SUPPORTING INFORMATION

Asymmetric three-component reaction of diazo compound with

alcohol and seven-membered imine

Xiongda Xie, Ming Bao, Kewei, Chen, Xinfang Xu^* and Wenhao Hu^*

Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China

E-mail: xuxinfang@mail.sysu.edu.cn

huwh9@mail.sysu.edu.cn

Table of Contents

1. General Information	S2
2. Optimization of the Reaction Conditions	S 3
3. General Procedure for the Synthesis of Diazo Compounds 1	S4-S6
4. General Procedure for the Asymmetric Three-component Reaction	S6-S28
5. Control Experiment	S28-S29
6. Procedure for the Scale Up and Synthetic Transformations	S30-S31
7. ¹ H and ¹³ C NMR Spectra of Compounds 5, 6, 7, 8, and 9	S32-S73
8. HPLC Analyses Figures of Compounds 5, 6, 7, and 8	S74-S111
9. Single-Crystal X-ray Diffraction of 5a and 7	S112-S113
10. References	S114

General Information

All reactions were performed in oven-dried glassware under atmosphere of argon. Solvents were dried and distilled followed the standard methods before using. Chiral phosphoric acids (CPAs) and alcohols **2** purchased from chemical vendors and used directly without any treatment. Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). Flash column chromatography was performed using silica gel (300-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on 400/500 MHz spectrometer; chemical shifts are reported in ppm with the solvent signals as reference, and coupling constants (J) are given in Hertz. The peak information is described as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. Enantioselectivity was determined on HPLC using Chiralpak IA, AD-H, IF-3 column. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (ESI Source) and (CI Source). Starting materials **1**¹ and **3**² were prepared according to the reported reference.

DCM

TBME

EA

toluene

DCE

DCE

DCE

DCE

DCE

65

trace

46

69

85

95

94

70

96

> 20:1

> 20:1

> 20:1

> 20:1

> 20:1

> 20:1

> 20:1

> 20:1

> 20:1

99

99

99

99

99

99

99

99

99

Table S1. Optimization of the Reaction Conditions^a

4c (10)

4c (10)

4c (10)

4c (10)

4c (10)

4c (10)

4c (5.0)

4c (2.0)

4c (2.0)

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

8

9

10

11

 12^{e}

 13^{f}

 14^{f}

 15^{f}

16^{*f,g*}

^{*a*}The reaction was carried out on a 0.1 mmol scale: to the mixture of Rh₂(esp)₂ (2.0 mol%), **4** (indicated amount), **2a** (0.12 mmol), and 4 Å MS (100 mg) in the indicated solvent (0.5 mL), was added a solution of diazo compound **1a** (0.12 mmol) and imine **3a** (0.1 mmol) in the same solvent (1.5 mL) *via* syringe pump over 2 h under an argon atmosphere at 30 °C, and the reaction mixture was stirred for an additional 1 h under these conditions. ^{*b*}Isolated yields. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Determined by chiral HPLC analysis, see SI for detail. ^{*e*}3 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS. ^{*f*}5 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg) was used instead of 4 Å MS (100 mg

General Procedure for the Synthesis of Diazo Compounds 1:

The diazo compounds **1** were prepared according to literature procedures.¹

(*3r*)-Adamantan-1-yl 2-diazo-2-(4-fluorophenyl)acetate (1b). Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.46 – 7.39 (m, 2H), 7.10 – 7.03 (m, 2H), 2.22 – 2.16 (comp, 9H), 1.71 – 1.65 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 164.4, 161.0 (d, *J* = 245.9 Hz), 126.0 (d, *J* = 7.9 Hz), 122.08, 116.0 (d, *J* = 21.9 Hz), 82.4, 41.8, 36.3, 31.1; ¹⁹F NMR (376 MHz, CDCl₃) δ = -116.8. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₉FN₂NaO₂ [M+Na]⁺: 337.1323, found 337.1324.

(*3r*)-Adamantan-1-yl 2-(4-chlorophenyl)-2-diazoacetate (1c). Yellow oil; ¹H NMR 7.41 – 7.37 (m, 2H), 7.33 – 7.29 (m, 2H), 2.24 – 2.14 (comp, 9H), 1.75 – 1.62 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 164.0, 131.2, 129.0, 125.1, 125.0, 82.5, 41.8, 36.2, 31.1; HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₉ClN₂NaO₂ [M+Na]⁺: 353.1027, found 353.1020.

(*3r*)-Adamantan-1-yl 2-(4-bromophenyl)-2-diazoacetate (1d). Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.49 – 7.44 (m, 2H), 7.36 – 7.30 (m, 2H), 2.23 – 2.16 (comp, 9H), 1.72 – 1.66 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 163.8, 132.0, 125.5, 125.4, 119.0, 82.5, 41.8, 36.2, 31.0; HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₉BrN₂NaO₂ [M+Na]⁺: 397.0522, found 397.0519.

(*3r*)-Adamantan-1-yl 2-diazo-2-(p-tolyl)acetate (1e). Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.37 – 7.31 (m, 2H), 7.19 – 7.14 (m, 2H), 2.32 (s, 3H), 2.22 – 2.18 (comp, 9H), 1.73 – 1.66 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 164.6, 135.4, 129.7, 129.23, 129.20, 124.2, 82.1, 41.8, 36.3, 31.1, 21.1; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₂N₂NaO₂ [M+Na]⁺: 333.1573, found 333.1574.

(*3r*)-Adamantan-1-yl 2-diazo-2-(4-methoxyphenyl)acetate (1f). Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.32 – 7.27 (m, 2H), 6.87 – 6.83 (m, 2H), 3.72 (s, 3H), 2.15 – 2.10 (comp, 9H), 1.65 – 1.59 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 164.9, 158.0, 126.0, 117.8, 114.6, 82.1, 55.5, 41.9, 36.3, 31.1; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₂N₂NaO₃ [M+Na]⁺: 349.1523, found 349.1520.

(*3r*)-Adamantan-1-yl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate (1g). Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.61 – 7.55 (comp, 4H), 2.25 – 2.16 (comp, 9H), 1.75 – 1.64 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 163.3, 130.8, 127.2 (q, *J* = 32.7 Hz), 125.7 (q, *J* = 3.8 Hz), 124.9 (q, *J* = 271.7 Hz), 123.4, 82.8, 41.7, 36.1, 31.0; ¹⁹F NMR (471 MHz, CDCl₃) δ = -62.4. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₉F₃N₂NaO₂ [M+Na]⁺: 387.1291, found 387.1290.

(**3***r*)-Adamantan-1-yl 2-diazo-2-(**3**-fluorophenyl)acetate (**1**h). Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.36 – 7.32 (m, 1H), 7.32 – 7.27 (m, 1H), 7.15 – 7.10 (m,

1H), 6.82 (tdd, J = 8.3, 2.5, 0.6 Hz, 1H), 2.43 – 2.03 (comp, 9H), 1.81 – 1.54 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 163.7, 163.3 (d, J = 245.1 Hz), 130.2 (d, J = 8.8 Hz), 128.9 (d, J = 9.5 Hz), 118.9 (d, J = 2.8 Hz), 112.2 (d, J = 21.4 Hz), 111.1 (d, J = 25.4 Hz), 82.6, 41.8, 36.2, 31.0; ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -112.0$; HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₉FN₂NaO₂ [M+Na]⁺: 337.1323, found 337.1333.

(*3r*)-Adamantan-1-yl 2-diazo-2-(2-fluorophenyl)acetate (1i). Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.73 – 7.63 (m, 1H), 7.23 – 7.11 (m, 2H), 7.08 – 6.99 (m, 1H), 2.20 – 2.15 (comp, 9H), 1.73 – 1.63 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 164.2, 158.4 (d, *J* = 247.1 Hz), 129.5 (d, *J* = 2.2 Hz), 128.2 (d, *J* = 8.2 Hz), 124.5 (d, *J* = 3.4 Hz), 115.6 (d, *J* = 21.4 Hz), 114.5 (d, *J* = 11.8 Hz), 82.3, 41.7, 36.2, 31.0; ¹⁹F NMR (376 MHz, CDCl₃) δ = -114.1. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₉FN₂NaO₂ [M+Na]⁺: 337.1323, found 337.1325.

General Procedure for the Asymmetric Three-component Reaction

To a 10-mL oven-dried vial with a magnetic stirring bar, alcohol **2** (0.12 mmol), Rh₂(esp)₂ (0.76 mg, 1.0 mol%), chiral phosphoric acid **4c** (1.73 mg, 2.0 mol%), and 5Å MS (100 mg) in 0.5 mL DCE, a solution of diazo compound **1** (0.12 mmol) and imine **3** (0.1 mmol) in DCE (1.5 mL) was added *via* a syringe pump over 10 h (or 2 h in the cases with **3m**) under argon atmosphere at 30 °C, and the reaction mixture was stirred for additional 1 h under these conditions. The crude reaction mixture was subjected to proton NMR analysis to determine the *dr* values and purified by column chromatography on silica gel without any additional treatment (Hexanes : EtOAc = 50:1) to give the pure products **5** or **6** in generally good to high yields with excellent enantioselectivity.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] oxazepin-11-yl)-2-phenylacetate (5a) White solid, 54.8 mg, 96% yield, > 20:1 *dr*, 99% *ee*, $[\alpha]_{p}^{20} = -66.1^{\circ}$ (c = 0.30, DCM), mp = 116 - 118 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.40 - 7.38 (m, 2H), 7.34 - 7.30 (comp, 5H), 7.29 - 7.25 (m, 2H), 7.24 (s, 1H), 7.22 - 7.16 (m, 2H), 7.02 - 6.93 (m, 2H), 6.89 - 6.85 (m, 1H), 6.84 - 6.78 (m, 1H), 6.61 - 6.57 (m, 2H), 5.30 (s, 1H), 4.84 (d, *J* = 12.0 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.42 (s, 1H), 2.13 - 2.02 (comp, 9H), 1.65 - 1.60 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 157.7, 145.7, 138.9, 137.9, 136.0, 131.0, 129.1, 129.0, 128.6, 128.3, 128.0, 127.4, 127.2, 126.9, 124.4, 123.3, 121.4, 120.5, 119.04, 119.03, 88.0, 83.3, 67.7, 64.7, 41.3, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₈NO4 [M + H]⁺: 572.2795, found 572.2799; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 254 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{maior} = 14.2 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-9-(*tert*-butyl)-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5b) Colorless oil, 55.8 mg, 89% yield, > 20:1 *dr*, 99% *ee*, ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.40 – 7.35 (comp, 4H), 7.34 – 7.26 (comp, 4H), 7.26 – 7.23 (m, 1H), 7.20 – 7.15 (m, 1H), 7.05 – 7.00 (m, 1H), 6.97 – 6.92 (m, 1H), 6.88 – 6.84 (m, 1H), 6.67 – 6.59 (m, 2H), 5.30 (s, 1H), 4.89 (d, *J* = 11.9 Hz, 1H), 4.50 (d, *J* = 11.9 Hz, 1H), 4.44 (s, 1H), 2.17 – 2.12 (m, 3H), 2.09 – 1.98 (comp, 6H), 1.67 – 1.62 (comp, 6H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 158.0, 147.4, 144.0, 139.0, 137.1, 136.2, 130.9, 129.2, 129.1, 128.7, 128.4, 128.1, 127.6, 127.3, 127.1, 123.3, 120.9, 120.5, 116.54, 116.49, 88.1, 83.3, 67.9, 65.0, 41.3, 36.2, 34.3, 31.5, 31.0; HRMS (TOF MS ESI⁺) calculated for C₄₂H₄₆NO₄ [M + H]⁺: 628.3421 found 628.3428; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, $\lambda = 254$ nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, $t_{major} = 3.5$ min.

(*3R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-6-methyl-10,11-dihydrodibenzo [*b*,*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5c) Colorless oil, 53.8 mg, 92% yield, > 20:1 *dr*, 99% *ee*, $[\alpha]_D^{20} = -36.8^\circ$ (c = 0.30, DCM); ¹H NMR (500 MHz, CDCl₃) (δ, ppm) δ 7.39 (d, *J* = 7.6 Hz, 2H), 7.37 – 7.33 (comp, 4H), 7.31 – 7.26 (m, 2H), 7.24 – 7.15 (comp, 4H), 7.02 (d, *J* = 7.9 Hz, 1H), 6.92 (m, 1H), 6.71 (m, 1H), 6.50 (d, *J* = 7.3 Hz, 1H), 6.46 (d, *J* = 7.8 Hz, 1H), 5.25 (s, 1H), 4.83 (d, *J* = 11.9 Hz, 1H), 4.49 (d, *J* = 11.9 Hz, 1H), 4.45 (s, 1H), 2.26 (s, 3H), 2.18 – 2.13 (m, 3H), 2.12 – 2.04 (comp, 6H), 1.67 – 1.62 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 169.9, 157.8, 144.5, 139.0, 138.0, 136.1, 131.1, 130.4, 129.2, 129.0, 128.8, 128.4, 128.0, 127.5, 127.3, 127.1, 123.8, 123.2, 121.01, 121.00, 117.1, 88.3, 83.3, 67.8, 65.2, 41.4, 36.2, 31.0, 17.0; HRMS (TOF MS ESI⁺) calculated for C₃₉H₄₀NO₄ [M + H]⁺: 586.2952, found 586.2959; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 254 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{major} = 8.7 min.

(3R)-Adamantan-1-yl (2R)-2-(benzyloxy)-2-((R)-8-fluoro-10,11-dihydrodibenzo
[b,f][1,4]oxazepin-11-yl)-2-phenylacetate (5d) White solid, 54.2 mg, 92% yield, >
20:1 dr, 99% ee, mp = 142 - 144°C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.34 (comp,

6H), 7.34 – 7.29 (m, 3H), 7.28 – 7.26 (m, 1H), 7.25 – 7.19 (m, 2H), 7.04 – 6.97 (m, 2H), 6.86 – 6.79 (m, 1H), 6.34 – 6.23 (m, 2H), 5.29 (d, J = 2.9 Hz, 1H), 4.87 (d, J =12.0 Hz, 1H), 4.55 (s, 1H), 4.52 (d, J = 12.0 Hz, 1H), 2.19 – 2.14 (m, 3H), 2.13 – 2.04 (comp, 6H), 1.69 – 1.63 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 159.7 (d, J = 239.8 Hz), 157.8, 141.7 (d, J = 2.1 Hz), 139.2 (d, J = 10.9 Hz), 138.8, 135.9, 131.2, 129.5, 128.8, 128.6, 128.4, 128.2, 127.6, 127.4, 127.0, 123.7, 122.2 (d, J = 10.2Hz), 120.5, 105.0 (d, J = 26.0 Hz), 104.8 (d, J = 23.0 Hz), 88.0, 83.5, 67.9, 64.6, 41.4, 36.2, 31.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -119.6; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇FNO₄ [M + H]⁺: 590.2701, found 590.2696; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, $\lambda = 254$ nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, $t_{major} = 4.9$ min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-8-chloro-10,11-dihydrodibenzo [*b*,*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5e) White solid, 55.1 mg, 91% yield, > 20:1 *dr*, 99% *ee*, $[\alpha]_{D}^{20} = -68.1^{\circ}$ (c = 0.30, DCM); mp = 182 – 184 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 3H), 7.33 – 7.29 (comp, 4H), 7.29 – 7.26 (m, 2H), 7.25 – 7.22 (m, 2H), 7.21 – 7.17 (m, 1H), 7.00 – 6.94 (m, 2H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.55 (d, *J* = 2.4 Hz, 1H), 6.53 – 6.48 (m, 1H), 5.25 (s, 1H), 4.83 (d, *J* = 12.0 Hz, 1H), 4.55 (s, 1H), 4.49 (d, *J* = 12.0 Hz, 1H), 2.16 – 2.11 (m, 3H), 2.10 – 2.01 (comp, 6H), 1.67 – 1.60 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 157.5, 144.1, 139.0, 138.8, 135.9, 131.3, 129.5, 129.2, 128.6, 128.4, 128.2, 127.6, 127.4, 127.03, 127.01, 123.7, 122.5, 120.5, 118.6, 118.2, 88.0, 83.6, 67.9, 64.7, 41.4, 36.2, 31.0; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇ClNO₄ [M + H]⁺: 606.2406, found 606.2407; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, $\lambda = 317$ nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, *t*_{major} = 4.4 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-8-methyl-10,11-dihydrodibenzo [*b*_s*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5*f*) White solid, 52.7 mg, 90% yield, > 20:1 *dr*, 99% *ee*, [α]p²⁰ = - 54.0° (c = 0.43, DCM), mp = 173 – 175 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.40 – 7.34 (comp, 5H), 7.34 – 7.27 (m, 3H), 7.25 – 7.22 (m, 1H), 7.21 – 7.17 (m, 1H), 7.03 – 6.96 (m, 2H), 6.81 (d, *J* = 7.9 Hz, 1H), 6.47 – 6.38 (m, 2H), 5.35 (s, 1H), 4.89 (d, *J* = 12.0 Hz, 1H), 4.52 (d, *J* = 12.0 Hz, 1H), 4.39 (s, 1H), 2.18 (s, 3H), 2.16 – 2.04 (comp, 9H), 1.68 – 1.63 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 158.1, 144.0, 139.0, 137.6, 136.1, 134.1, 130.9, 129.3, 129.2, 128.7, 128.4, 128.1, 127.5, 127.3, 127.0, 123.5, 121.2, 120.5, 119.8, 119.7, 88.0, 83.3, 67.8, 64.4, 41.4, 36.2, 31.0, 20.8; HRMS (TOF MS ESI⁺) calculated for C₃₉H₄₀NO₄ [M + H]⁺: 586.2952, found 586.2943; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 254 nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, *t*_{major} = 3.9 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-7-fluoro-10,11-dihydrodibenzo [*b*,*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5g) White solid, 48.3 mg, 82% yield, > 20:1 *dr*, 99% *ee*, mp = 142 – 144 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 7.37 – 7.30 (comp, 6H), 7.30 – 7.26 (m, 2H), 7.25 – 7.23 (m, 1H), 7.23 – 7.18 (m, 1H), 7.03 – 6.95 (m, 2H), 6.67 – 6.62 (m, 1H), 6.60 – 6.50 (m, 2H), 5.24 (s, 1H), 4.87 (d, *J* = 12.0 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.34 (s, 1H), 2.19 – 2.12 (m, 3H), 2.10 – 2.02 (comp, 6H), 1.69 – 1.62 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 157.3, 156.3 (d, *J* = 238.2 Hz), 146.3 (d, *J* = 10.6 Hz), 139.0, 136.1, 134.2 (d, *J* = 2.7 Hz), 131.0, 129.2, 129.0, 128.7, 128.4, 128.2, 127.6, 127.4, 127.1, 123.6, 120.5, 119.8 (d, J = 8.9 Hz), 110.9 (d, J = 22.2 Hz), 108.7 (d, J = 24.3 Hz), 88.2, 83.4, 67.9, 64.8, 41.4, 36.2, 31.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -124.7; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇FNO₄ [M + H]⁺: 590.2701, found 590.2696; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, $\lambda = 266$ nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, $t_{major} = 5.7$ min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-7-chloro-10,11-dihydrodibenzo [*b*_s*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5h) White solid, 50.2 mg, 83% yield, > 20:1 *dr*, 99% *ee*, [α]_D²⁰ = - 57.1° (c = 0.30, DCM), mp = 144 - 146 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.41 - 7.34 (comp, 4H), 7.34 - 7.28 (comp, 6H), 7.24 - 7.19 (m, 2H), 7.02 - 6.96 (m, 2H), 6.88 (d, *J* = 2.3 Hz, 1H), 6.82 - 6.77 (m, 1H), 6.50 (d, *J* = 8.5 Hz, 1H), 5.22 (s, 1H), 4.84 (d, *J* = 12.0 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.42 (s, 1H), 2.18 - 2.14 (m, 3H), 2.12 - 2.02 (comp, 6H), 1.68 - 1.62 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 157.3, 145.7, 138.9, 136.7, 136.0, 131.4, 129.5, 128.6, 128.5, 128.4, 128.2, 127.6, 127.4, 127.1, 124.2, 123.6, 122.9, 121.6, 120.6, 119.7, 88.3, 83.5, 67.9, 65.1, 41.4, 36.2, 31.0; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇ClNO4 [M + H]⁺: 606.2406, found 606.2408; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 217 nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, *t*_{major} = 6.4 min.

 $(3R)-Adamantan-1-yl \quad (2R)-2-(benzyloxy)-2-((R)-7-methyl-10,11-dihydrodibenzo \\ [b,f][1,4]oxazepin-11-yl)-2-phenylacetate (5i) White solid, 49.7 mg, 85\% yield, >$

20:1 *dr*, 99% *ee*, mp = 173 - 175 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.40 (m, 2H), 7.36 – 7.33 (comp, 4H), 7.32 – 7.26 (m, 3H), 7.25 – 7.21 (m, 2H), 7.20 – 7.15 (m, 1H), 7.02 – 6.93 (m, 2H), 6.74 (d, *J* = 1.4 Hz, 1H), 6.67 – 6.62 (m, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.29 (s, 1H), 4.85 (d, *J* = 11.9 Hz, 1H), 4.47 (d, *J* = 12.0 Hz, 1H), 4.32 (s, 1H), 2.17 (s, 3H), 2.15 – 2.12 (m, 3H), 2.09 – 2.02 (comp, 6H), 1.66 – 1.62 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 157.9, 146.1, 139.1, 136.2, 135.3, 131.0, 129.3, 129.14, 129.10, 128.8, 128.4, 128.1, 127.5, 127.3, 127.1, 125.0, 123.4, 121.9, 120.5, 119.4, 88.2, 83.3, 67.9, 64.8, 41.4, 36.2, 31.0, 20.4; HRMS (TOF MS ESI⁺) calculated for C₃₉H₄₀NO₄ [M + H]⁺: 586.2952, found 586.2951; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 254 nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, *t*_{major} = 6.3 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-2-bromo-10,11-dihydrodibenzo [*b*,*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5j) White solid, 55.3 mg, 85% yield, > 20:1 *dr*, 99% *ee*, [α]_D²⁰ = - 3.5° (c = 0.30, DCM) , mp = 131 - 133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 - 7.53 (m, 1H), 7.41 - 7.30 (comp, 9H), 7.26 - 7.22 (m, 2H), 6.93 - 6.80 (m, 3H), 6.67 - 6.55 (m, 2H), 5.24 (d, *J* = 7.1 Hz, 1H), 4.84 (d, *J* = 12.0 Hz, 1H), 4.52 (d, *J* = 12.1 Hz, 1H), 4.40 (d, *J* = 7.1 Hz, 1H), 2.22 - 2.16 (m, 3H), 2.15 - 2.04 (comp, 6H), 1.78 - 1.63 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 169.7, 156.9, 145.6, 138.7, 137.6, 135.4, 134.0, 132.0, 130.9, 128.6, 128.5, 128.3, 127.6, 127.4, 127.0, 124.7, 122.4, 121.4, 119.5, 119.3, 115.9, 88.1, 83.7, 67.9, 64.5, 41.5, 36.2, 31.0; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇BrNO4 [M + H]⁺: 650.1900, found 650.1895; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 254 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{major} = 13.4 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-2-methyl-10,11-dihydrodibenzo [*b*_s*f*][1,4]oxazepin-11-yl)-2-phenylacetate (5k) White solid, 48.0 mg, 82% yield, > 20:1 *dr*, 99% *ee*, [α] $_{D}^{20}$ = -10.1° (c = 0.30, DCM) ,mp = 138 – 140 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (comp, 6H), 7.32 – 7.28 (m, 2H), 7.25 – 7.20 (m, 2H), 7.14 – 7.10 (m, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.90 – 6.85 (m, 2H), 6.83 – 6.79 (m, 1H), 6.62 – 6.56 (m, 2H), 5.23 (d, *J* = 4.6 Hz, 1H), 4.82 (d, *J* = 12.1 Hz, 1H), 4.52 (d, *J* = 12.0 Hz, 1H), 4.44 (s, 1H), 2.23 (s, 3H), 2.19 – 2.15 (m, 3H), 2.13 – 2.07 (comp, 6H), 1.68 – 1.64 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 155.8, 146.2, 139.0, 138.1, 135.9, 132.6, 132.1, 129.7, 128.7, 128.4, 128.1, 128.0, 127.4, 127.3, 127.0, 124.4, 121.4, 120.2, 119.1, 119.0, 88.2, 83.3, 67.7, 65.0, 41.4, 36.2, 31.0, 20.8; HRMS (TOF MS ESI⁺) calculated for C₃₉H₄₀NO₄ [M + H]⁺: 586.2952, found 586.2958; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 4.8 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-6,11-dihydro-5*H*-dibenzo [*b,e*]azepin-6-yl)-2-phenylacetate (5l) White solid, 53.5 mg, 94% yield, > 20:1 *dr*, 95% *ee*, $[\alpha]_D^{20} = -92.4^\circ$ (c = 0.30, DCM), mp = 132 - 134 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.40 (m, 1H), 7.38 - 7.28 (comp, 8H), 7.25 - 7.20 (m, 2H), 7.14 - 7.05 (m, 2H), 7.00 - 6.94 (m, 2H), 6.89 (d, *J* = 7.2 Hz, 1H), 6.71 - 6.64 (m, 2H), 5.42 (d, *J* = 7.4 Hz, 1H), 4.85 (d, *J* = 12.1 Hz, 1H), 4.51 (d, *J* = 12.2 Hz, 1H), 4.51 (s, 1H), 3.31 (d, *J* = 13.9 Hz, 1H), 3.14 (d, *J* = 13.9 Hz, 1H), 2.23 - 2.18 (m, 3H), 2.17 - 2.11 (comp, 6H), 1.73 - 1.66 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 144.8, 141.2, 139.0, 135.9, 134.1, 131.21, 131.16, 129.5, 128.6, 128.4, 128.2, 127.8, 127.5, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 128.2, 127.8, 128.2, 127.8, 128.2, 127.8, 128.2, 127.8, 128.2, 127.8, 128.2, 128.4, 128.2, 127.8, 128.2, 127.8, 128.2, 127.8, 127.5, 128.6, 128.4, 128.2, 127.8, 128.2, 127.8, 128.2, 127.8, 128.2, 127.8, 128.2, 128.4, 12

127.3, 127.2, 127.0, 125.7, 122.8, 120.1, 119.8, 88.4, 83.4, 67.8, 65.9, 41.5, 39.1, 36.2, 31.0; HRMS (TOF MS ESI⁺) calculated for $C_{39}H_{40}NO_3$ [M + H]⁺: 570.3003, found 570.3002; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 254$ nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, $t_{major} = 5.0$ min, $t_{minor} = 7.8$ min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-phenylacetate (5m) White solid, 55.8 mg, 95% yield, > 20:1 *dr*, 99% *ee*, $[\alpha]_D^{20} = -82.8^\circ$ (c = 0.30, DCM), mp = 153 – 155 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.12 – 7.99 (m, 1H), 7.89 – 7.76 (m, 2H), 7.59 – 7.50 (m, 1H), 7.47 – 7.36 (comp, 6H), 7.37 – 7.27 (m, 3H), 7.25 – 7.22 (m, 1H), 7.12 – 7.08 (m, 1H), 6.90 – 6.82 (m, 1H), 6.78 (d, *J* = 9.2 Hz, 1H), 6.55 – 6.48 (m, 1H), 6.44 – 6.36 (m, 1H), 5.39 (d, *J* = 11.7 Hz, 1H), 4.45 (d, *J* = 11.8 Hz, 1H), 4.41 (s, 1H), 2.10 – 2.04 (m, 3H), 1.95 – 1.88 (m, 3H), 1.77 – 1.71 (m, 3H), 1.61 – 1.54 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 145.5, 145.2, 139.2, 137.2, 135.5, 132.7, 131.9, 129.2, 128.7, 128.6, 128.4, 128.3, 128.2, 128.0, 127.54, 127.46, 125.9, 119.4, 118.6, 117.1, 86.4, 83.1, 68.5, 60.9, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₈NO₃S [M + H]⁺: 588.2567, found 588.2574; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 304 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{maior} = 4.5 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-((4-chlorobenzyl)oxy)-2-((*R*)-10,11-dihydrodibenzo [*b*,*f*][1,4]thiazepin-11-yl)-2-phenylacetate (5n) White solid, 59.0 mg, 95% yield, > 20:1 *dr*, 93% *ee*, $[\alpha]_D^{20} = -58^\circ$ (c = 0.30, DCM), mp = 114 - 116 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 – 7.96 (m, 1H), 7.81 – 7.75 (m, 2H), 7.54 – 7.50 (m, 1H), 7.44 – 7.33 (comp, 7H), 7.31 – 7.27 (m, 1H), 7.25 – 7.21 (m, 1H), 7.11 – 7.06 (m, 1H), 6.89 – 6.84 (m, 1H), 6.75 (d, J = 9.3 Hz, 1H), 6.55 – 6.49 (m, 1H), 6.44 – 6.38 (m, 1H), 5.29 (d, J = 11.8 Hz, 1H), 4.37 (d, J = 11.8 Hz, 1H), 4.33 (d, J = 9.8 Hz, 1H), 2.09 – 2.01 (m, 3H), 1.92 – 1.83 (m, 3H), 1.74 – 1.66 (m, 3H), 1.57 – 1.52 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) δ 170.5, 145.4, 145.2, 137.6, 137.1, 135.5, 133.3, 132.7, 132.0, 129.2, 128.9, 128.83, 128.81 128.80, 128.4, 128.2, 128.1, 125.7, 119.5, 118.7, 117.2, 86.5, 83.2, 67.9, 60.8, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇ClNO₃S [M + H]⁺: 622.2177, found 622.2185; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 312$ nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, $t_{major} = 4.0$ min, $t_{minor} = 5.2$ min.

(3*R*)-Adamantan-1-yl (2*R*)-2-((4-cyanobenzyl)oxy)-2-((*R*)-10,11-dihydrodibenzo [*b*,*f*][1,4]thiazepin-11-yl)-2-phenylacetate (50) White solid, 57.5 mg, 94% yield, > 20:1 *dr*, 99% *ee*, [α]_D²⁰ = - 56.2° (c = 0.31, DCM), mp = 126 – 128°C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 1H), 7.80 – 7.75 (m, 2H), 7.71 – 7.65 (m, 2H), 7.56 – 7.50 (m, 3H), 7.42 – 7.37 (m, 3H), 7.31 – 7.27 (m, 1H), 7.25 – 7.22 (m, 1H), 7.12 – 7.08 (m, 1H), 6.91 – 6.84 (m, 1H), 6.77 (d, *J* = 9.3 Hz, 1H), 6.58 – 6.51 (m, 1H), 6.47 – 6.41 (m, 1H), 5.37 (d, *J* = 12.9 Hz, 1H), 4.47 (d, *J* = 12.9 Hz, 1H), 4.30 (d, *J* = 9.5 Hz, 1H), 2.08 – 2.02 (m, 3H), 1.91 – 1.83 (m, 3H), 1.73 – 1.66 (m, 3H), 1.59 – 1.51 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 145.2, 145.1, 144.6, 136.8, 135.5, 132.7, 132.5, 132.1, 129.2, 129.0, 128.5, 128.3, 128.23, 128.20, 127.7, 125.5, 119.6, 119.01, 119.00, 117.4, 111.3, 86.6, 83.5, 67.8, 60.8, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₉H₃₇N₂O₃S [M + H]⁺: 613.2519, found 613.2525; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 6.8 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4]thiazepin-11-yl)-2-((4-methoxybenzyl)oxy)-2-phenylacetate (5p) White solid, 58.6 mg, 95% yield, > 20:1 *dr*, 99% *ee*, [α]_D²⁰ = - 69.8° (c = 0.31, DCM), mp = 120 – 122 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.99 (m, 1H), 7.85 – 7.78 (m, 2H), 7.54 – 7.48 (m, 1H), 7.43 – 7.34 (comp, 5H), 7.31 – 7.27 (m, 1H), 7.25 – 7.19 (m, 1H), 7.11 – 7.06 (m, 1H), 6.95 – 6.90 (m, 2H), 6.88 – 6.82 (m, 1H), 6.75 (d, *J* = 10.1 Hz, 1H), 6.57 – 6.45 (m, 1H), 6.42 – 6.33 (m, 1H), 5.29 (d, *J* = 11.1 Hz, 1H), 4.39 (d, *J* = 10.1 Hz, 1H), 4.34 (d, *J* = 11.2 Hz, 1H), 3.83 (s, 3H), 2.09 – 2.02 (m, 3H), 1.95 – 1.83 (m, 3H), 1.78 – 1.67 (m, 3H), 1.63 – 1.49 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 159.2, 145.5, 145.2, 137.4, 135.5, 132.7, 131.9, 131.3, 129.2, 128.7, 128.4, 128.3, 128.2, 128.0, 125.9, 119.4, 118.5, 117.0, 113.98, 113.95, 86.3, 83.0, 68.2, 60.8, 55.4, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₉H₄₀NO₄S [M + H]⁺: 618.2673, found 618.2681; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 4.4 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-((*R*)-10,11-dihydrodibenzo[$b_{\lambda}f$][1,4]thiazepin-11-yl)-2-((3-fluorobenzyl)oxy)-2-phenylacetate (5q) White solid, 55.7 mg, 92% yield, > 20:1 *dr*, 93% *ee*, mp = 130 – 132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.99 (m, 1H), 7.82 – 7.75 (m, 2H), 7.59 – 7.47 (m, 1H), 7.44 – 7.37 (m, 3H), 7.35 – 7.28 (m, 2H), 7.26 – 7.19 (m, 1H), 7.19 – 7.12 (m, 2H), 7.12 – 7.08 (m, 1H), 7.02 – 6.97 (m, 1H), 6.90 – 6.83 (m, 1H), 6.76 (d, *J* = 9.5 Hz, 1H), 6.55 – 6.49 (m, 1H), 6.44 – 6.41 (m, 1H), 5.33 (d, J = 12.1 Hz, 1H), 4.41 (d, J = 12.1 Hz, 1H), 4.36 (d, J = 9.8 Hz, 1H), 2.09 – 2.02 (m, 3H), 1.93 – 1.86 (m, 3H), 1.75 – 1.69 (m, 3H), 1.59 – 1.52 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 163.1 (d, J = 245.7 Hz), 145.3 (d, J = 21.4 Hz), 141.8 (d, J = 7.3 Hz), 137.0, 135.5, 132.7, 132.0, 130.1, 130.0, 129.3, 128.8, 128.4, 128.3, 128.2, 128.1, 125.7, 122.9 (d, J = 2.7 Hz), 119.6, 118.8, 117.2, 114.5 (d, J =10.9 Hz), 114.2 (d, J = 11.5 Hz), 86.5, 83.3, 67.9, 60.8, 41.1, 36.1, 30.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.1; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇FNO₃S [M + H]⁺: 606.2473, found 606.2479; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 310$ nm, hexane : isopropanol = 98:2, flow rate =0.3 mL/min, $t_{major} = 14.5$ min, $t_{minor} = 15.8$ min.

(3*R*)-Adamantan-1-yl (2*R*)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4]thiazepin-11-yl)-2-((2-fluorobenzyl)oxy)-2-phenylacetate (5r) White solid, 54.5 mg, 90% yield, > 20:1 *dr*, 99% *ee*, $[α]_D^{20} = -25.9^\circ$ (c = 0.42, DCM), mp = 130 – 132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.97 (m, 1H), 7.87 – 7.81 (m, 2H), 7.58 – 7.48 (m, 2H), 7.45 – 7.37 (m, 3H), 7.34 – 7.27 (m, 2H), 7.25 – 7.15 (m, 2H), 7.12 – 7.04 (m, 2H), 6.91 – 6.83 (m, 1H), 6.79 (d, *J* = 9.8 Hz, 1H), 6.56 – 6.47 (m, 1H), 6.47 – 6.40 (m, 1H), 5.35 (d, *J* = 11.7 Hz, 1H), 4.55 (d, *J* = 11.6 Hz, 1H), 4.45 (d, *J* = 10.0 Hz, 1H), 2.10 – 2.02 (m, 3H), 1.94 – 1.85 (m, 3H), 1.76 – 1.67 (m, 3H), 1.61 – 1.53 (comp, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 160.9 (d, *J* = 247.1 Hz), 145.3 (d, *J* = 26.0 Hz), 136.9, 135.5, 132.7, 131.9, 130.01, 130.0, 129.4 (d, *J* = 8.2 Hz), 129.2, 128.8, 128.42, 128.40, 128.2, 128.0, 126.1 (d, *J* = 14.5 Hz), 125.8, 124.3 (d, *J* = 3.4 Hz), 119.3, 118.5, 116.9, 115.5 (d, *J* = 21.4 Hz), 86.3, 83.1, 62.8 (d, *J* = 3.6 Hz), 60.8, 41.1, 36.1, 30.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.0. HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇FNO₃S [M + H]⁺: 606.2473, found 606.2481; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 330$ nm, hexane : ethanol = 95:5, flow rate = 0.3 mL/min, $t_{major} = 13.0$ min.

(3*R*)-Adamantan-1-yl (2*R*)-2-((2-bromobenzyl)oxy)-2-((*R*)-10,11-dihydrodibenzo [*b*,*f*][1,4]thiazepin-11-yl)-2-phenylacetate (5s) White solid, 36.6 mg, 55% yield, > 20:1 *dr*, 97% *ee*, mp = 130 – 132 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.95 (m, 1H), 7.86 – 7.80 (m, 2H), 7.63 – 7.60 (m, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.50 (m, 1H), 7.44 – 7.37 (m, 3H), 7.36 – 7.32 (m, 1H), 7.27 – 7.22 (m, 2H), 7.19 – 7.14 (m, 1H), 7.10 – 7.07 (m, 1H), 6.90 – 6.83 (m, 1H), 6.81 (d, *J* = 9.5 Hz, 1H), 6.53 – 6.47 (m, 1H), 6.43 (d, *J* = 8.1 Hz, 1H), 5.31 (d, *J* = 12.2 Hz, 1H), 4.54 (d, *J* = 9.9 Hz, 1H), 4.51 (d, *J* = 12.2 Hz, 1H), 2.06 – 2.02 (m, 3H), 1.92 – 1.85 (m, 3H), 1.74 – 1.68 (m, 3H), 1.58 – 1.51 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 145.5, 145.1, 138.4, 136.8, 135.6, 132.8, 132.7, 131.9, 129.6, 129.2, 129.1, 128.9, 128.39, 128.38, 128.2, 128.0, 127.7, 125.9, 123.2, 119.2, 118.5, 117.0, 86.3, 83.1, 68.1, 60.9, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇BrNO₃S [M + H]⁺: 666.1672, found 666.1678; HPLC conditions for determination of enantiomeric excess: Chiral IF-3, λ = 254 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{major} = 4.9 min, *t*_{minor} = 4.6 min.

(3R)-Adamantan-1-yl(2R)-2-(2-bromoethoxy)-2-((R)-10,11-dihydrodibenzo[b,f][1,4]thiazepin-11-yl)-2-phenylacetate (5t) White solid, 30.2 mg, 50% yield, >

20:1 *dr*, 99% *ee*, mp = 130 – 132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.5 Hz, 1H), 7.87 – 7.80 (m, 2H), 7.53 (d, *J* = 7.3 Hz, 1H), 7.45 – 7.37 (m, 3H), 7.35 – 7.28 (m, 1H), 7.27 – 7.20 (m, 1H), 7.10 (d, *J* = 7.4 Hz, 1H), 6.99 – 6.87 (m, 1H), 6.77 (d, *J* = 9.6 Hz, 1H), 6.58 – 6.49 (m, 2H), 4.61 (d, *J* = 9.9 Hz, 1H), 4.52 – 4.45 (m, 1H), 3.75 – 3.67 (m, 2H), 3.67 – 3.58 (m, 1H), 2.10 – 2.01 (m, 3H), 1.88 – 1.79 (m, 3H), 1.73 – 1.63 (m, 3H), 1.61 – 1.48 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 145.4, 145.1, 136.8, 135.5, 132.8, 131.9, 129.2, 128.9, 128.5, 128.4, 128.3, 128.0, 125.6, 119.5, 118.5, 116.8, 86.0, 83.2, 66.1, 60.6, 41.0, 36.1, 32.4, 30.8; HRMS (TOF MS ESI⁺) calculated for C₃₃H₃₅BrNO₃S [M + H]⁺: 604.1516, found 604.1513; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 4.5 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4]thiazepin-11-yl)-2-phenyl-2-(prop-2-yn-1-yloxy)acetate (5u) White solid, 21.4 mg, 40% yield, > 20:1 *dr*, 99% *ee*, [α]_D²⁰ = -73.8° (c = 0.30, DCM), mp = 130 – 132 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.95 (d, *J* = 7.2 Hz, 1H), 7.78 (d, *J* = 7.4 Hz, 2H), 7.51 (d, *J* = 6.8 Hz, 1H), 7.44 – 7.35 (m, 3H), 7.33 – 7.27 (m, 1H), 7.25 – 7.19 (m, 1H), 7.09 – 7.04 (m, 1H), 6.90 – 6.82 (m, 1H), 6.65 (d, *J* = 10.1 Hz, 1H), 6.52 – 6.44 (m, 2H), 4.90 (dd, *J* = 15.5, 2.3 Hz, 1H), 4.36 (d, *J* = 10.2 Hz, 1H), 4.18 (dd, *J* = 15.5, 2.4 Hz, 1H), 2.51 (t, *J* = 2.3 Hz, 1H), 2.08 – 2.02 (m, 3H), 1.92 – 1.84 (m, 3H), 1.75 – 1.68 (m, 3H), 1.59 – 1.52 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 170.0, 145.5, 145.1, 136.6, 135.5, 132.7, 131.9, 129.2, 128.9, 128.5, 128.2, 128.1, 128.0, 125.7, 119.5, 118.5, 116.9, 87.2, 83.5, 80.9, 74.2, 60.8, 55.7, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₄H₃₄NO₃S [M + H]⁺: 536.2254, found 536.2246; HPLC conditions for determination of enantiomeric excess: Chiral IF-3, λ = 254 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 4.4 min.

(*3R*)-Adamantan-1-yl (*2R*)-2-(cinnamyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-phenylacetate (5v) Colorless oil, 52.1 mg, 85% yield, > 20:1 *dr*, 99% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.97 (m, 1H), 7.83 – 7.73 (m, 2H), 7.53 – 7.49 (m, 1H), 7.45 – 7.37 (comp, 5H), 7.36 – 7.28 (m, 3H), 7.27 (d, *J* = 1.2 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.10 – 7.04 (m, 1H), 6.90 – 6.84 (m, 1H), 6.73 – 6.62 (m, 2H), 6.53 – 6.42 (m, 3H), 4.92 – 4.84 (m, 1H), 4.41 (d, *J* = 9.9 Hz, 1H), 4.16 – 4.08 (m, 1H), 2.07 – 2.00 (m, 3H), 1.92 – 1.85 (m, 3H), 1.75 – 1.67 (m, 3H), 1.62 – 1.49 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 145.6, 145.3, 137.4, 137.2, 137.0, 135.6, 132.7, 131.9, 131.7, 129.2, 128.73, 128.7, 128.3, 128.2, 128.0, 127.8, 127.0, 126.7, 125.9, 119.4, 118.5, 117.0, 86.4, 83.1, 68.0, 60.9, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₄₀H₄₀NO₃S [M + H]⁺: 614.2723, found 614.2722; HPLC conditions for determination of enantiomeric excess: Chiral IF-3, λ = 254 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{major} = 5.6 min.

Methyl (*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[$b_x f$][1,4]oxazepin-11-yl)-2-phenylacetate (5w) Colorless oil, 38.3 mg, 85% yield, 2 : 1 *dr*, 98% (99%) *ee*; ¹H NMR (500 MHz, CDCl₃) δ major: 7.39 – 7.36 (m, 2H), 7.35 – 7.31 (comp, 4H), 7.30 – 7.26 (m, 2H), 7.25 – 7.20 (m, 2H), 7.18 – 7.13 (m, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.88 – 6.80 (m, 3H), 6.64 – 6.57 (m, 2H), 5.05 (s, 1H), 4.62 (d, *J* = 11.8 Hz, 1H), 4.62 (s, 1H), 4.45 (d, *J* = 11.8 Hz, 1H), 3.65 (s, 3H); minor: 7.40 – 7.35 (m, 2H), 7.30 – 7.20 (comp, 8H), 7.19 – 7.15 (m, 1H), 7.14 – 7.09 (m, 1H), 6.99 – 6.95 (m, 1H), 6.85 – 6.80 (m, 1H), 6.80 – 6.74 (m, 1H), 6.72 – 6.67 (m, 1H), 6.65 – 6.58 (m, 1H), 6.58 – 6.53 (m, 1H), 5.18 (s, 1H), 4.87 (d, J = 11.8 Hz, 1H), 4.56 (s, 1H), 4.50 (d, J = 11.9 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ major: 171.5, 157.7, 145.5, 138.5, 137.7, 135.8, 131.8, 129.6, 128.6, 128.4, 128.3, 127.7, 127.5, 127.2, 126.9, 124.5, 123.1, 121.2, 120.8, 119.2, 119.0, 88.5, 68.0, 67.8, 52.2; minor: 172.5, 157.9, 145.2, 139.1, 137.8, 137.0, 131.9, 129.6, 128.23, 128.20, 128.12, 128.10, 127.6, 127.2, 126.9, 124.5, 123.1, 121.4, 121.1, 119.0, 118.4, 89.3, 69.2, 67.3, 52.5. HRMS (TOF MS ESI⁺) calculated for C₂₉H₂₆NO₄ [M + H]⁺: 452.1862, found 452.1860; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, $\lambda = 254$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 7.3$ min, $t_{minor} = 13.3$ min.

tert-Butyl (*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*_x*f*][1,4]oxazepin-11-yl) -2-phenylacetate (5x) Colorless oil, 38.9 mg, 79% yield, > 20:1 *dr*, 86% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 7.7 Hz, 2H), 7.27 – 7.25 (m, 3H), 7.24 – 7.20 (m, 3H), 7.19 – 7.09 (comp, 4H), 6.94 (d, *J* = 8.0 Hz, 1H), 6.91 – 6.86 (m, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 6.77 – 6.73 (m, 1H), 6.56 – 6.50 (m, 2H), 5.23 (s, 1H), 4.78 (d, *J* = 12.1 Hz, 1H), 4.44 (d, *J* = 12.1 Hz, 1H), 4.37 (s, 1H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 170.3, 157.9, 145.9, 139.0, 138.0, 136.1, 131.1, 129.3, 129.0, 128.7, 128.4, 128.2, 127.6, 127.3, 127.0, 124.5, 123.5, 121.5, 120.7, 119.22, 119.15, 88.3, 83.2, 67.9, 64.9, 28.1. HRMS (TOF MS ESI⁺) calculated for C₃₂H₃₂NO₄ [M + H]⁺: 494.2331, found 494.2335; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, λ = 254 nm, hexane : isopropanol = 80:20, flow rate =1.0 mL/min, *t*_{major} = 4.4 min, *t*_{minor} = 5.8 min.

(3*S*,5*S*,7*S*)-Adamantan-1-yl (*R*)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4]thiazepine -11-yl)-2-hydroxy-2-phenylacetate (5y) Colourless oil, 55.1 mg, 55% yield, > 20:1 *dr*, 77% *ee*; ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.23 (m, 2H), 7.21 – 7.16 (m, 2H), 7.08 – 7.04 (m, 1H), 7.01 – 6.96 (m, 1H), 6.94 – 6.89 (m, 1H), 6.62 – 6.58 (m, 1H), 6.49 – 6.44 (m, 1H), 4.72 (s, 1H), 4.27 (d, *J* = 9.2 Hz, 1H), 2.13 – 2.09 (m, 3H), 2.03 – 2.01 (comp, 6H), 1.60 – 1.57 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 145.8, 142.6, 139.5, 136.4, 132.6, 132.1, 128.7, 128.3, 128.2, 127.9, 127.7, 126.1, 119.8, 119.7, 119.1, 117.3, 84.3, 81.1, 58.5, 41.0, 36.0, 31.0; HRMS (TOF MS ESI⁺) calculated for C₃₁H₃₂NO₃S [M + H]⁺: 498.2025, found 498.2031; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 70:30, flow rate =1.0 mL/min, *t*_{major} = 3.7 min, *t*_{minor} = 4.4 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-(4-(trifluoromethyl)phenyl)acetate (6a) White solid, 55.7 mg, 85% yield, > 20:1 *dr*, 99% *ee*, $[\alpha]_D^{20} = -85.7^\circ$ (c = 0.30, DCM), mp = 113 – 115 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.98 (m, 1H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.69 – 7.61 (m, 2H), 7.55 – 7.48 (m, 1H), 7.45 – 7.37 (comp, 4H), 7.36 – 7.27 (m, 2H), 7.25 – 7.22 (m, 1H), 7.12 – 7.04 (m, 1H), 6.93 – 6.84 (m, 1H), 6.67 (d, *J* = 10.3 Hz, 1H), 6.59 – 6.51 (m, 1H), 6.48 – 6.39 (m, 1H), 5.39 (d, *J* = 11.7 Hz, 1H), 4.40 (d, *J* = 11.7 Hz, 1H), 4.31 (d, *J* = 10.4 Hz, 1H), 2.13 – 2.01 (m, 3H), 1.99 – 1.87 (m, 3H), 1.79 – 1.69 (m, 3H), 1.64 – 1.49 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 145.2, 144.6, 141.2, 138.7, 135.7, 132.8, 130.8 (q, *J* = 32.6 Hz), 130.4, 129.2, 128.8, 128.7, 128.3, 128.2, 127.8, 127.4, 125.9, 125.2 (q, *J* = 3.8 Hz), 123.3(q, *J* = 272.4 Hz), 119.9, 119.2, 117.7, 86.3, 83.7, 68.8, 61.1, 41.1, 36.1, 30.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -69.7; HRMS (TOF MS ESI⁺) calculated for C₃₉H₃₇F₃NO₃S [M + H]⁺: 656.2441, found 656.2442; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 300 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{major} = 3.8 min, *t*_{minor} = 4.6 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(4-chlorophenyl)-2-((*R*)-10,11dihydrodibenzo[*b*,*f*][1,4]thiazepin-11-yl)acetate (6b) White solid, 57.8 mg, 93% yield, > 20:1 *dr*, 95% *ee*, $[\alpha]_D^{20} = -38.0^{\circ}$ (c = 0.30, DCM), mp = 130 - 132 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 - 7.98 (m, 1H), 7.76 - 7.70 (m, 2H), 7.54 - 7.49 (m, 1H), 7.42 - 7.36 (comp, 5H), 7.35 - 7.27 (m, 3H), 7.25 - 7.20 (m, 1H), 7.12 - 7.07 (m, 1H), 6.90 - 6.84 (m, 1H), 6.67 (d, *J* = 9.6 Hz, 1H), 6.56 - 6.50 (m, 1H), 6.43 - 6.39 (m, 1H), 5.36 (d, *J* = 11.7 Hz, 1H), 4.39 (d, *J* = 11.7 Hz, 1H), 4.31 (d, *J* = 10.0 Hz, 1H), 2.09 - 2.04 (m, 3H), 1.91 - 1.86 (m, 3H), 1.73 - 1.68 (m, 3H), 1.60 - 1.51 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 145.2, 144.8, 138.9, 135.8, 135.6, 134.7, 132.8, 131.9, 129.9, 129.2, 128.7, 128.4, 128.2, 128.1, 127.7, 127.5, 125.9, 119.8, 119.0, 117.5, 86.0, 83.4, 68.6, 61.0, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇ClNO₃S [M + H]⁺: 622.2177, found 622.2178; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 330 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 3.7 min, *t*_{minor} = 4.3 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-(4-bromophenyl)-2-((*R*)-10,11dihydrodibenzo[*b*,*f*][1,4]thiazepin-11-yl)acetate (6c) White solid, 63.2 mg, 95%

yield, > 20:1 *dr*, 95% *ee*, $[\alpha]_{D}^{20} = -26.5^{\circ}$ (c = 0.32, DCM), mp = 85 - 87 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 - 7.97 (m, 1H), 7.68 (d, *J* = 8.7 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 3H), 7.45 - 7.36 (comp, 4H), 7.36 - 7.27 (m, 2H), 7.26 - 7.21 (m, 1H), 7.14 - 7.01 (m, 1H), 6.92 - 6.83 (m, 1H), 6.68 (d, *J* = 10.2 Hz, 1H), 6.60 - 6.48 (m, 1H), 6.41 (s, 1H), 5.37 (d, *J* = 11.7 Hz, 1H), 4.40 (d, *J* = 11.7 Hz, 1H), 4.31 (d, *J* = 10.4 Hz, 1H), 2.10 -2.01 (m, 3H), 1.92 - 1.83 (m, 3H), 1.76 - 1.68 (m, 3H), 1.61 - 1.50 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 145.2, 144.8, 138.9, 136.3, 135.6, 132.8, 131.9, 131.4, 130.2, 129.2, 128.7, 128.2, 128.1, 127.7, 127.4, 125.9, 123.1, 119.8, 119.0, 117.5, 86.1, 83.4, 68.6, 60.9, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇BrNO₃S [M + H]⁺: 666.15672, found 666.15679; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 300 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 3.8 min, *t*_{minor} = 4.4 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-(p-tolyl)acetate (6d) White solid, 56.5 mg, 94% yield, > 20:1 *dr*, 99% *ee*, [α]_D²⁰ = - 52.0° (c = 0.30, DCM), mp = 90 – 92 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 7.5 Hz, 2H), 7.42 – 7.38 (m, 2H), 7.36 – 7.28 (m, 2H), 7.26 – 7.21 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.90 – 6.85 (m, 1H), 6.79 (d, *J* = 9.6 Hz, 1H), 6.56 – 6.48 (m, 1H), 6.41 (d, *J* = 8.0 Hz, 1H), 5.38 (d, *J* = 11.7 Hz, 1H), 4.45 (d, *J* = 11.6 Hz, 1H), 4.42 (s, 1H), 2.39 (s, 3H), 2.12 – 2.02 (m, 3H), 1.96 – 1.83 (m, 3H), 1.81 – 1.69 (m, 3H), 1.62 – 1.51 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 145.5, 145.4, 139.3, 138.5, 135.5, 134.3, 132.7, 131.9, 129.2, 129.0, 128.6, 128.3, 128.1, 128.0, 127.49, 127.45, 125.8, 119.3, 118.5, 116.9, 86.2, 82.9, 68.4, 60.9, 41.1, 36.1, 30.9, 21.2; HRMS (TOF MS ESI⁺) calculated for C₃₉H₄₀NO₃S [M + H]⁺: 602.2723, found 602.2719; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 310 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, t_{major} = 3.9 min, t_{minor} = 4.5 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-(4-methoxyphenyl)acetate (6e) White solid, 42.0 mg, 68% yield, > 20:1 *dr*, 99% *ee*, mp = 90 – 92 °C; ¹H NMR (500 MHz, CDCl₃) (δ, ppm) δ 8.05 – 8.00 (m, 1H), 7.73 (d, *J* = 8.9 Hz, 2H), 7.56 – 7.49 (m, 1H), 7.45 – 7.35 (comp, 4H), 7.33 – 7.28 (m, 2H), 7.24 – 7.18 (m, 1H), 7.13 – 7.05 (m, 1H), 6.94 – 6.82 (m, 3H), 6.75 (d, *J* = 9.0 Hz, 1H), 6.56 – 6.47 (m, 1H), 6.46 – 6.38 (m, 1H), 5.32 (d, *J* = 11.7 Hz, 1H), 4.39 (s, 1H), 4.39 (d, *J* = 11.7 Hz, 1H), 3.83 (s, 3H), 2.10 – 1.98 (m, 3H), 1.91 – 1.81 (m, 3H), 1.76 – 1.65 (m, 3H), 1.63 – 1.53 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) δ 170.9, 159.7, 145.5, 145.3, 139.3, 135.5, 132.8, 131.9, 130.8, 129.8, 129.4, 129.2, 128.6, 128.2, 128.0, 127.5, 125.9, 119.4, 118.6, 117.1, 113.6, 85.9, 82.9, 68.3, 60.9, 55.4, 41.1, 36.1, 30.9; HRMS (TOF MS ESI⁺) calculated for C₃₉H₄₀NO₄S [M + H]⁺: 618.2673, found 618.2674; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 330 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 4.3 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-(4-fluorophenyl)acetate (6f) White solid, 56.9 mg, 94% yield, > 20:1 *dr*, 97% *ee*, $[\alpha]_D^{20} = -91.7^\circ$ (c = 0.37, DCM), mp = 116 - 118 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 7.7 Hz, 1H), 7.82 - 7.75 (m, 2H), 7.55 - 7.49 (m, 1H), 7.44 - 7.36 (comp, 4H), 7.35 - 7.27 (m, 2H), 7.26 - 7.20 (m, 1H), 7.13 - 7.05 (m, 3H),

6.89 – 6.85 (m, 1H), 6.70 (d, J = 10.3 Hz, 1H), 6.57 – 6.50 (m, 1H), 6.42 (d, J = 8.1 Hz, 1H), 5.35 (d, J = 11.7 Hz, 1H), 4.38 (d, J = 11.7 Hz, 1H), 4.34 (d, J = 10.4 Hz, 1H), 2.08 – 2.05 (m, 3H), 1.92 – 1.87 (m, 3H), 1.74 – 1.70 (m, 3H), 1.60 – 1.52 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 162.8 (d, J = 248.2 Hz), 145.3, 144.9, 139.0, 135.6, 133.1 (d, J = 3.4 Hz), 132.8, 131.9, 130.4 (d, J = 8.1 Hz), 129.2, 128.6, 128.2, 128.1, 127.7, 127.5, 125.9, 119.7, 118.9, 117.5, 115.2 (d, J = 21.3 Hz), 85.9, 83.3, 68.5, 61.0, 41.1, 36.1, 30.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.3; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇FNO₃S [M + H]⁺: 606.2473, found 606.2472; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 300$ nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 3.7 min, *t*_{minor} = 4.3 min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-(3-fluorophenyl)acetate (6g) White solid, 54.5 mg, 90% yield, > 20:1 *dr*, 98% *ee*, $[\alpha]_D^{20} = -75.8^\circ$ (c = 0.30, DCM), mp = 88 – 90 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.99 (m, 1H), 7.62 – 7.51 (m, 3H), 7.46 – 7.40 (m, 3H), 7.39 – 7.34 (m, 2H), 7.32 – 7.21 (m, 3H), 7.14 – 7.06 (m, 2H), 6.92 – 6.84 (m, 1H), 6.71 (d, *J* = 10.1 Hz, 1H), 6.57 – 6.51 (m, 1H), 6.46 – 6.41 (m, 1H), 5.40 (d, *J* = 11.7 Hz, 1H), 4.43 (d, *J* = 11.6 Hz, 1H), 4.33 (d, *J* = 10.3 Hz, 1H), 2.09 – 2.03 (m, 3H), 1.95 – 1.86 (m, 3H), 1.79 – 1.68 (m, 3H), 1.62 – 1.51 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.7 (d, *J* = 245.3 Hz), 1453, 144.9, 139.8 (d, *J* = 6.9 Hz), 138.9, 135.6, 132.7, 131.9, 129.6 (d, *J* = 8.1 Hz), 129.2, 128.7, 128.3, 128.1, 127.7, 127.5, 125.9, 124.1 (d, *J* = 2.8 Hz), 119.8, 118.9, 117.4, 115.8 (d, *J* = 23.6 Hz), 115.7 (d, *J* = 21.1 Hz), 86.1 (d, *J* = 1.6 Hz), 83.5, 68.7, 61.0, 41.1, 36.1, 30.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.2; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇FNO₃S [M + H]⁺: 606.2473, found 606.2467; HPLC conditions for determination of enantiomeric excess: Chiral

IA, $\lambda = 300$ nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, $t_{major} = 3.9$ min, $t_{minor} = 4.5$ min.

(3*R*)-Adamantan-1-yl (2*R*)-2-(benzyloxy)-2-((*R*)-10,11-dihydrodibenzo[*b*,*f*][1,4] thiazepin-11-yl)-2-(2-fluorophenyl)acetate (6h) White solid, 18.2 mg, 30% yield, > 20:1 *dr*, 91% *ee*, mp = 90 – 92 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.95 (m, 2H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.39 – 7.34 (m, 3H), 7.31 – 7.27 (m, 1H), 7.25 – 7.23 (m, 1H), 7.21 – 7.14 (m, 2H), 7.14 – 7.06 (m, 2H), 6.93 – 6.85 (m, 1H), 6.83 (d, 1H), 6.54 – 6.50 (m, 1H), 6.44 (d, *J* = 8.1 Hz, 1H), 5.33 (d, *J* = 11.1 Hz, 1H), 4.70 (d, *J* = 9.2 Hz, 1H), 4.45 (d, *J* = 11.2 Hz, 1H), 2.07 – 2.02 (m, 3H), 1.90 – 1.85 (m, 3H), 1.76 – 1.72 (m, 3H), 1.58 – 1.52 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 161.1 (d, *J* = 248.3 Hz), 145.4, 143.4, 138.8, 135.7, 132.7, 131.9, 130.7 (d, *J* = 9.2 Hz), 130.2 (d, *J* = 3.1 Hz), 128.7, 128.5, 128.4, 128.0, 127.7, 127.6, 125.4, 125.3, 124.6 (d, *J* = 3.0 Hz), 119.3, 118.7, 118.2, 116.4 (d, *J* = 25.0 Hz), 84.3, 83.1, 68.2, 61.2, 40.9, 36.1, 30.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -106.4; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₇FNO₃S [M + H]⁺: 606.2473, found 606.2480; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t_{major}* = 3.9 min, *t_{minor}* = 4.5 min.

Ethyl (2*R*)-2-(benzyloxy)-2-(10,11-dihydrodibenzo[*b*,*f*][1,4]thiazepin-11-yl) acetate (6i) Colorless oil, 20.3 mg, 50% yield, 1.5:1 *dr*, 93%/55% *ee*; ¹H NMR (500 MHz, CDCl₃) δ major: 7.42 (d, *J* = 7.3 Hz, 1H), 7.38 (d, *J* = 5.9 Hz, 1H), 7.31 (d, *J* = 7.3 Hz, 1H), 7.25 - 7.21 (m, 3H), 7.15 - 7.12 (m, 3H), 7.08 - 7.06 (m, 1H), 6.83 - 6.79 (m, 1H), 6.49 – 6.44 (m, 1H), 6.23 (d, J = 8.1 Hz, 1H), 4.84 – 4.81 (m, 1H), 4.78 (d, J = 11.6 Hz, 1H), 4.36 (d, J = 11.6 Hz, 1H), 4.18 (s, 1H), 4.13 – 4.05 (m, 2H), 1.04 (t, J = 7.1 Hz, 3H); minor: 7.52 – 7.49 (m, 1H), 7.37 (d, J = 7.0 Hz, 1H), 7.35 – 7.33 (m, 2H), 7.24 (d, J = 2.7 Hz, 2H), 7.20 (d, J = 3.9 Hz, 1H), 6.95 (m, 1H), 6.62 (m, 1H), 6.51 (d, J = 8.1 Hz, 1H), 5.59 (d, J = 5.3 Hz, 1H), 4.92 (d, J = 6.5 Hz, 1H), 4.82 (d, J = 11.1 Hz, 1H), 4.65 (s, 1H), 4.56 (d, J = 11.1 Hz, 1H), 4.14 – 4.06 (m, 1H), 1.12 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ major: 171.2, 145.9, 141.0, 137.2, 136.1, 132.6, 132.2, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 118.8, 118.5, 117.2, 80.5, 73.7, 61.3, 58.5, 14.2; minor: 171.0, 146.2, 141.0, 137.0, 136.5, 131.9, 131.7, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 127.9, 119.2, 119.1, 117.6, 80.0, 73.0, 61.3, 60.2, 14.1; HRMS (TOF MS ESI⁺) calculated for C₂₄H₂₄NO₃S [M + H]⁺: 406.1471, found 406.1465; HPLC conditions for determination of enantiomeric excess: Chiral AD-H, $\lambda = 300$ nm, hexane : isopropanol = 80:20, flow rate =0.5 mL/min, $t_{major} = 23.7$ min, $t_{minor} = 25.6$ min.

Control Experiments:

Synthesis of 9: To a 10-mL oven-dried vial with a magnetic stirring bar, **2a** (21.6 mg, 0.2 mmol), and Rh₂(esp)₂ (0.8 mg, 1.0 mol%) in 2.0 mL DCE, a solution of **1a** (71.0 mg, 0.24 mmol) in DCE (2.0 mL) was added *via* a syringe pump over 2 h under argon atmosphere at 30 °C. Then the solvent was evaporated in vacuo, and the residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 50:1) to give 60.2 mg of pure product **9** as white solid in 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.42 – 7.27 (comp, 8H), 4.81 (s, 1H), 4.61 (q, *J* = 11.9 Hz, 2H), 2.16 – 2.10 (m, 3H), 2.09 – 2.01 (comp, 6H), 1.66 – 1.61 (comp, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 169.8, 137.7, 137.2, 128.5, 128.52, 128.47, 128.1, 127.9, 127.4, 82.0, 80.4, 71.2, 41.3, 36.2, 31.0; HRMS (TOF MS ESI+) calculated for C₂₅H₂₉O₃ [M + H]⁺: 377.2117, found 377.2115.

Control reaction with 9 and 3a:

To a 10-mL oven-dried vial containing a magnetic stirring bar, **9** (37.6 mg, 0.10 mmol), **3a** (19.5 mg, 0.10 mmol), **4c** (1.7 mg, 2.0 mol%), 5Å MS (100 mg), Rh₂(esp)₂ (0.8 mg, 1.0 mol%), and DCE (2.0 mL) were added in sequence, and the reaction mixture was stirred at 30 °C under argon atmosphere for 10 h. Then the reaction crude mixture was subjected to proton NMR analysis in CDCl₃ (see Fig. S1 for detail). All the materials were remained and no product **5a** was formed.

Fig. S1 Proton NMR spectrum of crude reaction mixture of 9 with 3a under standard conditions.

To a 10-mL oven-dried vial with a magnetic stirring bar, **2a** (260 mg, 2.4 mmol, 1.2 equiv), Rh₂(esp)₂ (16.0 mg, 1.0 mol%), **4c** (34 mg, 2.0 mol%) and 5Å MS (2.0 g) in 10 mL DCE, a solution of **1a** (712 mg, 2.4 mmol, 1.2 equiv) and imine **3m** (422 mg, 2.0 mmol, 1.0 equiv) in DCE (30 mL) was added *via* a syringe pump over 10 h under argon atmosphere at 30 °C, and the reaction mixture was stirred for additional 1 h under these conditions. Then the solvent was evaporated in vacuo, the residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 50:1) to give 1.04 g of pure product **5m** in 90% yield with 99% *ee*.

Synthetic Transformations

<u>Synthesis of 7:</u> To a 10-mL oven-dried round-bottom flask with a magnetic stirring bar, a solution of **5t** (60.3 mg, 0.1 mmol) in THF (2.0 mL), was added NaH (4.8 mg, 0.2 mmol, 2.0 equiv) under stirring at 0 °C, then the reaction mixture was allowed up to 50 °C for stirring 0.5 h. When the reaction was completed (monitored by TLC), the solvent was evaporated under vacuum after filtering through a pad of Celite. The residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 50:1) to give 39.2 mg of pure product **7** as white solid in 75% yield with 99% *ee*, $[\alpha]_D^{20} = -113.1^\circ$ (c = 0.30, DCM), mp = 270 - 272 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 - 8.09 (m, 1H), 7.74 - 7.64 (m, 2H), 7.62 - 7.53 (m, 1H), 7.41 - 7.34 (m, 2H),

7.33 – 7.23 (comp, 4H), 7.16 (s, 1H), 6.98 – 6.88 (m, 1H), 6.72 – 6.66 (m, 1H), 6.65 – 6.60 (m, 1H), 3.99 – 3.90 (m, 1H), 3.88 – 3.77 (m, 1H), 3.23 – 3.11 (m, 2H), 1.97 – 1.89 (m, 3H), 1.65 – 1.56 (comp, 4H), 1.54 – 1.38 (comp, 8H); ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 148.1, 141.0, 138.4, 136.8, 131.7, 131.6, 128.8, 128.6, 128.3, 127.9, 127.7, 127.6, 127.5, 123.0, 121.6, 120.6, 81.7, 81.1, 63.3, 56.2, 46.9, 40.6, 36.0, 30.7; HRMS (TOF MS ESI+) calculated for C₃₃H₃₄NO₃S [M + H]⁺: 524.2254, found 524.2258; HPLC conditions for determination of enantiomeric excess: Chiral IF-3, λ = 254 nm, hexane : isopropanol = 98:2, flow rate =1.0 mL/min, *t*_{major} = 23.9 min.

Synthesis of 8: To a 10-mL oven-dried vial containing a magnetic stirring bar, 5u (53.5 mg, 0.10 mmol), JohnPhos(MeCN)AuSbF₆ (3.7 mg, 5.0 mol%), and DCE (2.0 mL) were added in sequence, and the reaction mixture was stirred at 30 °C under argon atmosphere for 0.5 h. When the reaction was completed (monitored by TLC), the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel with any treatment (Hexanes : EtOAc = 50:1) to give 29.4 mg of pure product 8 as white solid in 95% yield with 99% ee, mp = 104 - 106°C; ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.64 (m, 1H), 7.61 – 7.53 (m, 2H), 7.49 – 7.43 (m, 1H), 7.29 – 7.23 (m, 3H), 7.22 – 7.13 (m, 3H), 6.84 – 6.72 (m, 2H), 6.33 (s, 1H), 6.08 (d, J = 1.1 Hz, 1H), 5.92 – 5.82 (m, 1H), 2.07 – 1.97 (m, 3H), 1.89 – 1.76 (comp, 6H), 1.58 - 1.47 (comp, 6H), 1.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 142.6, 141.0, 137.9, 134.8, 129.7, 128.2, 128.1, 127.8, 127.2, 126.9, 126.6, 126.1, 126.0, 124.9, 122.9, 122.5, 115.2, 82.8, 81.3, 59.2, 40.9, 36.0, 30.8, 15.2; HRMS (TOF MS ESI+) calculated for C₃₄H₃₄NO₃S [M + H]⁺: 536.2254, found 536.2248; HPLC conditions for determination of enantiomeric excess: Chiral IF-3, λ = 266 nm, hexane : isopropanol = 80:20, flow rate = 1.0 mL/min, $t_{\text{major}} = 6.9 \text{ min}$.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Condition: Chrial AD-H, $\lambda = 254$ nm, hexane/isopropanol = 98:2

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	14.175	69095	2743195	100.00

0.10-AdO₂C OBn ■Ph tBų 0.08-HN• 45 ₽ 0.06-0.04-**5b** racemic 16.026 0.02-0.00-6.00 8.00 10.00 12.00 14.00 18.00 2.00 4.00 16.00 20.00 0.00 RT Entry Height Area % Area mV.sec min mV % 551371 1 3.445 52305 50.11 2 16.026 7503 549031 49.89 0.12-

0.40	
0.12	
1	

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.511	29123	217847	100.00

AdO₂C OBn 0.10 ∎Ph HN• 0.08-8.681 ₽ 0.06 С 5c Me 0.04racemic -64.350 0.02-0.00-20.00 30.00 40.00 50.00 70.00 80.00 10.00 60.00 0.00 Entry RT Height Area % Area min mVmV.sec %

0.12

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.735	114944	4179305	100.00

40.00

50.00

60.00

70.00

80.00

90.00

20.00

10.00

0.00

30.00

Condition: Chrial AD-H, $\lambda = 254$ nm, hexane/isopropanol = 80:20

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.895	58931	741141	100.00

 AdO_2C OBn 0.030-•Ph 333 HN CI ₽ ^{0.020-} C 5e racemic 21.348 0.010-0.000-2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 0.00 Entry RT Height Area % Area min mVmV.sec % 21866 1 4.333 218672 49.44 2 21.305 3215 50.56 50.56 0.08 AdO₂C OBn 0.06-■Ph HN 4.350 CI ₽ 0.04

flow rate = 1.0 mL/min

0.040-

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.350	29603	317698	100.00

AdO₂C OBn ■Ph 0.30 HN Me ₽ ^{0.20-} 3.923 \cap 5f racemic 0.10-14.324 0.00-2.00 6.00 8.00 10.00 12.00 14.00 16.00 4.00 0.00 Entry RT Height Area % Area min mV mV.sec % 1 3.923 124297 1099742 50.11 2 14.324 22340 23.27 1095046

0.40

0.00-

0.00

2.00

4.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.916	150693	1574137	100.00

8.00

10.00

12.00

14.00

16.00

18.00

6.00

Condition: Chrial AD-H, $\lambda = 266$ nm, hexane/isopropanol = 80:20

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	5.718	26317	411298	100.00

Condition: Chrial AD-H, $\lambda = 217$ nm, hexane/isopropanol = 80:20

flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.369	300284	5484165	100.00

 AdO_2C OBn •Ph 0.030-HN• 6.325 ₽ 0.020 Ο Me 5i racemic 25.519 0.010-0.000-4.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 2.00 6.00 30.00 0.00 Height Entry RT Area % Area min mV mV.sec %

341845

342944

49.92

50.02

16017

3655

0.08-	
- - 0.06- -	AdO ₂ C_OBn
₽ 0.04- -	HN HN
- -0.02 -	Me 5i > 20:1 <i>dr</i> , >99% <i>ee</i>
- -0.00 0.0	00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.347	34831	655381	100.00

Condition: Chrial AD-H, $\lambda = 254$ nm, hexane/isopropanol = 80:20

flow rate = 1.0 mL/min

1

2

6.325

25.519

Condition: Chrial AD-H, $\lambda = 254$ nm, hexane/isopropanol = 98:2 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	13.373	46744	176153	100.00

Condition: Chrial AD-H, $\lambda = 254$ nm, hexane/isopropanol = 90:10

flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.837	31695	3822073	100.00

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 98:2

flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.994	40692	447766	97.87
2	7.829	703	9738	2.13

0.10- AdO_2C OBn 0.08-Ph ΗN 0.06-4.549 -5.974 Q 0.04-S 5m racemic 0.02-0.00 Δ -0.02+ 0.00 5.00 7.00 1.00 2.00 3.00 4.00 6.00 8.00 9.00 10.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.549	40188	318285	49.64
2	5.974	32518	322916	50.36

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.536	52971	433363	100.00

Condition: Chrial IA, $\lambda = 312$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.003	26874	149490	50.07
2	5.136	20027	149061	49.93

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.012	90778	501477	96.71
2	5.241	2816	17071	3.29

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.773	70841	676515	44.07
2	8.205	7894	92769	6.04
3	9.153	7201	92912	6.05
4	14.031	25284	672909	43.83

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.354	69924	433980	50.51
2	5.923	42773	425145	49.49

Condition: Chrial IA, $\lambda = 310$ nm, hexane/isopropanol = 98:2

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	15.077	21569	493208	50.37
2	16.445	21414	485947	49.63

17923

3.11

Condition: Chrial IA, $\lambda = 330$ nm, hexane/isopropanol = 95:5

862

flow rate = 0.3 mL/min

15.818

2

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	12.935	19672	440518	50.19
2	13.748	20274	437143	49.81

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	12.983	81519	1694884	100.00

Condition: Chrial IF-3, $\lambda = 254$ nm, hexane/isopropanol = 98:2

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.599	25395	175768	49.92
2	4.950	23894	176339	50.08

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.209	73638	414935	50.51
2	4.504	69780	406534	49.49

Condition: Chrial IF-3, $\lambda = 254$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.110	54941	303847	50.36
2	4.405	51501	299562	49.64

Condition: Chrial IF-3, $\lambda = 254$ nm, hexane/isopropanol = 98:2

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	5.048	382340	3120386	50.53
2	5.517	328359	3054796	49.47

Condition: Chrial AD-H, $\lambda = 254$ nm, hexane/isopropanol = 90:10

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.873	113866	1795557	50.78
2	12.251	43517	1740674	49.22

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	7.289	172730	2809339	99.15
2	13.328	1021	23996	0.85

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.931	32229	484381	49.51
2	9.136	21011	493921	50.29

Condition: Chrial AD-H, $\lambda = 254$ nm, hexane/isopropanol = 80:20

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.422	61156	551901	50.42
2	5.813	38114	542765	49.58

Condition: Chrial IC, $\lambda = 254$ nm, hexane/isopropanol = 70:30

Condition: Chrial IA, $\lambda = 300$ nm, hexane/isopropanol = 98:2

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.838	40746	725294	50.19
2	4.596	54281	719924	49.81

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.830	105622	1941465	99.74
2	4.603	548	5069	0.26

Condition: Chrial IA, $\lambda = 330$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.738	14900	86896	50.04
2	4.331	13028	86746	49.96

		8		
	min	mV	mV.sec	%
1	3.736	27211	143026	97.79
2	4.323	654	3231	2.21

Condition: Chrial IA, $\lambda = 300$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.704	23594	299335	49.40
2	4,294	33557	306545	50.60

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.784	38969	207591	97.61
2	4.363	940	5073	2.39

Condition: Chrial IA, $\lambda = 310$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.849	22529	118945	49.93
2	4.482	17927	119279	50.07

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.877	46051	269187	99.58
2	4.517	234	1143	0.42

Condition: Chrial IA, $\lambda = 330$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.253	14016	103555	49.85
2	5.075	12266	104198	50.15

Condition: Chrial IA, $\lambda = 300$ nm, hexane/isopropanol = 95:5

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.671	122053	651878	50.06
2	4.302	108707	650433	49.94

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.701	28774	157658	98.86
2	4.332	331	1815	1.14

Condition: Chrial IA, $\lambda = 300$ nm, hexane/isopropanol = 98:2

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	4.169	20268	192859	50.05
2	5.156	19708	192435	49.95

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.864	26507	206421	99.52
2	4.513	220	1169	1.48

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 90:10

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.922	56287	323758	49.83
2	4.525	51791	325919	50.17

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	3.928	150171	840569	95.79
2	4.541	5680	36964	4.21

Condition: Chrial AD-H, $\lambda = 300$ nm, hexane/isopropanol = 80:20

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	20.019	18613	694550	12.30
2	23.362	50843	2169930	38.42
3	25.196	46237	2145186	37.98
4	39.893	8798	638334	11.30

50741

Condition: Chrial IF-3, $\lambda = 254$ nm, hexane/isopropanol = 98:2

flow rate =	1.0 m	L/min
-------------	-------	-------

40.664

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	18.030	10185	323113	49.70
2	28.823	8493	327067	50.30

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	23.890	27840	1294547	100.00

Condition: Chrial IF-3, $\lambda = 331$ nm, hexane/isopropanol = 80:20

flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.974	335250	3947844	50.42
2	7.676	303130	3882395	49.58

Crystallographic Data for 5a.

•Ph

CCDC 2126676

Bond precision:	C-C = 0.0034 A	Wavelength	=1.54184
Cell:	a=17.3081(2) alpha=90	b=14.4922(2) beta=90	c=11.9555(2) gamma=90
Temperature:	100 K		5
	Calculated	Reported	
Volume	2998.83(7)	2998.83(7)
Space group	P 21 21 2	P 21 21 2	
Hall group	P 2 2ab	P 2 2ab	
Moiety formula	C38 H37 N O4	C38 H37 N	04
Sum formula	C38 H37 N O4	C38 H37 N	04
Mr	571.69	571.68	
Dx,g cm-3	1.266	1.266	
Z	4	4	
Mu (mm-1)	0.644	0.644	
F000	1216.0	1216.0	
F000'	1219.50		
h,k,lmax	22,18,15	22,17,15	
Nref	6491[3636]	6219	
Tmin, Tmax	0.793,0.879	0.472,1.0	00
Tmin'	0.773		
Correction metho AbsCorr = MULTI-	od= # Reported T Lin SCAN	nits: Tmin=0.472 Tm	ax=1.000
Data completenes	s= 1.71/0.96	Theta(max) = 78.91	6
R(reflections)=	0.0393(5670)		wR2(reflections) = 0.1013(6219)
S = 1.051	Npar= 38	8	

Crystallographic Data for 7.

Bond precision:	C-C = 0.0067 A	Wavelength=1.54184	
Cell:	a=10.8906(1) alpha=90	b=13.7438(2) beta=90	c=18.1534(2) gamma=90
Temperature:	100 K		3
	Calculated	Reported	L
Volume	2717.17(6)	2717.17(6)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2a	b
Moiety formula	C33 H33 N O3 S	C33 H33	N 03 S
Sum formula	C33 H33 N O3 S	C33 H33	N 03 S
Mr	523.66	523.66	
Dx,g cm-3	1.280	1.280	
Z	4	4	
Mu (mm-1)	1.331	1.331	
F000	1112.0	1112.0	
F000'	1116.30		
h,k,lmax	13,17,23	13,17,23	
Nref	5860[3294]	5739	
Tmin, Tmax	0.852,0.875	0.780,1.	000
Tmin'	0.766		
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	mits: Tmin=0.780 T	max=1.000
Data completenes	ss= 1.74/0.98	Theta(max) = 78.7	86
R(reflections)=	0.0607(5390)		wR2(reflections): 0.1609(5739)
S = 1.043	Npar= 34	3	

Reference

- Y. Tang, Q. Chen, X. Liu, G. Wang, L. Lin and X. Feng, Direct synthesis of chiral allenoates from the asymmetric C-H insertion of α-diazoesters into terminal alkynes, *Angew. Chem. Int. Ed.*, 2015, **54**, 9512-9516.
- 2 Y. Ren, Y. Wang, S. Liu and K. Pan, Organocatalysed asymmetric direct Mannich reaction of acetophenone derivatives and dibenzo[*b*,*f*][1,4]oxazepines with azetidine-2-carboxylic acid, *ChemCatChem.*, 2014, **6**, 2985-2992