Supporting Information

Importance of Favourable Non-Covalent Contacts in the Stereoselective Synthesis of Tetrasubstituted Chromanones

Laura R. Andreola and Steven E. Wheeler^{*} Department of Chemistry, University of Georgia, Athens, GA 30602

E-mail: : swheele2@uga.edu

Contents

Table S1. TS energies (E), enthalpies (H), quasi-RRHO free energies (G), and	S2
single point electronic energies (E') for ligand 1c in Hartrees.	
Table S2. Energy decomposition analysis model single point electronic energies	S 3
(E') in Hartrees.	
Table S3. TS energies (E), enthalpies (H), quasi-RRHO free energies (G), and	S3-S 4
single point electronic energies (E') for ligands 1a , 1b , 1d , and 1e in Hartrees.	
Table S4. Energies (E), enthalpies (H), quasi-RRHO free energies (G), and single	S4
point electronic energies (E') for intermediate 5 using ligand 1c in Hartrees.	
Table S5. Energies (E), enthalpies (H), quasi-RRHO free energies (G), and single	S4
point electronic energies (E') for ligand 1c bound to PdCl ₂ and unbound in open	
and closed conformations in Hartrees.	
Table S6. NBO charge transfer energies for interactions in Figure S2 in kcal mol ⁻¹ .	S5
Table S7. Energies (E), enthalpies (H), quasi-RRHO free energies (G), and single	S5
point electronic energies (E') for intermediate 4 for all ligands	
Figure S1. Models for energy decomposition analysis	S 8
Figure S2. TS-1c(S) and TS-1c(R) with NBO charge transfer interactions shown.	S9

Structure	E	Н	G(quasi-RRO)	E'
TS(R)(2)	-2230.916377	-2230.214822	-2230.344131	-2231.630802
TS(R)(1)	-2230.935233	-2230.233462	-2230.362862	-2231.611808
TS(R)(3)	-2230.915029	-2230.213431	-2230.344367	-2231.610595
TS(R)(4)	-2230.916320	-2230.214816	-2230.344560	-2231.611684
TS(R)(5)	-2230.912486	-2230.210940	-2230.342210	-2231.608903
TS(R)(6)	-2230.923036	-2230.221156	-2230.351930	-2231.619431
TS(R)(7)	-2230.926896	-2230.225325	-2230.353977	-2231.620966
TS(R)(8)	-2230.931888	-2230.229887	-2230.359380	-2231.626568
TS(R)(9)	-2230.935583	-2230.233862	-2230.363119	-2231.632683
TS(R)(10)	-2230.934042	-2230.232370	-2230.361442	-2231.631293
TS(R)(11)	-2230.934042	-2230.232370	-2230.361440	-2231.631292
TS(R)(12)	-2230.935584	-2230.233861	-2230.363114	-2231.632685
TS(R)(13)*	-2230.936676	-2230.234735	-2230.363846	-2231.633801
TS(R)(14)	-2230.926513	-2230.225241	-2230.355771	-2231.624573
TS(R)(15)	-2230.931047	-2230.229095	-2230.359022	-2231.626326
TS(R)(16)	-2230.924828	-2230.223490	-2230.353681	-2231.622231
TS(R)(17)	-2230.924828	-2230.223489	-2230.353677	-2231.622231
TS(R)(18)	-2230.924083	-2230.222445	-2230.352770	-2231.618854
TS(R)(19)	-2230.921368	-2230.219811	-2230.350067	-2231.617134
TS(R)(20)	-2230.923937	-2230.222391	-2230.352879	-2231.621317
TS(S)(1)	-2230.925879	-2230.223923	-2230.354170	-2231.621037
TS(S)(2)	-2230.927224	-2230.225646	-2230.356033	-2231.623421
TS(S)(3)	-2230.927177	-2230.225644	-2230.356132	-2231.623231
TS(S)(4)	-2230.935793	-2230.233759	-2230.364211	-2231.631619
TS(S)(5)	-2230.923284	-2230.221312	-2230.351885	-2231.619074
TS(S)(6)	-2230.925341	-2230.223920	-2230.354345	-2231.622853
TS(S)(7)*	-2230.947480	-2230.245374	-2230.374472	-2231.641792
TS(S)(8)	-2230.925341	-2230.223920	-2230.354341	-2231.622853
TS(S)(9)	-2230.947480	-2230.245371	-2230.374455	-2231.641789
TS(S)(10)	-2230.932990	-2230.231021	-2230.361066	-2231.629974
TS(S)(11)	-2230.927177	-2230.225644	-2230.356150	-2231.623230
TS(S)(12)	-2230.936591	-2230.235011	-2230.364667	-2231.632007
TS(S)(13)	-2230.936592	-2230.235011	-2230.364663	-2231.632007
TS(S)(14)	-2230.926570	-2230.225202	-2230.355734	-2231.624553
TS(S)(15)	-2230.926544	-2230.225161	-2230.355806	-2231.624509
TS(S)(16)	-2230.927224	-2230.225646	-2230.356035	-2231.623421

Table S1. TS energies (E), enthalpies (H), quasi-RRHO free energies (G), and single point electronic energies (E') for ligand **1c** in Hartrees.

* Lowest energy structures TS(**R**) and TS(**S**)

Table S2. Energy decomposition analysis model single p	onit electronic energies (E) in Hartrees
Model	E'
$TS(\mathbf{R})$ ligand	-1336.723137
TS(S) ligand	-1336.725773
TS(R) imine model	-1083.022557
TS(S) imine model	-1083.024408
TS(R) Cl model	-2384.087757
TS(S) Cl model	-2384.091099
$TS(\mathbf{R})$ without Ph	-1921.822956
TS(S) without Ph	-1921.828816
TS(R) without Bn	-1882.490651
TS(S) without Bn	-1882.494620

Table S2. Energy decomposition analysis model single point electronic energies (E') in Hartrees.

Table S3. TS energies (E), enthalpies (H), quasi-RRHO free energies (G), and single point electronic energies (E') for ligands **1a**, **1b**, **1d**, **and 1e** in Hartrees.

Structure	Е	Н	G(quasi-	E'
			RRHO)	
1a TS(R) TS1.1	-1702.149508	-1701.512904	-1701.625039	-1702.667883
1a TS(R) TS1.2	-1702.145283	-1701.508578	-1701.620761	-1702.662996
1a TS(R) TS2.1	-1702.149587	-1701.512785	-1701.624173	-1702.665818
1a TS(R) TS2.2	-1702.147195	-1701.510348	-1701.621914	-1702.663501
1a TS(R) TS2.6	-1702.148633	-1701.512335	-1701.624779	-1702.666508
1a TS(R) TS2.8	-1702.141554	-1701.504754	-1701.616404	-1702.659332
1a TS(S) TS1.1	-1702.150820	-1701.514571	-1701.627625	-1702.669351
1a TS(S) TS1.3	-1702.149168	-1701.512744	-1701.624515	-1702.667108
1a TS(S) TS1.4	-1702.147986	-1701.511498	-1701.624240	-1702.666582
1a TS(S) TS1.5	-1702.149284	-1701.512903	-1701.625913	-1702.667974
1a TS(S) TS2.1	-1702.153429	-1701.516819	-1701.628605	-1702.671282
1a TS(S) TS2.2	-1702.149413	-1701.512866	-1701.625295	-1702.667329
1a TS(S) TS2.5	-1702.150311	-1701.513897	-1701.625304	-1702.668511
1a TS(S) TS2.9	-1702.150453	-1701.513978	-1701.625902	-1702.668935
1b TS(R) TS1.1	-2039.183649	-2038.538163	-2038.659894	-2039.818593
1b TS(R) TS1.2	-2039.181501	-2038.535976	-2038.656881	-2039.814306
1b TS(R) TS1.4	-2039.181123	-2038.536003	-2038.657510	-2039.814853
1b TS(R) TS1.5	-2039.180080	-2038.534964	-2038.656123	-2039.813179
1b TS(R) TS2.1	-2039.184719	-2038.539275	-2038.660121	-2039.816713
1b TS(R) TS2.2	-2039.182635	-2038.537045	-2038.657866	-2039.814788
1b TS(R) TS2.4	-2039.184952	-2038.539506	-2038.660149	-2039.818307
1b TS(R) TS2.5	-2039.180404	-2038.535266	-2038.655923	-2039.812702
1b TS(R) TS2.6	-2039.184271	-2038.539168	-2038.660376	-2039.817566
1b TS(R) TS2.8	-2039.177282	-2038.531735	-2038.652529	-2039.810691
1b TS(S) TS1.1	-2039.185457	-2038.540311	-2038.662432	-2039.820125
1b TS(S) TS1.3	-2039.184165	-2038.538878	-2038.659718	-2039.817940

1b TS(S) TS1.4	-2039.182701	-2038.537439	-2038.659616	-2039.817617
1b TS(S) TS1.5	-2039.184002	-2038.538798	-2038.661079	-2039.819124
1b TS(S) TS1.7	-2039.188608	-2038.543185	-2038.664906	-2039.822468
1b TS(S) TS2.1	-2039.187367	-2038.541878	-2038.663043	-2039.821939
1b TS(S) TS2.2	-2039.183268	-2038.537858	-2038.659670	-2039.817670
1b TS(S) TS2.5	-2039.184378	-2038.539061	-2038.659692	-2039.819391
1b TS(S) TS2.6	-2039.188137	-2038.542968	-2038.664416	-2039.823262
1d TS(R) TS1.1	-2309.568906	-2308.805814	-2308.941106	-2310.292924
1d TS(R) TS1.2	-2309.568073	-2308.805068	-2308.940116	-2310.292073
1d TS(R) TS1.4	-2309.565157	-2308.802135	-2308.937257	-2310.289027
1d TS(R) TS1.6	-2309.564211	-2308.801056	-2308.935492	-2310.288014
1d TS(S) TS1.1	-2309.578962	-2308.815876	-2308.951385	-2310.300788
1d TS(S) TS1.2	-2309.578468	-2308.815289	-2308.950176	-2310.300191
1e TS(R) TS1.10	-2506.151573	-2505.237850	-2505.388548	-2506.941548
1e TS(R) TS1.16	-2506.138482	-2505.225103	-2505.376111	-2506.928379
1e TS(R) TS1.17	-2506.137217	-2505.223599	-2505.374619	-2506.926855
1e TS(R) TS1.1	-2506.155196	-2505.241759	-2505.392837	-2506.945622
1e TS(R) TS1.7	-2506.145620	-2505.232131	-2505.383150	-2506.935572
1e TS(S) TS1.1	-2506.169370	-2505.255732	-2505.406613	-2506.957425
1e TS(S) TS1.2	-2506.168406	-2505.254575	-2505.405297	-2506.956380
1e TS(S) TS1.7	-2506.159649	-2505.245949	-2505.396789	-2506.947307
1e TS(S) TS1.8	-2506.158690	-2505.245071	-2505.396298	-2506.946504
1e TS(S) TS1.9	-2506.157299	-2505.243512	-2505.394443	-2506.945049

Table S4. Energies (E), enthalpies (H), quasi-RRHO free energies (G), and single point electronic energies (E') for intermediate **5** using ligand **1c** in Hartrees.

Structure	Е	Н	G (quasi	E'
			RRHO)	
5(R) open	-2230.957016	-2230.253433	-2230.3859450	-2231.656155
5(R) closed	-2230.962193	-2230.258942	-2230.392075	-2231.660959
5(S) open	-2230.954397	-2230.250908	-2230.383865	-2231.653175
5(S) closed	-2230.963013	-2230.259541	-2230.391923	-2231.660260

Table S5. Energies (E), enthalpies (H), quasi-RRHO free energies (G), and single point electronic energies (E') for ligand **1c** bound to $PdCl_2$ and unbound in open and closed conformations in Hartrees.

Structure	Ε	Н	G (quasi	E'
			RRHO)	
1c-PdCl ₂ open	-2383.538908	-2383.096526	-2383.199138	-2384.058886
gas phase				
1c -PdCl ₂ open	-2383.573462	-2383.131168	-2383.233991	-2384.094381
solution				
1c -PdCl ₂ closed	-2383.537215	-2383.095296	-2383.198867	-2384.058112

gas phase				
1c -PdCl ₂ closed	-2383.574875	-2383.132741	-2383.235925	-2384.096132
solution				
1c-free open	-1336.295738	-1335.865312	-1335.963372	-1336.717526
gas phase				
1c-free open	-1336.307061	-1335.876880	-1335.974533	-1336.731117
solvent				
1c-free closed	-1336.295582	-1335.865292	-1335.962976	-1336.716557
gas phase				
1c-free closed	-1336.307583	-1335.877490	-1335.975330	-1336.730856
solvent				

Table S6. NBO charge transfer energies for interactions in **Figure S2** in kcal mol^{-1} .

Donor NBO	Acceptor NBO	E TS(R)	E TS(S)
BD (1) C63 – H82	LP* (5) Pd37	3.33	3.16
BD (1) C63 – H82	LP* (6) Pd37	4.45	3.12
BD (1) C16 – H18	LP* (5) Pd37	0.91	0.39
BD (1) C16 – H18	LP* (6) Pd37	0.46	0.74
BD (1) C16 – H18	LP* (7) Pd37	0.06	0.00
BD (1) C16 – H18	LP* (8) Pd37	1.52	0.73
Tot	al contribution to Pd:	10.73	8.14

Table S7. Energies (E), enthalpies (H), quasi-RRHO free energies (G), and single point electronic energies (E') for intermediate **4** for all ligands.

Structure	Е	Н	G (quasi	E'
			RRHO)	
4-1a	-1702.184846	-1701.546856	-1701.663542	-1702.702502
4-1b	-2039.218079	-2038.571237	-2038.697650	-2039.852365
4-1c	-2230.975884	-2230.272304	-2230.405548	-2231.671767
4-1d	-2309.608573	-2308.843892	-2308.982794	-2310.330963
4-1e	-2506.197346	-2505.282156	-2505.436458	-2506.985707

The difference in the activation energy between the lowest energy transition state structures leading to the R and S products is attributed to the combination of stabilizing interaction energy and destabilizing distortion energy differences.

$$\Delta \Delta E^{\dagger} = \Delta \Delta E_{int.} + \Delta \Delta E_{dist.} \tag{1}$$

The interaction and distortion components are further divided based on the molecular fragments in the system. "Ph" refers to the anionic phenyl being added to the chromane, while "C" refers to the chromane, and "S" refers to the forming complex of Ph and C as a single substrate fragment. "L" and "Pd" refer to the ligand and the palladium respectively.

$$\Delta\Delta E^{\ddagger} = \Delta\Delta E_{L-Pd int.} + \Delta\Delta E_{L-Ph int.} + \Delta\Delta E_{L-C int.} + \Delta\Delta E_{Pd-Ph int.} + \Delta\Delta E_{Pd-C int.} + \Delta\Delta E_{Ph-C int.} + \Delta\Delta E_{L dist.} + \Delta\Delta E_{C dist.} + \Delta\Delta E_{Ph dist.} + \Delta\Delta E_{Pd dist.}$$

$$(2)$$

The term we are interested in solving for is the relative interaction energy between the ligand and the forming complex S. To find this we must reduce the terms to expressions that can be computed. Many terms can be grouped together to give energy expressions that can be easily computed using model systems. The first of these is a model used to compute the relative distortion of the Pd-S complex (Figure S1a) by performing an EDA on the system where the ligand in the TS has been replaced with a di-imine.

$$\Delta\Delta E_{im.-Pd-S} = \Delta\Delta E_{Pd\ dist.} + \Delta\Delta E_{C\ dist.} + \Delta\Delta E_{Ph\ dist.} + \Delta\Delta E_{Pd-Ph\ int.} + \Delta\Delta E_{Pd-C\ int.} + \Delta\Delta E_{Ph-C\ int.} + \Delta\Delta E_{im.-Pd\ int.}$$
(3)
+ $\Delta\Delta E_{im.S\ int.} + \Delta\Delta E_{im.dist.}$

This expression is simplified by eliminating the terms involving the imine groups, as they are negligibly small.

$$\Delta\Delta E_{im.-Pd-S} = \Delta\Delta E_{Pd\ dist.} + \Delta\Delta E_{C\ dist.} + \Delta\Delta E_{Ph\ dist.} + \Delta\Delta E_{Pd-Ph\ int.} + \Delta\Delta E_{Pd-C\ int.} + \Delta\Delta E_{Ph-C\ int.}$$
(4)

This leaves an expression that includes six of the terms in equation (2) and can be easily computed. This term therefore constitutes the relative Pd-S distortion. Substituting into equation (2) gives:

$$\Delta\Delta E^{\ddagger} = \Delta\Delta E_{L-Pd int.} + \Delta\Delta E_{L-Ph int.} + \Delta\Delta E_{L-C int.} + \Delta\Delta E_{L dist.}$$

$$+ \Delta\Delta E_{im.-Pd-S}$$
(5)

The first term will be computed using the model in Figure S1b in which the substrates have been replaced by chlorines which are then optimized, conserving the transition state geometry of the L-Pd complex. Another energy decomposition is performed on this smaller system to isolate the relative L-Pd interaction energy.

$$\Delta\Delta E_{L-Pd-2Cl} = \Delta\Delta E_{L-Pd int.} + \Delta\Delta E_{L dist.} + \Delta\Delta E_{L-2Cl int.} + \Delta\Delta E_{Pd-2Cl int.} + \Delta\Delta E_{Cl_{(1)}-Cl_{(2)} int.} + \Delta\Delta E_{Cl_{(1)} dist.} + \Delta\Delta E_{Cl_{(2)} dist.}$$
(6)
+ $\Delta\Delta E_{Pd dist.}$

All terms but the first two are considered negligible, and the expression can be solved for $\Delta\Delta E_{L-Pd int.}$ to give an expression composed of two computable terms.

$$\Delta \Delta E_{L-Pd int.} = \Delta \Delta E_{L-Pd-2Cl} - \Delta \Delta E_{L dist.}$$
(7)

Substituting into equation (1) gives:

$$\Delta \Delta E^{\ddagger} = \Delta \Delta E_{L-Pd-2Cl} + \Delta \Delta E_{L-Ph int.} + \Delta \Delta E_{L-C int.} + \Delta \Delta E_{im.-Pd-S}$$
(8)

We can now combine the final unknown terms into the interaction of the ligand with the substrate. This does not include the interaction of the substrates with each other (effectively the relative bond energy) as we have already accounted for that in equation (4).

$$\Delta \Delta E^{\ddagger} = \Delta \Delta E_{L-Pd-2Cl} + \Delta \Delta E_{L-S int.} + \Delta \Delta E_{im.-Pd-S}$$
(9)

L-S interaction removed

TS structure

TS structure

Ph-S interaction removed

Ĥ

TS structure

Figure S1: Models for energy decomposition analysis

Figure S2: TS-1c(S) and TS-1c(R) with NBO charge transfer interactions shown. Select hydrogens shown for clarity.