Electronic Supplementary Information

Palladium-catalyzed 1,4-aminoarylation of [60]fullerene with aryl iodides, *N*-methoxysulfonamides and further transformations

Yi-Tan Su^{*a,b*}, Zheng-Chun Yin^{*b*} and Guan-Wu Wang^{*,*a,b*}

^aDepartment of Medical Imaging, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China

^bHefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

gwang@ustc.edu.cn

Table of Content

Experimental procedures and characterization data	S1
Control experiments	S11
NMR spectra of compounds 3a–j and 4a–e	S12
References	S44

Experimental procedures and characterization data.

General information. Unless otherwise specified, NMR spectra were recorded on a 300 MHz, 400 MHz or 600 MHz (300 MHz, 400 MHz or 600 MHz for ¹H NMR, respectively; 75 MHz, 100 MHz or 150 MHz for ¹³C NMR, respectively) spectrometer at room temperature. ¹H NMR spectra were referenced to TMS at 0.00 ppm, while ¹³C NMR spectra were referenced to CDCl₃ at 77.16 ppm, DMSO-*d*₆ at 39.52 ppm, C₂D₂Cl₄ at 72.95 ppm, respectively. Data were represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), coupling constant (*J*, Hz), and integration. FT-IR spectra were measured in KBr pellets from 4000 to 500 cm⁻¹. UV–vis spectra in CHCl₃ were recorded in a 1.0 cm quartz cuvette at 25 °C. High-resolution mass spectra (HRMS) were obtained by MALDI-TOF with trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as the matrix and in positive mode. Compounds **4a** and **4b** are known compounds, and their ¹H NMR data are consistent with those reported in the literature.^{1,2}

Procedures for the synthesis of products 3a-j and 4a-e.

General procedure for the synthesis of products 3a-j.

To a 35 mL tube containing a solution of C_{60} (36.0 mg, 0.05 mmol) in 1,2- $C_6H_4Cl_2$ (4 mL) were added aryl iodides 1 (0.10 mmol), *N*-methoxyl sulfonamides 2 (0.10 mmol), Ag(TFA) (22.1 mg, 0.10 mmol), TFA (100 μ L) and Pd(OAc)₂ (1.7 mg, 0.0075 mmol), then sealed tightly in air and stirred in an oil bath. After being stirred at 100 °C for 2 h (5 h for **3f**). The reaction mixture was filtered through a silica gel plug in order to remove any insoluble material. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C_{60} , subsequent elution with carbon disulfide/dichloromethane (4/1, v/v) afforded compounds **3**.

Compound 3a: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with iodobenzene **1a** (20.4 mg, 0.10 mmol) and *N*-methoxy-4-methylbenzenesulfonamide **2a** (20.1 mg, 0.10 mmol) afforded first recovered C₆₀ (14.9 mg, 41%) and then **3a** (16.4 mg, 33%) as an amorphous black solid: mp >300 °C. Spectral data of **3a**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.16 (d, *J* = 7.5 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 8.0

Hz, 2H), 3.80 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 154.95, 152.32, 150.03, 148.51, 148.11, 147.34, 147.16, 146.75, 146.71, 146.61, 146.60, 146.55, 146.46, 146.24, 145.34, 145.26, 145.15, 144.93, 144.71, 144.61, 144.53, 144.38, 144.13, 144.07, 144.00, 143.96, 143.81, 143.70, 143.65, 143.38, 143.27, 143.13, 143.09, 143.00, 142.86, 142.70, 142.56, 142.52, 142.49, 142.30, 142.14, 142.08, 142.02, 141.94, 141.85, 141.80, 140.63, 140.03, 139.64, 139.26, 138.87, 137.54, 137.09, 133.28, 130.05, 128.94, 128.82, 128.03, 127.43, 70.65, 65.51, 61.23, 21.56; ¹H NMR (600 MHz, 340 K, $C_2D_2Cl_4$) δ 8.14 (d, J =7.4 Hz, 2H), 7.98 (d, J = 8.2 Hz, 2H), 7.58 (t, J = 7.7 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 3.77 (s, 3H), 2.39 (s, 3H); ¹³C NMR (150 MHz, 340 K, C₂D₂Cl₄ with Cr(acac)₃ as relaxation reagent) δ 154.37, 151.69, 149.49, 147.76, 147.35, 146.58, 146.45, 146.25, 146.01, 145.93, 145.87, 145.81, 145.75, 145.73, 145.70, 145.47, 145.35, 144.56, 144.47, 144.43, 144.36, 144.10, 143.78, 143.76, 143.59, 143.33, 143.27, 143.20, 143.18, 143.04, 142.93, 142.89, 142.62, 142.53, 142.35, 142.29, 142.22, 142.08, 141.92, 141.84, 141.71, 141.48, 141.36, 141.28, 141.22, 141.14, 141.09, 141.02, 139.80, 139.29, 139.06, 138.53, 138.06, 136.77, 136.22, 132.48, 129.11, 128.20, 127.30, 126.52, 70.11, 64.94, 60.53, 20.68; ¹H NMR (400 MHz, 240 K, $CS_2/CDCl_3$) δ 8.21 (d, J = 7.2 Hz, 1H), 8.09–7.99 (m, 3H), 7.65–7.55 (m, 2H), 7.55– 7.47 (m, 1H), 7.38–7.29 (m, 2H), 3.80 (s, 2H), 3.77 (s, 1H), 2.48 (s, 2H), 2.44 (s, 1H); ¹³C NMR (100 MHz, 240 K, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 155.00, 154.27, 152.56, 152.07, 150.39, 149.64, 148.41, 148.01, 147.98, 147.37, 147.20, 147.05, 146.85, 146.82, 146.61, 146.49, 146.38, 146.32, 146.26, 146.13, 145.79, 145.22, 145.13, 145.05, 144.78, 144.49, 144.45, 144.34, 144.28, 144.24, 144.19, 144.05, 143.99, 143.94, 143.84, 143.76, 143.73, 143.61, 143.59, 143.50, 143.40, 143.33, 143.22, 143.07, 143.03, 142.96, 142.90, 142.85, 142.75, 142.63, 142.55, 142.52, 142.41, 142.37, 142.01, 141.95, 141.88, 141.82, 141.73, 141.58, 140.62, 140.47, 140.23, 140.01, 139.68, 139.28, 139.20, 139.16, 138.62, 138.31, 137.43, 137.27, 137.17, 136.96, 132.39, 132.33, 130.03, 129.86, 129.01, 128.95, 128.86, 128.10, 127.96, 127.39, 127.33, 70.40, 65.67, 65.53, 61.12, 60.93, 21.73; FT-IR v/cm⁻¹ (KBr) 2924, 1593, 1427, 1356, 1164, 1084, 1006, 809, 734, 673, 561, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (4.99), 322 (4.47), 445 (3.75); MALDI-TOF MS m/z calcd. for C₆₆H₅ [M-TsNOCH₃]⁺ 797.0386, found 797.0385.

Compound 3b: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1-iodo-4-methylbenzene **1b** (21.8 mg, 0.10 mmol) and *N*-methoxy-4-

methylbenzenesulfonamide **2a** (20.1 mg, 0.10 mmol) afforded first recovered C₆₀ (13.8 mg, 38%) and then **3b** (16.2 mg, 32%) as an amorphous black solid: mp >300 °C. Spectral data of **3b**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.09 (d, J = 7.6 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 3.88 (s, 3H), 2.53 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 148.43, 148.01, 147.30, 147.05, 146.67, 146.63, 146.51, 146.37, 146.16, 145.25, 145.17, 145.06, 144.87, 144.52, 144.45, 144.31, 144.07, 143.97, 143.94, 143.88, 143.75, 143.67, 143.64, 143.56, 143.29, 143.24, 143.05, 142.99, 142.92, 142.75, 142.63, 142.44, 142.40, 142.18, 142.05, 141.95, 141.88, 141.80, 141.73, 140.53, 139.88, 139.20, 138.71, 137.51, 137.38, 136.97, 136.64, 133.37, 129.99, 129.55, 128.69, 127.33, 70.53, 65.46, 60.99, 21.51, 21.10; FT-IR v/cm⁻¹ (KBr) 2922, 1594, 1506, 1427, 1357, 1164, 1083, 1009, 809, 673, 563, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (4.99), 322 (4.49), 445 (3.78); MALDI-TOF MS *m/z* calcd. for C₆₇H₇ [M-TsNOCH₃]⁺ 811.0542, found 811.0538.

Compound 3c: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1-iodo-3-methylbenzene 1c (21.8 mg, 0.10 mmol) and N-methoxy-4methylbenzenesulfonamide 2a (20.1 mg, 0.10 mmol) afforded first recovered C₆₀ (15.2 mg, 42%) and then 3c (14.9 mg, 29%) as an amorphous black solid: mp >300 °C. Spectral data of 3c: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.14 (s, 1H), 8.07 (d, J = 8.1Hz, 2H), 8.02 (d, J = 7.3 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 3.92 (s, 3H), 2.60 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, $CS_2/CDCl_3$ with Cr(acac)₃ as relaxation reagent) δ 154.94, 152.52, 150.15, 148.54, 148.12, 147.43, 147.13, 146.78, 146.73, 146.69, 146.63, 146.58, 146.48, 146.26, 145.36, 145.27, 145.16, 144.90, 144.70, 144.64, 144.40, 144.16, 144.07, 144.05, 143.98, 143.84, 143.76, 143.73, 143.66, 143.39, 143.15, 143.10, 143.03, 142.85, 142.73, 142.54, 142.50, 142.26, 142.15, 142.13, 142.05, 141.95, 141.89, 141.83, 140.63, 139.98, 139.58, 139.34, 138.76, 138.67, 137.48, 137.22, 133.34, 130.01, 128.87, 128.84, 128.78, 128.30, 124.55, 70.69, 65.63, 61.36, 21.55, 21.48; FT-IR v/cm⁻ ¹ (KBr) 2920, 1597, 1428, 1356, 1166, 1086, 1009, 811, 761, 674, 563, 528; UV-vis $(CHCl_3) \lambda_{max}/nm (\log \varepsilon) 257 (4.99), 322 (4.49), 445 (3.77); MALDI-TOF MS m/z calcd.$ for C₆₇H₇ [M-TsNOCH₃]⁺ 811.0542, found 811.0541.

Compounds 3d and 4a: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1-iodo-4-methoxybenzene 1d (23.4 mg, 0.10 mmol) and Nmethoxy-4-methylbenzenesulfonamide 2a (20.1 mg, 0.10 mmol) afforded first recovered C₆₀ (7.8 mg, 22%), then **3d** (13.1 mg, 25%) and **4a** (4.6 mg, 10%) as amorphous black solids: mp >300 °C. Spectral data of 3d: ¹H NMR (400 MHz, $CS_2/CDCl_3$) δ 8.15 (d, J = 8.1 Hz, 2H), 8.08 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 7.16 (d, *J* = 8.7 Hz, 2H), 3.96 (s, 3H), 3.91 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 158.89, 154.76, 148.18, 147.76, 147.08, 146.69, 146.42, 146.37, 146.27, 146.25, 146.22, 146.12, 145.90, 145.00, 144.92, 144.81, 144.34, 144.25, 144.03, 143.81, 143.70, 143.64, 143.50, 143.46, 143.42, 143.29, 143.03, 142.79, 142.67, 142.49, 142.37, 142.18, 142.15, 141.91, 141.79, 141.69, 141.63, 141.55, 141.46, 140.26, 139.62, 138.93, 138.40, 137.10, 136.67, 132.98, 131.39, 129.72, 128.52, 128.28, 113.96, 70.27, 65.36, 60.37, 54.77, 21.29; FT-IR v/cm⁻¹ (KBr) 2927, 1602, 1508, 1458, 1432, 1358, 1300, 1253, 1169, 1086, 1031, 1012, 814, 678, 564, 529; UV-vis (CHCl₃) λ_{max}/nm (log ε) 260 (4.98), 322 (4.51), 444 (3.79); MALDI-TOF MS m/z calcd. for C₆₇H₇O [M-TsNOCH₃]⁺ 827.0491, found 827.0493.

Spectral data of **4a**:^{1 1}H NMR (400 MHz, CS₂/CDCl₃) δ 7.97 (d, J = 7.9 Hz, 4H), 7.00 (d, J = 7.9 Hz, 4H), 3.85 (s, 6H).

Compound 3e: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1-chloro-4-iodobenzene **1e** (23.8 mg, 0.10 mmol) and *N*-methoxy-4-methylbenzenesulfonamide **2a** (20.1 mg, 0.10 mmol) afforded first recovered C₆₀ (21.4 mg, 59%) and then **3e** (12.0 mg, 23%) as an amorphous black solid: mp >300 °C. Spectral data of **3e**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.16 (d, *J* = 7.8 Hz, 2H), 8.06 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 3.88 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 154.21, 148.49, 148.12, 147.22, 146.89, 146.71, 146.70, 146.60, 146.45, 146.34, 146.24, 145.34, 145.26, 145.11, 144.85, 144.64, 144.37, 144.31, 144.06, 143.92, 143.73, 143.71, 143.64, 143.55, 143.33, 143.09, 143.02, 142.98, 142.87, 142.65, 142.51, 142.35, 142.10, 142.03, 142.00, 141.89, 141.76, 140.68, 140.00, 139.11, 139.06, 138.16, 137.64, 137.12, 134.10, 133.06, 130.01, 129.01 128.83, 128.77, 70.57, 65.58, 60.38, 21.53; FT-IR ν/cm^{-1} (KBr) 2922, 1594 1487, 1429, 1358, 1167, 1089, 1012, 813, 674, 563, 529; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ (log ε) 259 (4.99), 323 (4.51), 445 (3.79); MALDI-TOF MS m/z calcd. for C₆₆H₄³⁵C1[M-TsNOCH₃]⁺ 830.9996, found 830.9995.

Compound 3f: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1-bromo-4-iodobenzene **1f** (28.3 mg, 0.10 mmol) and *N*-methoxy-4-methylbenzenesulfonamide **2a** (20.1 mg, 0.10 mmol) afforded first recovered C₆₀ (20.7 mg, 58%) and then **3f** (11.7 mg, 22%) as an amorphous black solid: mp >300 °C. Spectral data of **3f**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.14 (d, *J* = 7.1 Hz, 2H), 8.09 (d, *J* = 8.1 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 3.92 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 153.94, 151.59, 149.05, 148.29, 147.93, 147.03, 146.70, 146.51, 146.40, 146.25, 146.14, 146.04, 145.15, 145.07, 144.91, 144.64, 144.45, 144.16, 144.12, 143.87, 143.72, 143.51, 143.46, 143.35, 143.13, 142.90, 142.83, 142.79, 142.68, 142.46, 142.31,

142.15, 141.91, 141.83, 141.80, 141.70, 141.56, 140.48, 139.80, 138.93, 138.86, 138.49, 137.45, 136.94, 132.90, 131.80, 129.83, 128.91, 128.65, 122.17, 70.37, 65.40, 60.24, 21.38. FT-IR v/cm⁻¹ (KBr) 2964, 2922, 1513, 1485, 1430, 1385, 1355, 1262, 1166, 1088, 1010, 897, 809, 732, 679, 563, 527; UV-vis (CHCl₃) λ_{max} /nm (log ε) 259 (4.99), 323 (4.51), 445 (3.79); MALDI-TOF MS *m*/*z* calcd. for C₆₆H₄⁷⁹Br [M-TsNOCH₃]⁺ 874.9491, found 874.9489.

Compound 3g: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with ethyl 4-iodobenzoate 1g (27.6 mg, 0.10 mmol), N-methoxy-4methylbenzenesulfonamide 2a (20.1 mg, 0.10 mmol) afforded first recovered C₆₀ (15.9 mg, 44%) and then 3g (10.2 mg, 19%) as an amorphous black solid: mp >300 °C. Spectral data of **3g**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.24 (bs, 4H), 8.00 (d, J = 8.0Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 2.45 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) & 165.41 (C=O), 148.45, 148.09, 147.15, 146.96, 146.67, 146.56, 146.41, 146.32, 146.20, 145.30, 145.22, 145.07, 144.90, 144.61, 144.29, 144.28, 144.03, 144.01, 143.87, 143.67, 143.65, 143.61, 143.49, 143.29, 143.05, 142.93, 142.84, 142.61, 142.57, 142.53, 142.46, 142.06, 141.94, 141.85, 141.70, 140.64, 140.00, 139.12, 139.03, 137.63, 137.14, 132.91, 130.03, 129.96, 128.82, 127.28, 70.56, 65.53, 60.87, 60.79, 21.48, 14.11; FT-IR v/cm⁻¹ (KBr) 2923, 2853, 1715, 1605, 1455, 1431, 1359, 1272, 1166, 1104, 1018, 809, 745, 675, 562, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (4.98), 322 (4.74), 444 (3.74); MALDI-TOF MS m/z calcd. for C₆₉H₉O₂ [M-TsNOCH₃]⁺ 869.0597, found 869.0601.

Compound 3h: According to the general procedure, the reaction of C_{60} (36.0 mg,

0.05 mmol) with 1-iodo-4-methylbenzene **1b** (21.8 mg, 0.10 mmol) and *N*-methoxybenzenesulfonamide **2b** (18.7 mg, 0.10 mmol) afforded first recovered C₆₀ (15.6 mg, 43%) and then **3h** (15.3 mg, 31%) as an amorphous black solid: mp >300 °C. Spectral data of **3h**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.15 (d, *J* = 7.8 Hz, 2H), 8.08–8.00 (m, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.39 (d, *J* = 7.7 Hz, 2H), 3.86 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 148.49, 148.06, 147.28, 147.10, 146.72, 146.68, 146.57, 146.55, 146.50, 146.42, 146.20, 145.31, 145.22, 145.11, 144.53, 144.51, 144.32, 144.09, 144.00, 143.96, 143.93, 143.80, 143.72, 143.69, 143.58, 143.32, 143.08, 143.04, 142.97, 142.80, 142.67, 142.48, 142.45, 142.21, 142.10, 142.06, 141.98, 141.92, 141.83, 141.76, 140.57, 139.95, 139.30, 137.64, 137.38, 136.94, 136.70, 136.23, 133.72, 129.93, 129.59, 128.18, 127.27, 70.61, 65.69, 61.03, 21.06; FT-IR *v*/cm⁻¹ (KBr) 2920, 2849, 1507, 1429, 1359, 1171, 1086, 1012, 755, 725, 686, 564, 528; UV-vis (CHCl₃) λ_{max} /nm (log ε) 258 (4.99), 328 (4.50), 443 (3.74); MALDI-TOF MS *m*/*z* calcd. for C₆₇H₇ [M-BsNOCH₃]⁺ 811.0542, found 811.0536.

Compound 3i: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1-iodo-4-methylbenzene 1b (21.8 mg, 0.10 mmol) and N-methoxy-4chlorobenzenesulfonamide 2c (22.2 mg, 0.10 mmol) afforded first recovered C₆₀ (14.3 mg, 40%) and then 3i (16.5 mg, 32%) as an amorphous black solid: mp >300 °C. Spectral data of **3i:** ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.09 (d, J = 8.5 Hz, 2H), 8.09– 8.01 (m, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 3.96 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 155.22, 148.62, 148.17, 147.25, 146.83, 146.80, 146.67, 146.66, 146.55, 146.51, 146.43, 146.32, 145.43, 145.33, 145.28, 144.62, 144.55, 144.40, 144.18, 144.13, 144.05, 143.92, 143.84, 143.82, 143.76, 143.67, 143.42, 143.18, 143.10, 142.93, 142.78, 142.61, 142.59, 142.54, 142.22, 142.12, 142.09, 142.07, 141.92, 141.85, 140.75, 140.63, 140.13, 139.50, 137.82, 137.41, 136.95, 136.75, 134.58, 131.38, 129.70, 128.47, 127.24, 70.73, 65.89, 61.10, 21.14; FT-IR v/cm⁻¹ (KBr) 2922, 1577, 1506, 1468, 1428, 1363, 1171, 1086, 1010, 822, 756, 651, 564, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 256 (4.99), 328 (4.48), 441 (3.72); MALDI-TOF MS m/z calcd. for C₆₇H₇ [M-CsNOCH₃]⁺ 811.0542, found 811.0537.

Compound 3j: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1-iodo-4-methylbenzene **1b** (21.8 mg, 0.10 mmol) and *N*-methoxymethanesulfonamide **2d** (12.5 mg, 0.10 mmol) afforded first recovered C₆₀ (17.3 mg, 48%) and then **3j** (13.9 mg, 30%) as an amorphous black solid: mp >300 °C. Spectral data of **3j**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.15 (d, *J*=7.7 Hz, 2H), 7.40 (d, *J* = 7.7 Hz, 2H), 3.95 (s, 3H), 3.36 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 148.70, 148.21, 147.39, 147.33, 146.88, 146.70, 146.61, 146.54, 146.40, 145.46, 145.38, 144.66, 144.39, 144.23, 144.13, 144.08, 143.98, 143.95, 143.80, 143.68, 143.57, 143.25, 143.20, 143.17, 142.96, 142.83, 142.72, 142.69, 142.67, 142.28, 142.19, 142.14, 142.12, 142.05, 141.86, 140.81, 140.60, 139.60, 137.94, 136.95, 136.77, 129.86, 127.19, 70.77, 66.01, 61.25, 36.12, 21.11; FT-IR ν /cm⁻¹ (KBr) 2920, 2849, 1507, 1429, 1359, 1171, 1086, 1012, 755, 725, 686, 641, 564, 528; UV-vis (CHCl₃) λ_{max}/nm (log ε) 259 (4.98), 318 (4.49), 445 (3.75); MALDI-TOF MS *m/z* calcd. for C₆₇H₇ [M-MsNOCH₃]⁺ 811.0542, found 811.0539.

Compound 4b: To a solution of **3a** (20.0 mg, 0.02 mmol) in 4 mL of toluene was added FeCl₃ (3.2 mg, 0.02 mmol). The reaction mixture was stirred at 80 °C for 0.5 h. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give compound **4b** (16.4 mg, 92%) as an amorphous black solid: mp >300 °C. Spectral data of **4b**:^{2 1}H NMR (400 MHz, CS₂/CDCl₃) δ 8.07 (d, *J* = 7.2 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H).

Compound 4c: To a solution of 3a (20.0 mg, 0.02 mmol) and 2-methylthiophene (3.9 mg, 0.04 mmol) in 4 mL of $1,2-C_6H_4Cl_2$ was added FeCl₃ (3.2 mg, 0.02 mmol). The reaction mixture was stirred at 80 °C for 0.5 h. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give compound 4c (17.0 mg, 95%) as an amorphous black solid: mp >300 °C. Spectral data of 4c: ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 8.13 (d, J = 7.4 Hz, 2H), 7.54 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.22 (d, J = 3.2 Hz, 1H), 6.75 (d, J = 3.2 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CS₂/DMSO-*d*₆ with Cr(acac)₃ as relaxation reagent) δ 155.52, 154.74, 149.77, 149.37, 147.54, 147.51, 147.40, 146.86, 146.00, 145.99, 145.88, 145.84, 145.71, 145.69, 145.67, 145.48, 144.44, 144.43, 144.23, 144.05, 143.93, 143.63, 143.60, 143.29, 143.24, 143.18, 143.15, 143.10, 143.09, 143.01, 142.96, 142.91, 142.84, 142.80, 142.78, 142.74, 142.12, 142.06, 142.04, 142.03, 141.89, 141.61, 141.48, 141.46, 141.40, 141.19, 141.15, 140.94, 140.26, 139.95, 139.23, 138.98, 137.88, 137.38, 136.20, 136.10, 128.49, 127.45, 126.51, 125.05, 124.77, 60.50, 56.38, 14.73; FT-IR v/cm⁻¹ (KBr) 2919, 2850, 1490, 1428, 1262, 1226, 1185, 859, 795, 761, 733, 692, 587, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 260 (4.99), 324 (4.45), 445 (3.75); MALDI-TOF MS *m*/*z* calcd for C₇₁H₁₀S [M]⁺ 894.0498, found 894.0501.

Compound 4d: To a solution of **3a** (20.0 mg, 0.02 mmol) and dimethyl malonate (5.3 mg, 0.04 mmol) in 4 mL of $1,2-C_6H_4Cl_2$ was added FeCl₃ (6.5 mg, 0.04 mmol). The reaction mixture was stirred at 80 °C for 2 h. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide/dichloromethane (4/1, v/v) as the eluent to give compound **4d** (13.0 mg, 70%) as an amorphous black solid: mp >300 °C. Spectral data of **4d**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.31 (d, *J* = 7.2 Hz, 2H), 7.67 (t, *J* = 7.7 Hz, 2H), 7.54 (t, *J* = 7.4, 1H), 4.83 (s, 1H), 3.79 (s, 3H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CS₂/DMSO-*d*₆ with Cr(acac)₃ as relaxation reagent) δ

166.55 (*C*=O), 166.39 (*C*=O), 157.00, 152.21, 150.41, 148.77, 148.75, 148.57, 148.34, 148.10, 147.94, 147.22, 147.02, 146.98, 146.79, 146.59, 146.41, 145.62, 145.59, 145.56, 145.29, 144.96, 144.72, 144.71, 144.65, 144.45, 144.44, 144.42, 144.26, 144.25, 144.09, 144.05, 143.98, 143.88, 143.86, 143.43, 143.39, 143.37, 143.34, 143.31, 143.19, 143.16, 143.10, 142.84, 142.74, 142.56, 142.55, 142.34, 142.23, 142.15, 142.12, 141.19, 140.99, 140.77, 140.39, 139.14, 139.06, 136.66, 129.75, 128.45, 127.08, 61.55, 60.85, 56.06, 52.95, 52.92; FT-IR *v*/cm⁻¹ (KBr) 2960, 2920, 1759, 1737, 1492, 1431, 1310, 1261, 1214, 1150, 1097, 1022, 802, 735, 695, 584, 527; UV-vis (CHCl₃) λ_{max} /nm (log ε) 260 (5.00), 328 (4.46), 445 (3.78); MALDI-TOF MS *m*/*z* calcd for C₇₁H₁₂O4 [M]⁺928.0730 found 928.0733.

Compound 4e: To a solution of 3a (20.0 mg, 0.02 mmol) and allyltrimethylsilane (4.6 mg, 0.04 mmol) in 4 mL of 1,2-C₆H₄Cl₂ was added FeCl₃ (3.2 mg, 0.02 mmol). The reaction mixture was stirred at 80 °C for 0.5 h. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give compound 4e (13.1 mg, 78%) as an amorphous black solid: mp >300 °C. Spectral data of 4e: ¹H NMR (400 MHz, $CS_2/CDCl_3$) 8.28 (d, J = 7.3 Hz, 2H), 7.64 (t, J = 7.7 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 6.48-6.35 (m, 1H), 5.43 (d, J = 16.8 Hz, 1H), 5.25 (d, J = 9.9 Hz, 1H), 3.72 (dd, *J* = 13.4, 7.4 Hz, 1H), 3.65 (dd, *J* = 13.4, 7.4 Hz, 1H); ¹³C NMR (100 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent) δ 156.21, 155.43, 150.19, 149.71, 147.52, 147.47, 147.46, 147.37, 146.31, 146.07, 145.92, 145.83, 145.77, 145.73, 145.69, 145.57, 144.86, 144.40, 144.34, 144.03, 143.94, 143.93, 143.75, 143.72, 143.58, 143.46, 143.25, 143.23, 143.21, 143.19, 143.11, 143.05, 142.94, 142.92, 142.85, 142.82, 142.72, 142.65, 142.06, 142.04, 142.02, 141.98, 141.89, 141.56, 141.55, 141.45, 141.37, 141.33, 141.09, 141.05, 140.87, 139.83, 139.74, 137.98, 137.57, 137.45, 135.95, 131.59, 128.65, 127.42, 126.23, 119.15, 60.43, 57.83, 45.11; FT-IR v/cm⁻¹ (KBr) 2919, 2850, 1488, 1425, 1184, 988, 918, 732, 693, 581, 525; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (4.97), 327 (4.46), 445 (3.77); MALDI-TOF MS m/z calcd for C₆₉H₁₀ [M]⁺ 838.0777, found 838.0780.

Control experiments.

To a 35 mL tube containing a solution of C_{60} (36.0 mg, 0.05 mmol) in 1,2- $C_6H_4Cl_2$ (4 mL) were added iodobenzene **1a** (20.4 mg, 0.10 mmol), *N*-methoxy-4methylbenzenesulfonamide **2a** (20.1 mg, 0.10 mmol), Ag(TFA) (22.1 mg, 0.10 mmol), TFA (100 μ L), Pd(OAc)₂ (1.7 mg, 0.0075 mmol) and PPh₃ (2.0 mg, 0.0075 mmol), then sealed tightly in air and stirred in an oil bath. After being stirred at 100 °C for 2 h. The reaction mixture was filtered through a silica gel plug in order to remove any insoluble material. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to first give recovered C₆₀ (28.1 mg, 78%), and then subsequent elution with carbon disulfide/dichloromethane (4/1, v/v) to give **3a** (4.0 mg, 8%).

To a 35 mL tube containing a solution of C₆₀ (36.0 mg, 0.05 mmol) in 1,2-C₆H₄Cl₂ (4 mL) were added iodobenzene **1a** (20.4 mg, 0.10 mmol), *N*-methoxy-4methylbenzenesulfonamide **2a** (20.1 mg, 0.10 mmol), Ag(TFA) (22.1 mg, 0.10 mmol), TFA (100 μ L) and Pd₂(dba)₃ (6.9 mg, 0.0075 mmol), then sealed tightly in air and stirred in an oil bath. After being stirred at 100 °C for 2 h. The reaction mixture was filtered through a silica gel plug in order to remove any insoluble material. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to first give recovered C₆₀ (24.1 mg, 67%), and then subsequent elution with carbon disulfide/dichloromethane (4/1, v/v) to give **3a** (8.1 mg, 16%).

To a 35 mL tube containing a solution of C₆₀ (36.0 mg, 0.05 mmol) in 1,2-C₆H₄Cl₂ (4 mL) were added iodobenzene **1a** (20.4 mg, 0.10 mmol) and *N*-methoxy-4methylbenzenesulfonamide **2a** (20.1 mg, 0.10 mmol), Ag(TFA) (22.1 mg, 0.10 mmol), TFA (100 μ L) and Pd(PPh₃)₄ (8.7 mg, 0.0075 mmol), then sealed tightly in air and stirred in an oil bath. After being stirred at 100 °C for 2 h. The reaction mixture was filtered through a silica gel plug in order to remove any insoluble material. After evaporation in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to first give recovered C₆₀ (25.9 mg, 72%), and then subsequent elution with carbon disulfide/dichloromethane (4/1, v/v) to give **3a** (6.6 mg, 13%).

NMR spectra of compounds 3a-j and 4a-e

Figure S1. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3a.

Figure S2. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3a.

Figure S3. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3a.

Figure S4. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3a.

Figure S5. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3b.

Figure S6. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3b.

Figure S7. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3b.

Figure S8. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3b.

Figure S9. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3c.

Figure S10¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3c.

Figure S11. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3c.

Figure S12. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3c.

Figure S13. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3d.

Figure S14. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3d.

Figure S15. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3d.

Figure S16. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3d.

Figure S17. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3e.

Figure S18. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3e.

Figure S19. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3e.

Figure S20. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3e.

Figure S21. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3f.

Figure S22. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3f.

Figure S23. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3f.

Figure S24. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3f.

Figure S25. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3g.

Figure S26. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3g.

Figure S27. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3g.

Figure S28. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3g.

Figure S29. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3h.

Figure S30. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3h.

Figure S31. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3h.

Figure S32. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3h.

Figure S33. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3i.

Figure S34. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3i.

Figure S35. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3i.

Figure S36. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3i.

Figure S37. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 3j.

Figure S38. ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3j.

Figure S39. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3j.

Figure S40. Expanded ¹³C NMR spectrum (100 MHz, CS₂/CDCl₃) of compound 3j.

Figure S41. ¹H NMR spectrum (600 MHz, 340 K, C₂D₂Cl₄) of compound 3a.

Figure S42. ¹³C NMR spectrum (150 MHz, 340 K, C₂D₂Cl₄) of compound 3a.

Figure S43. Expanded ¹³C NMR spectrum (150 MHz, 340 K, C₂D₂Cl₄) of compound 3a.

Figure S44. Expanded ¹³C NMR spectrum (150 MHz, 340 K, C₂D₂Cl₄) of compound 3a.

Figure S45. ¹H NMR spectra (100 MHz, C₂D₂Cl₄) of compound 3a at 300 K and 340 K, respectively.

¹³C NMR spectrum of compound **3a**

Figure S46. ¹³C NMR spectra (100 MHz, C₂D₂Cl₄) of compound 3a at 300 K and 340 K, respectively.

Figure S47. ¹H NMR spectrum (400 MHz, 240 K, CS₂/CDCl₃) of compound **3a**.

Figure S48. Expanded ¹³C NMR spectrum (100 MHz, 240 K, CS₂/CDCl₃) of compound 3a.

Figure S49. Expanded ¹³C NMR spectrum (100 MHz, 240 K, CS₂/CDCl₃) of compound 3a.

Figure S50. Expanded ¹³C NMR spectrum (100 MHz, 240 K, CS₂/CDCl₃) of compound 3a.

Figure S51. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 4a.

Figure S52. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 4b.

Figure S53. ¹H NMR spectrum (400 MHz, CS₂/DMSO-*d*₆) of compound 4c.

Figure S54. ¹³C NMR spectrum (100 MHz, CS₂/DMSO-*d*₆) of compound 4c.

Figure S55. Expanded ¹³C NMR spectrum (100 MHz, CS₂/DMSO-*d*₆) of compound 4c.

Figure S56. Expanded ¹³C NMR spectrum (100 MHz, CS₂/DMSO-*d*₆) of compound 4c.

Figure S57. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 4d.

)0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm) fl

Figure S58. ¹³C NMR spectrum (75 MHz, CS₂/CDCl₃) of compound 4d.

Figure S59. Expanded ¹³C NMR spectrum (75 MHz, CS₂/CDCl₃) of compound 4d.

7.0 166.0 157.0 156.0 155.0 154.0 153.0 152.0 151.0 150.0 149.0 148.0 147.0 146.0 f1 (ppm)

Figure S60. Expanded ¹³C NMR spectrum (75 MHz, CS₂/CDCl₃) of compound 4d.

Figure S61. ¹H NMR spectrum (400 MHz, CS₂/CDCl₃) of compound 4e.

Figure S62. ¹³C NMR spectrum (100 MHz, CS₂/DMSO-*d*₆) of compound 4e.

Figure S63. Expanded ¹³C NMR spectrum (100 MHz, CS₂/DMSO-*d*₆) of compound 4e.

Figure S64. Expanded ¹³C NMR spectrum (100 MHz, CS₂/DMSO-*d*₆) of compound 4e.

References

- X.-Y. Yang, H.-S. Lin, I. Jeon and Y. Matsuo, Fullerene-Cation-Mediated Noble-Metal-Free Direct Introduction of Functionalized Aryl Groups onto [60]Fullerene, *Org. Lett.*, 2018, 20, 3372.
- G.-W. Wang, Y.-M. Lu and Z.-X. Chen, 1,4-Fullerenols C₆₀ArOH: Synthesis and Functionalization, *Org. Lett.*, 2009, 11, 1507.