	3.20412100	1.22671600	-0.88775900
Н	3.19887700	1.21467300	0.90764000
Cl	-4.77322100	-0.35551900	0.00226200

B

Cl-F

F	0.00000000	0.00000000	-1.06096200
Cl	0.00000000	0.00000000	0.56168600

С			
⟨+_H CI			
С	-3.14729800	-0.00025900	-0.27850400
С	-2.48637100	-1.22640600	-0.14681500
С	-1.14558900	-1.24237200	0.11817400
С	-0.45081800	0.00023000	0.25394200
С	-1.14597100	1.24256900	0.11802600
С	-2.48674800	1.22611700	-0.14691700
С	0.86849900	0.00043900	0.50275900
С	2.13028300	-0.00003800	0.75620300
Cl	3.30360800	-0.00005000	-0.48807400
Н	-4.21105300	-0.00044500	-0.49049300
Н	-3.03747000	-2.15162800	-0.25597300
Н	-0.59147000	-2.16615600	0.22824700
Н	-0.59215200	2.16654300	0.22804000
Н	-3.03813700	2.15115700	-0.25613500
Н	2.49303400	-0.00029600	1.78236100

D

, OH₂			
CI H			
С	-3.42080700	-0.28626000	-0.08956800
С	-2.86758500	0.96284300	-0.33554000
С	-1.49610100	1.14293600	-0.27356900
С	-0.66821500	0.06324100	0.03984500
С	-1.22782800	-1.18789100	0.30452300
С	-2.59873800	-1.35926300	0.22983300
С	0.77704200	0.22109100	0.06955000
С	1.69852200	-0.66764800	-0.27247800
Cl	3.37810100	-0.38699600	-0.14984000
Н	-4.49507200	-0.42327200	-0.14035300
Н	-3.50653500	1.80235500	-0.58437800
Н	-1.06688100	2.11548900	-0.48391100
Н	-0.58835300	-2.01783500	0.58217500
Н	-3.02883400	-2.33255600	0.43647400
Н	1.41202400	-1.63137600	-0.66936400
Н	0.92153300	1.79834500	1.36081400
Н	2.15984900	1.69274400	0.34405300
0	1.19835100	1.53009300	0.45827300

ŎН			
CI H			
С	-3.41706000	-0.29043200	0.00004600
С	-2.88184200	0.98782200	0.00016000
С	-1.50664100	1.17179000	0.00012800
С	-0.64298700	0.07541200	-0.00002100
С	-1.19242600	-1.21000500	-0.00014300
С	-2.56383100	-1.38820900	-0.00010400
С	0.81075500	0.30218700	-0.00005100
С	1.71664700	-0.68357400	0.00012400
Cl	3.40628500	-0.33775300	0.00006000
0	1.15201200	1.60887800	-0.00025900
Н	-4.49177600	-0.43459700	0.00006600
Н	-3.53599200	1.85286700	0.00027400
Н	-1.10093700	2.17517000	0.00022400
Н	-0.55204600	-2.08361800	-0.00028300
Н	-2.97071300	-2.39337600	-0.00020500
Н	1.47672100	-1.73383200	0.00031900
Н	2.11610300	1.69821800	-0.00017600

TS-F

CI			
∠N+			
Ĕ			
HO H			
\square			
Ν	0.85409500	-0.75379600	-0.23749000
С	2.46058900	0.95482700	-0.72514600
С	2.99851400	-1.39538000	-1.08835500
С	2.77393300	-0.53991600	1.18377800
С	1.35311500	-1.12164000	1.07564800
Ν	3.25241300	-0.20622600	-0.19989100
С	0.97026200	0.67280000	-0.47789000
С	1.48061900	-1.53265900	-1.29049800
С	4.71666500	0.05997700	-0.24463100

Е

Cl	5.20282200	1.35163500	0.84183600
F	-0.83705500	-1.09095600	-0.26553200
С	-3.08833800	0.86422500	0.09415000
С	-2.66294300	1.31095800	-1.16263800
С	-2.65383100	2.66232400	-1.45115000
С	-3.06498700	3.58471100	-0.49642100
С	-3.48500200	3.14954600	0.75360700
С	-3.49519700	1.79927900	1.05206200
Н	2.77393200	1.85349200	-0.19875200
Н	2.69548400	1.04248100	-1.78440100
Н	3.50404900	-1.22251500	-2.03637900
Н	3.42760300	-2.26137500	-0.58769400
Н	3.46169100	-1.26431300	1.61610900
Н	2.78411800	0.37906200	1.76428600
Н	0.70845300	-0.68685200	1.83745000
Н	1.35000600	-2.20724700	1.15411100
Н	0.59433000	1.20159000	0.39588500
Н	0.38417600	0.93866400	-1.35625200
Н	1.17968000	-2.57434000	-1.19425000
Н	1.15986200	-1.13452300	-2.25083800
Н	5.22686700	-0.85472700	0.04931500
Н	4.97089300	0.34545200	-1.26329700
Н	-2.33046800	0.60783200	-1.91524200
Н	-2.32085100	2.99964200	-2.42587300
Н	-3.05728200	4.64397300	-0.72760400
Н	-3.80831400	3.86622500	1.49966200
Н	-3.82599600	1.46207200	2.02601500
С	-3.09778300	-0.54830600	0.43431200
С	-2.81009400	-1.54251000	-0.48124800
Н	-2.80059400	-1.36552100	-1.54403600
0	-3.34065200	-0.82218500	1.69961600
Н	-3.38972600	-1.78123800	1.84993500
Cl	-2.94093200	-3.18345900	-0.02460600

G

OH CI H F			
С	-3.53004100	-0.32243900	-0.03789500
С	-3.09313300	0.98371900	0.17840800
С	-1.74901500	1.26504800	0.16152000
С	-0.82232200	0.22594800	-0.06857800
С	-1.27509800	-1.09062300	-0.28752900

С	-2.62579700	-1.35361700	-0.27236300
С	0.55823400	0.52712900	-0.07621600
С	1.59963200	-0.58590100	-0.17428800
F	1.44926600	-1.40192800	0.89608400
Cl	3.24268500	0.05119400	-0.19484000
Н	-4.59264600	-0.53797400	-0.02456900
Н	-3.81097300	1.77371000	0.36079100
Н	-1.39381900	2.27293100	0.33460700
Н	-0.57851900	-1.89593500	-0.48177500
Н	-2.98233500	-2.36135100	-0.44469400
Н	1.45778600	-1.15100600	-1.09760200
0	0.93115700	1.73864600	0.00517100
Н	1.90745900	1.84191100	0.02104500

ТЅ-Н			
F Ċl			
нотн			
\bigcirc			
F	0.42815100	3.72019400	0.16796300
Cl	0.22601500	2.09926000	0.08443000
С	-1.77266700	-0.49350800	-0.65414600
С	-0.91538600	-0.95757000	0.26433800
Cl	-3.46951400	-0.47069200	-0.36447400
0	-1.28764500	-1.40903600	1.47773200
С	0.53992400	-0.98053800	0.04423500
С	1.08098600	-0.99813000	-1.24436000
С	2.45223500	-0.97376000	-1.42655000
С	3.30471000	-0.94670700	-0.32953100
С	2.77527300	-0.95086400	0.95303900
С	1.40276700	-0.96957900	1.14246900
Н	-1.46928600	-0.10222600	-1.61188600
Н	-2.24316000	-1.30557300	1.59743200
Н	0.42665200	-1.04648300	-2.10694400
Н	2.85860400	-0.98804800	-2.43164700
Н	4.37899200	-0.93199000	-0.47589600
Н	3.43438200	-0.93603700	1.81394700
Н	0.99405600	-0.96083000	2.14525800

С	-3.68603900	0.34824100	-0.20966800
С	-3.30099400	-0.88219100	0.31938000
С	-1.96751000	-1.20116500	0.40593400
С	-0.99865100	-0.28154200	-0.04820300
С	-1.40010300	0.95698600	-0.58534100
С	-2.73942800	1.26383300	-0.65872000
С	0.37073200	-0.62721200	0.05582500
С	1.47323400	0.31782300	-0.37106000
Cl	2.95022400	-0.55181000	-0.77316800
Cl	1.71962900	1.43174400	0.98351000
Н	-4.73978600	0.59583300	-0.27309100
Н	-4.05006700	-1.58454300	0.66327100
Н	-1.65459800	-2.15196900	0.81769700
Н	-0.67609700	1.67884500	-0.93989800
Н	-3.05369000	2.21605400	-1.06706700
Н	1.18933900	0.89537100	-1.24581900
0	0.68067700	-1.75581500	0.55692400
Н	1.64454100	-1.93057500	0.56482100
J			
CI			

N			
С	0.07711300	-0.39570100	1.26500700
С	0.02425900	-0.54488600	-1.17271200
С	0.71650500	1.52310700	-0.09186000
С	2.14655600	1.00528300	0.11988000
Ν	-0.22485300	0.35255400	0.00247400
С	1.46831300	-1.02960400	1.11905600
С	1.53266300	-0.83085300	-1.24064900
С	-1.59744700	0.90940700	0.00135000
Cl	-2.84543000	-0.33540100	-0.00023600
Н	0.02740400	0.33328300	2.07381800
Н	-0.70153700	-1.14304100	1.40432000
Н	-0.55832700	-1.44941700	-1.00925500
Н	-0.34683700	-0.03007000	-2.05857100
Н	0.56669000	1.95678000	-1.08043000
Н	0.41673400	2.24315100	0.66856200

Н	2.50837900	1.28296500	1.11050800
Н	2.80398000	1.45806700	-0.62296500
Н	2.03063300	-0.87528200	2.04043000
Н	1.38059100	-2.10335900	0.94939700
Н	1.98807200	-0.27684600	-2.06222400
Н	1.68772300	-1.89490100	-1.42093500
Н	-1.71561800	1.51457500	0.89737400
Н	-1.71334200	1.51221900	-0.89679000
Ν	2.19485300	-0.44495900	-0.00099800
H2O			
0	0.00000000	0.00000000	0.11804000
Н	0.00000000	0.76117400	-0.47215800
Н	0.00000000	-0.76117400	-0.47215800
H ₅ O ₂ +			
0	1,19500500	-0.03909500	-0.09547100
0	-1.19539100	-0.03919000	0.09545100
Н	0.00532600	-0.00008800	-0.00049400
н	1.58038700	0.84901400	-0.06448100
Н	1.57513400	-0.53603600	0.64430100
Н	-1.58152300	0.84840900	0.06528700
H	-1.57623900	-0.53501200	-0.64445200
	1.0,020,000	0.00001200	5101112200

References

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J., & Fox, D. J. Gaussian, Inc., Gaussian 09, Revision E.01. *Wallingford CT* (2013).

2. Adamo, C., & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **110**, 6158-6170 (1999).

3. Grimme, S.; Antony, J.; Ehrlich, S., & Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).

4. Weigend, F., & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297-3305 (2005).

5. Rappopport, D., & Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. *J. Chem. Phys.* **133**, 134105 (2010).

6. Marenich, A. V.; Cramer, C. J., & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B.* **113**, 6378-6396 (2009).