Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supplementary Information

Visible-light-promoted radical amidoarylation of arylacrylamides

towards amidated oxindoles

Yu-Zhao Wang, Wu-Jie Lin, Hong-Chao Liu and Wei Yu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. yuwei@lzu.edu.cn

Contents

1. General information	S1
2. General procedure for the synthesis of 1	S1
3. Synthesis of <i>N</i> -pyridinium tetrafluoroborates 2	S2
4. General procedure for the synthesis of 3	S2
5. Optimization of the reaction conditions	S3
6. Inhibition experiment	S5
7. X-ray Single crystal diffraction data of 3a	S6
8. Characterization data of compounds 2	S7
9. Characterization data of compounds 3	S12
10. References	
11. Copies of NMR spectra	S26

General information

The NMR spectra were recorded on a Bruker AVANCE III-400 MHz or an INOVA600 MHz spectrometer in CDCl₃, D₂O and (CD₃)₂CO. The chemical shifts of ¹H NMR spectra in CDCl₃ were determined with Si(CH₃)₄ as the internal standard ($\delta = 0.00$ ppm); the chemical shifts of ¹H NMR spectra were determined with the solvent peak as the standard in (CD₃)₂CO and D₂O ($\delta = 2.05$ ppm for (CD₃)₂CO, $\delta = 4.79$ ppm for D₂O). The chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃ ($\delta = 77.0$ ppm) and (CD₃)₂CO ($\delta = 29.0$ ppm). Multiplicities are given as: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), q (quartet) or m (multiplet). HR-MS was performed on a Bruker APEXII FT-ICR mass instrument (ESI). Data collections for crystal structure were performed at room temperature (296 K) using MoK α radiation on a Bruker Smart APEXII diffractometer. Flash column chromatography was carried out on silica gel (200–300 mesh). Commercially available reagents were used without further purification. A 40 W Kessil blue LED lamp (440 nm) was used as the light source. All solvents were dried following the standard procedures before use.

2. General procedure for the synthesis of **1**^{1,2}

(1) Methacryloyl chloride (1.2 mL, 12 mmol, 1.2 equiv.) was added dropwise to a mixture of aniline (1.0 equiv.), Et₃N (2.8 mL, 2.0 mmol, 2.0 equiv.) in CH₂Cl₂ (2.0 mL) at 0 °C. After stirring at 0 °C for 30 min and room temperature overnight, the mixture was quenched with saturated NaHCO₃ solution. The mixture was extract with CH₂Cl₂ (3×25 mL), washed with brine, and dried over Na₂SO₄. After filtration and concentration, the crude amide was used in next step without further purification.

(2) NaH (0.8 g, 60% in mineral oil, 20 mmol, 2.0 equiv.) was added to a solution of the above crude amide in THF (50 mL) at 0 °C in portions. After stirring for 20 min at 0 °C, MeI (1.9 mL, 3.0 mmol, 3.0 equiv.) was added dropwise and the mixture was stirred overnight. The resulting mixture was quenched with water, extracted with ethyl acetate (2 × 30 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel using petroleum ether (PE)/ethyl acetate (EA) to give the pure products 1a-1p, 1t-1u.

Methacryloyl chloride (1.2 mL, 12 mmol, 1.2 equiv.) was added to a mixture of tetrahydroquinoline (1.25 mL, 10 mmol, 1.0 equiv.), Et₃N (2.8 mL, 2.0 mmol, 2.0 equiv.) in CH₂Cl₂ (2.0 mL) at 0 °C dropwise. After stirring at 0 °C for 30 min and room temperature overnight, the mixture was quenched with saturated NaHCO₃ solution. The mixture was extract with CH₂Cl₂ (3×25 mL), and the combined organic phases were washed with brine, and dried over Na₂SO₄. After filtration and concentration, the crude material was purified by column chromatography on silica gel using PE/EA to give the pure product **1q**. Compounds **1q–1s** and **1v** were prepared in the same way.

3. Synthesis of *N*-pyridinium tetrafluoroborates **2**³

To a solution of pyrylium salt (1.0 equiv.) in ethanol was added hydrazine (1.0 equiv.) at room temperature. The reaction mixture was stirred at room temperature for 12 h. The mixture was cooled to 0 $^{\circ}$ C and petroleum ether was added. The precipitate was collected, washed with Et₂O and dried to give products **2**.

4. General procedure for the preparation of 3

1 (0.3 mmol, 1.5 equiv.), **2** (0.2 mmol, 1.0 equiv.), K_3PO_4 (0.24 mmol, 1.2 equiv.) and *fac*-Ir(ppy)₃ (2.0 mol%, 0.02 equiv.) were added into an 15 mL oven-dried glass tube, and the tube was evacuated and backfilled with argon (repeated three times). Dichloroethane (DCE) (2.0 mL) was added to the tube and the reaction mixture was irradiated with a 40 W Kessil blue LED lamp (50% intensity) at ambient temperature for 36 h. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel (eluting with PE /EA) to afford products **3**.

Gram-scale preparation

1a (1.05 g, 6.0 mmol, 1.5 equiv.), 2a (1.3 g, 4.0 mmol, 1.0 equiv.), K₃PO₄ (1.02 g,

4.8 mmol, 1.2 equiv.) and *fac*-Ir(ppy)₃ (52 mg, 2.0 mol%, 0.02 equiv.) were added into an 100 mL oven-dried glass tube, the tube was evacuated and backfilled with argon (repeated three times). DCE (30 mL) was then added to the tube and the reaction mixture was irradiated with a 40 W Kessil blue LED lamp (100% intensity) for 42 h. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The residual was purified by column chromatography on silica gel (eluting with PE /EA) to afford 0.71 g of **3a** (61% yield).

Figure S1. Experiment setup

5. Optimization of the reaction conditions

 Table S1. Screening of the photocatalyst

Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.12 mmol, 1.2 equiv.), photocatalyst (2.0 mol%), DCM (dichloromethane) (1.0 mL), 40 W blue LED (50 % intensity), ambient temperature, 24 h, under argon atmosphere. ^{*a*}Isolated yields. ^{*b*}Most of S.M. was recovered.

Table S2. Screening of the solvent

	+ H BF4	C HN C
1a	2a	3a
Entry	Solvent	Yield $(\%)^a$
1	DCM	65
2	MeCN	58
3	DCE	68
4	CHCl ₃	54
5	THF	N.R.
6	HFIP	N.R.
7	DMF	$trace^d$
8	DMSO	41
9	toluene	32
10	MeOH	10
11	Acetone	58

Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2 a** (0.12 mmol, 1.2 equiv.), *fac*-Ir(ppy)₃ (2.0 mol%), solvent (1.0 mL), 40 W blue LEDs (50 % intensity), room temperature, 24 h, under argon atmosphere. ^{*a*}Isolated yields. ^{*b*}Most of S.M. was recovered. HFIP = hexafluoroisopropanol.

Table S3. Screening of the additive

	$ \begin{array}{c} $	DCM, Ar, bl	at. ue LED 3a	>
Entry	Photocatalyst	Solvent	Additive (equiv.)	Yield $(\%)^a$
1	<i>fac</i> -Ir(ppy) ₃	DCM	InCl ₃ (0.2)	54
2	<i>fac</i> -Ir(ppy) ₃	DCM	FeCl ₃ (0.2)	56
3	<i>fac</i> -Ir(ppy) ₃	DCM	K ₃ PO ₄ (1.0)	61
4	<i>fac</i> -Ir(ppy) ₃	DCE	K ₃ PO ₄ (1.0)	73
5	<i>fac</i> -Ir(ppy) ₃	CHCl ₃	K ₃ PO ₄ (1.0)	65
6	<i>fac</i> -Ir(ppy) ₃	DMSO	K ₃ PO ₄ (1.0)	20
7	$Ir(dtbpy)(ppy)_2PF_6$	DCM	K ₃ PO ₄ (1.0)	71
8	Ir(dtbpy)(ppy) ₂ PF ₆	MeCN	NaOAc (1.0)	65
9	Ir(dtbpy)(ppy) ₂ PF ₆	DCM	NaOAc (1.0)	68

Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.12 mmol, 1.2 equiv.), fac-Ir(ppy)₃ (2.0 mol%), solvent (1.0 mL), 40 W blue LED (50 % intensity), room temperature, 24 h, under argon atmosphere. ^{*a*}Isolated yields.

Entry	1 a	2a	Solvent	Yield of 3a $(\%)^b$
1	1.0	1.5	MeCN	69
2	1.0	1.5	DCM	70
3	1.0	1.5	DCE	73
4	1.0	1.5	CHCl ₃	61
5	1.5	1.0	MeCN	56
6	1.5	1.0	DCM	74
7	1.5	1.0	DCE	81
8	1.5	1.0	CHCl ₃	64
9	1.5	1.0	DCE	58 ^c
10	1.5	1.0	DCE	74^{d}

Table S4. Effect of the ratio of 1a with 2a

Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.12 mmol, 1.2 equiv.), *fac*-Ir(ppy)₃ (2.0 mol%), solvent (1.0 mL), K_3PO_4 (1.2 equiv.), 40 W blue LED (50 % intensity), room temperature, 36 h, under argon atmosphere. ^{*b*}Isolated yields. ^{*c*}Reaction time 12 h, ^{*d*}Reaction time 24 h.

I dole bet beteel	ible bet beteening of the buse			
Entry	1a	2a	Base	Yield of 3a $(\%)^a$
1	1.5	1.0	Na ₃ PO ₄	61
2	1.5	1.0	K_2CO_3	64
3	1.5	1.0	NaOAc	60
4	1.5	1.0	Et ₃ N	41
5	1.5	1.0	no	61
6	1.5	1.0	K_3PO_4	N.R. ^b
7	1.5	1.0	K_3PO_4	N.R. ^c
8	1.5	1.0	DBU	48
9	1.5	1.0	DABCO	23

Table S5. Screening of the base

Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.12 mmol, 1.2 equiv.), fac-Ir(ppy)₃ (2.0 mol%), solvent (1.0 mL), base (1.2 equiv.), 40 W blue LED (50 % intensity), room temperature, 36 h, under argon atmosphere. ^{*a*}Isolated yields. ^{*b*}In the dark, ^{*c*}No photocatalyst.

6. Inhibition experiment

TEMPO trapping experiment.

1a (0.3 mmol, 1.5 equiv.), **2a** (0.2 mmol, 1.0 equiv.), K_3PO_4 (0.24 mmol, 1.2 equiv.), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (2.0 equiv.) and *fac*-Ir(ppy)₃ (2.0 mol%, 0.02 equiv.) were added sequentially into an oven-dried glass tube, the tube was evacuated and backfilled with argon (repeated three times). DCE (2.0 mL) was then added to the tube and the reaction mixture was irradiated with a 40 W kessil

blue LED lamp (50% intensity) for 36 h. TLC analysis indicates that no reaction took place and **3a** was not generated. **1a** and TEMPO were recovered mostly. **BHT trapping experiment.**

1a (0.3 mmol, 1.5 equiv.), **2a** (0.2 mmol, 1.0 equiv.), K_3PO_4 (0.24 mmol, 1.2 equiv.), 2,6-di-tert-butyl-4-methylphenol (BHT) (2.0 equiv.) and *fac*-Ir(ppy)₃ (2.0 mol%, 0.02 equiv.) were added sequentially into an oven-dried glass tube, the tube was evacuated and backfilled with argon (repeated three times). DCE (2.0 mL) was then added to the tube and the reaction mixture was irradiated with a 40 W kessil blue LED (50% intensity) lamp for 36 h. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The crude product was purified by flash chromatography on silica gel directly to give the desired product **3a** with 10% yield. The BHT trapping product **4** was detected by HRMS. HRMS (EI) for **4**: m/z [M + H]⁺ calcd for C₂₂H₂₉NO₂: 340.2271; Found: 340.2272.

7. X-ray Single crystal diffraction data of 3a

		3	-NH =O	
Bond precision:	C-C = 0.0026 A	Wavel	ength= 1.54184	
Cell:	a=9.1402(4) alpha=96.936(3)	b=9.4815(4) beta=91.503(3)	c=18.9795(6) gamma=101.596	
Temperature:	303 K		-	
	Calculated	Re	eported	
Volume	1597.30(11)	15	1597.29(11)	
Space group	P-1	P -	P -1	
Hall group	-P 1	-P	1	
Moiety formula	C18 H18 N2	O2 C1	8H18N2O2	
Sum formula	C18 H18 N2	O2 C1	8H18N2O2	
Mr	294.34	29	4.34	
Dx,g cm-3	1.224	1.2	224	
Z	4	4		
Mu (mm-1)	0.647	0.6	547	
F000	624.0	624.0		
F000'	625.84			
h,k,lmax	11, 11, 23	11	, 11, 23	
Nref	6707	64	6407	
Tmin,Tmax	0.890,0.950	0.6	0.691,1.000	
Tmin'	0.862			
Correction metho AbsCorr = MULT	d= # Reported T Lim TI-SCAN	its: Tmin=0.691 Tr	nax=1.000	
Data completenes	s = 0.955	Theta(max)= 76	.545	
R(reflections)= 0.	0433(4837)	wR2(reflections)= 0.1308(6407)	
S = 1.060		Npar= 402		

8. Characterization data of compounds 2

1-Benzamido-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2a): yellow solid; m.p. = 98–100 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 11.25 (s, 1H), 8.09 (d, *J* = 7.7 Hz, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.56–7.55 (m, 4H), 2.69 (s, 6H), 2,60 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 164.2, 160.6, 157.7, 134.1, 129.3, 128.5, 128.0, 127.7, 22.0, 19.3; HRMS-ESI (m/z) [M]⁺ calcd for C₁₅H₁₇N₂O⁺: 241.1335; Found, 241.1340.

2,4,6-Trimethyl-1-(4-methylbenzamido)pyridin-1-ium tetrafluoroborate (2b): white solid; m.p. = 136–138 °C; ¹H NMR (CDCl₃, 400 MHz) δ :11.21 (s, 1H), 7.99 (d, J = 8.3 Hz, 2H), 7.56 (s, 2H), 7.37 (d, J = 8.0 Hz, 2H), 2.70 (s, 6H), 2.61(s, 3H), 2.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 164.2, 160.3, 157.9, 145.2, 129.9, 128.0, 127.6, 125.7, 22.0, 21.7, 19.4; HRMS-ESI (m/z) [M]⁺ calcd for C₁₆H₁₉N₂O⁺: 255.1492; Found, 255.1494.

1-(4-Methoxybenzamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2c): white solid; m.p. = 126-128 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 11.16 (s, 1H), 8.09-8.05 (m, 2H), 7.54 (s, 2H), 7.06–7.03 (m, 2H), 3.90 (s, 3H), 2.70 (s, 6H), 2.61 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 164.3, 163.8, 160.2, 158.0, 130.2, 127.6, 120.6, 114.5, 55.6, 22.1, 19.4; HRMS-ESI (m/z) [M]⁺ calcd for C₁₆H₁₉N₂O₂⁺: 271.1441; Found, 271.1443.

1-(4-Chlorobenzamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2d): white solid; m.p. = 154–156 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 11.22 (s, 1H), 7.98 (d, J = 8.3 Hz, 2H), 7.56 (s, 1H), 7.37 (d, J = 8.0 Hz), 2.70 (s, 6H), 2.61 (s, 3H), 2.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 163.3, 160.7, 157.6, 140.7, 129.6, 129.5, 127.8, 126.9, 22.0, 19.3; HRMS-ESI (m/z) [M]⁺ calcd for C₁₅H₁₆ClN₂O⁺: 275.0946; Found,

275.0946.

1-(3-Chlorobenzamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2e): white solid; m.p. = 142-144 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 11.40 (s, 1H), 8.06 (t, J = 1.8 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.67–7.65 (m, 2H), 7.57–7.52 (m, 3H), 2.71 (s, 6H), 2.63 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 163.1, 160.7, 157.7, 135.6, 134.2, 130.8, 130.2, 128.6, 127.7, 125.6, 22.1, 19.4; HRMS-ESI (m/z) [M]⁺ calcd for C₁₅H₁₆ClN₂O⁺: 275.0946; Found, 275.0948.

1-(2-Chlorobenzamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2f): white solid; m.p. = 138–140 °C; ¹H NMR (CDCl₃, 600 MHz) δ : 11.07 (s, 1H), 7.76 (d, J = 5.0 Hz, 1H), 7.59 (s, 2H), 7.53 (d, J = 2.6 Hz, 2H), 7.47–7.43 (m, 1H), 2.78 (s, 6H), 2.60 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ : 163.8, 160.9, 157.8, 133.5, 132.1, 131.1, 129.8, 129.6, 127.8, 127.6, 22.1, 19.6; HRMS-ESI (m/z) [M]⁺ calcd for C₁₅H₁₆ClN₂O⁺: 275.0946; Found, 275.0950.

1-(4-Bromobenzamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2g): white solid; m.p. = 140-142 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 11.37 (s, 1H), 7.99–7.96 (m, 2H), 7.74–7.70 (m, 2H), 7.57 (s, 2H), 2.70 (s, 6H), 2.63 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 163.5, 160.6, 157.7, 132.6, 129.6, 129.5, 127.7, 127.3, 22.1, 19.4; HRMS-ESI (m/z) [M]⁺ calcd for C₁₅H₁₆BrN₂O⁺: 319.0441; Found, 319.0444.

2,4,6-Trimethyl-1-(4-(trifluoromethyl)benzamido)pyridin-1-ium

tetrafluoroborate (2h): white solid; m.p. = 198–200 °C; ¹H NMR ((CD₃)₂CO, 400 MHz) δ : 8.33 (d, J = 8.1 Hz, 2H), 8.03 (s, 1H), 8.01 (s, 3H), 2.82 (s, 6H), 2.72 (s, 3H); ¹³C NMR ((CD₃)₂CO, 100 MHz) δ : 163.5, 161.8, 157.4, 134.2 (q, J = 32 Hz, 1C),

133.4, 129.1, 128.2, 126.1 (q, J = 5.0 Hz, 1C), 123.8 (q, J = 270 Hz, 1C), 21.2, 18.5; HRMS-ESI (m/z) [M]⁺ calcd for C₁₆H₁₆F₃N₂O⁺: 309.1209; Found, 309.1210.

2,4,6-Trimethyl-1-(nicotinamido)pyridin-1-ium tetrafluoroborate (2i): white solid; m.p. = 146–148 °C; ¹H NMR (D₂O, 400 MHz) δ : 9.27 (t, *J* = 0.92 Hz, 1H), 9.06–9.03 (m, 1H), 8.89 (d, *J* = 5.8 Hz, 1H), 8.16–8.13 (m, 1H), 7.55 (s, 2H), 2.50 (s, 6H), 2.48 (s, 3H); ¹³C NMR (D₂O, 100 MHz) δ : 165.5, 154.9, 152.4, 145.0, 143.1, 141.3, 134.9, 127.2, 127.0, 20.4, 18.2; HRMS-ESI (m/z) [M]⁺ calcd for C₁₄H₁₆N₃O⁺: 242.1288; Found, 242.1291.

1-(Isonicotinamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2j): white solid; m.p. = 142–144 °C; ¹H NMR (D₂O, 400 MHz) δ : 8.77 (d, *J* = 6.4 Hz, 2H), 8.36 (d, *J* = 6.8 Hz, 2H), 7.43 (s, 2H), 2.38 (s, 6H), 2.36 s, 3H); ¹³C NMR (D₂O, 100 MHz) δ : 166.6, 154.8, 152.6, 152.0, 142.0, 127.0, 125.5, 20.4, 18.1; HRMS-ESI (m/z) [M]⁺ calcd for C₁₄H₁₆N₃O⁺: 242.1288; Found, 242.1285.

1-(Furan-2-carboxamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2j): white solid; m.p. = 122-124 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 11.25 (s, 1H), 7.73 (s, 1H), 7.56 (s, 2H), 7.48 (d, J = 3.5 Hz, 1H), 2.72 (s, 6H), 2.62 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 160.7, 158.1, 155.2, 147.5, 143.1, 127.3, 118.8, 112.7, 22.2, 19.5; HRMS-ESI (m/z) [M]⁺ calcd for C₁₃H₁₅N₂O₂⁺: 231.1128; Found, 231.1130.

2,4,6-Trimethyl-1-(2-phenylacetamido)pyridin-1-ium tetrafluoroborate (2l) : white solid; m.p. = 102-104 °C; ¹H NMR ((CD₃)₂CO, 400 MHz) δ : 7.87 (s, 2H), 7.48 (d, *J* = 7.2 Hz, 2H), 7.41–7.37 (m, 2H), 7.34–7.31 (m, 1H), 3.98 (s, 2H), 3.04 (s, 1H), 2.63 (s, 3H), 2.61 (s, 6H); ¹³C NMR ((CD₃)₂CO, 100 MHz) δ : 168.5, 161.3, 157.2, 133.7, 129.5, 128.7, 127.9, 127.4, 40.1, 20.1, 18.3; HRMS-ESI (m/z) [M]⁺ calcd for C₁₆H₁₉N₂O⁺: 255.1492; Found, 255.1488.

1-Acetamido-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2m): white solid; m.p. = 103-105 °C; ¹H NMR ((CD₃)₂CO, 400 MHz) δ : 7.91 (s, 2H), 2.72 (s, 6H), 2.65 (s, 3H), 2.32 (s, 3H); ¹³C NMR ((CD₃)₂CO, 100 MHz) δ : 167.7, 161.2, 157.2, 127.9, 21.0, 19.6, 18.4; HRMS-ESI (m/z) [M]⁺ calcd for C₁₀H₁₅N₂O⁺: 179.1179; Found, 179.1182.

1-(Cyclopropanecarboxamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (**2n**): white solid; m.p. = 99–101 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 10.74, (s, 1H), 7.58 (s, 2H), 2.64 (s, 6H), 2.58 (s, 3H), 1.97-1.94 (m, 1H), 1.10–1.06 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ : 171.9, 160.8, 157.4, 127.8, 21.9, 19.2, 12.3, 9.0; HRMS-ESI (m/z) [M]⁺ calcd for C₁₂H₁₇N₂O⁺: 205.1335; Found, 205.1339.

1-(Cyclohexanecarboxamido)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (**2n**): white solid; m.p. = 122-124 °C; ¹H NMR ((CD₃)₂CO, 400 MHz) δ: 7.91 (s, 2H), 3.07 (s, 1H), 2.75–2.68 (m, 7H), 2.65 (s, 3H), 2.02 (m, 1H), 1.84–1.80 (m, 2H), 1.73–1.68 (m, 1H), 1.57 (dq, *J* = 3.0, 12.2 Hz, 2H), 1.40 (td, *J* = 3.2, 12.4 Hz, 2H), 1.29 (tt, *J* = 2.8, 12.0 Hz, 1H) 1.14–1.09 (m, 1H); ¹³C NMR ((CD₃)₂CO, 100 MHz) δ: 173.1, 161.1, 157.1, 127.9, 42.4, 25.4, 25.1, 21.1, 18.4; HRMS-ESI (m/z) [M]⁺ calcd for C₁₅H₂₃N₂O⁺: 247.1805; Found, 247.1807.

$$\begin{array}{c}
 0 \\
 \hline
 N \\
 H \\
 \hline
 BF_4
 \end{array}$$
2p

1-Isobutyramido-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (2p): white solid; m.p. = 108-110 °C; ¹H NMR ((CD₃)₂CO, 400 MHz) δ : 7.92 (s, 2H), 2.69 (s, 6H), 2.64 (s, 3H), 1.30 (s, 3H), 1.29 (s, 3H); ¹³C NMR ((CD₃)₂CO, 100 MHz) δ : 174.2, 161.2, 157.1, 128.0, 33.0, 21.1, 18.4; HRMS-ESI (m/z) [M]⁺ calcd for C₁₂H₁₉N₂O⁺: 207.1492; Found, 207.1489.

1-((Tert-butoxycarbonyl)amino)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate (**2q**): white solid; m.p. = 92–94 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 9.54 (s, 1H), 7.61 (s, 2H), 2.67, (s, 6H), 2.57 (s, 3H), 1.53 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ : 160.9, 158.0, 152.0, 127.8, 84.7, 27.9, 22.0, 19.1; HRMS-ESI (m/z) [M]⁺ calcd for C₁₃H₂₁N₂O₂⁺: 237.1598; Found, 237.1599.

9. Characterization data of compounds 3

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3a): The resultant residue was purified by flash silica gel column chromatography to afford **3a** as colorless solid (46 mg, 78%); m.p. = 112–114 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 7.82–7.80 (m, 2H), 7.52–7.48 (m, 1H), 7.45–7.38 (m, 3H), 7.34–7.30 (m, 2H), 7.12 (m, 1H), 6.89 (m, 1H), 4.24 (dd, *J* = 8.4, 13.6, 1H), 3.27–3.23 (m, 4H), 1.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.3, 167.5, 142.8, 134.3, 132.0, 131.5, 128.6, 128.5, 127.0, 123.2, 123.1, 108.4, 47.2, 45.1, 26.3, 20.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₈N₂O₂: 295.1441; Found, 295.1445.

N-((1,3,6-Trimethyl-2-oxoindolin-3-yl)methyl)benzamide (3b): The resultant residue was purified by flash silica gel column chromatography to afford **3b** as white solid (39 mg, 68%); m.p. = 81–83 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 7.84–7.82 (m, 2H), 7.52–7.39 (m, 4H), 7.14–7.10 (m, 2H), 6.78 (d, *J* = 7.8 Hz, 1H), 4.26 (dd, *J* = 8.6, 13.6 Hz, 1H), 3.23 (s, 3H), 3.18 (dd, *J* = 2.5, 13.6 Hz, 1H), 2.36 (s, 3H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.2, 167.4, 140.3, 134.3, 132.8, 132.1, 131.4, 128.7, 128.5, 126.9, 123.8, 108.1, 47.0, 45.1, 26.2, 21.1, 20.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₀N₂O₂: 309.1598; Found, 309.1601.

N-((1,3,4-Trimethyl-2-oxoindolin-3-yl)methyl)benzamide or *N*-((1,3,6-Trimethyl-2-oxoindolin-3-yl)methyl)benzamide (3c): The resultant residue was purified by flash silica gel column chromatography to afford 3c as yellow solid (37 mg, 61%); m.p. = 116–118 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 7.83–7.77 (m, 3.3H), 7.52–7.38 (m, 7H), 7.23–7.18 (m, 1.7H), 6.94–6.88 (m, 1.6H), 6.73 (d, *J* = 7.6 Hz, 1.6H), 4.48 (dd, *J* = 8.2, 13.6 Hz, 1H), 4.23 (dd, *J* = 8.2, 13.6 Hz, 0.6H), 3.33 (dd, *J* = 3.0, 13.6 Hz, 1H), 3.24–3.19 (m, 5.5H), 2.50 (s, 3H), 2.40 (s, 1.8H), 1.55 (s, 3H), 1.45 (s, 1.8H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.5, 180.2, 167.4, 143.1, 142.8, 138.7, 135.0, 134.2, 131.4, 129.0, 128.8, 128.5, 128.3, 126.9, 126.9, 125.8, 123.6, 122.7, 109.3, 106.1, 48.0, 46.9, 45.1, 26.3, 26.1, 21.7, 20.2, 18.4, 18.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₀N₂O₂: 309.1598; Found, 309.1601.

N-((1,3,7-Trimethyl-2-oxoindolin-3-yl)methyl)benzamide (3d): The resultant residue was purified by flash silica gel column chromatography to afford 3d as yellow oil (17 mg, 28%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.86–7.83 (m, 2H), 7.53–7.43 (m, 4H), 7.15 (dd, *J* = 1.3, 6.9 Hz, 1H), 7.06–6.99 (m, 2H), 4.24 (dd, *J* = 8.6, 13.6 Hz, 1H), 3.53 (s, 3H), 3.15 (dd, *J* = 2.5, 13.6 Hz, 1H), 2.60 (s, 3H), 1.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 181.1, 167.5, 140.5, 134.3, 132.7, 132.3, 131.5, 128.6, 127.0, 123.1, 120.9, 120.1, 46.3, 45.3, 29.6, 20.6, 19.0; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₀N₂O₂: 309.1598; Found, 309.1600.

N-((6-(*tert*-Butyl)-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3e): The resultant residue was purified by flash silica gel column chromatography to afford 3e as yellow oil (43 mg, 62%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.87–7.85 (m, 2H),

7.53–7.43 (m, 4H), 7.36–7.34 (m, 2H), 6.83 (dd, J = 0.8, 8.0 Hz, 1H), 4.31 (dd, J = 8.7, 13.6 Hz, 1H), 3.24 (s, 3H), 3.16 (dd, J = 2.3, 13.6 Hz, 1H), 1.48, (s, 3H), 1.33 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.6, 167.6, 146.6, 140.4, 134.4, 131.8, 131.5, 128.6, 127.0, 125.1, 120.2, 107.9, 47.2, 45.2, 34.7, 31.6, 26.3, 20.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₂H₂₆N₂O₂: 351.2067; Found, 351.2069.

N-((5-Methoxy-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3f) : The resultant residue was purified by flash silica gel column chromatography to afford 3f as yellow oil (38 mg, 59%); ¹H NMR (CDCl₃, 600 MHz) δ: 7.84–7.82 (m, 2H), 7.50 (t, J = 7.3 Hz, 1H), 7.45–7.40 (m, 3H), 6.94 (d, J = 2.4 Hz, 1H), 6.85-6.83 (m, 1H), 6.81-6.79 (m, 1H), 4.26 (dd, J = 8.6, 13.6 Hz, 1H), 3.81 (s, 3H), 3.23 (s, 3H), 3.20 (dd, J = 2.4, 13.6 Hz, 1H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ: 180.0, 167.5, 156.5, 136.2, 134.3, 133.4, 131.5, 128.6, 127.0, 113.1, 110.2, 108.9, 55.9, 47.5, 45.1, 26.3, 20.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₀N₂O₃: 325.1547; Found, 325.1550.

N-((5-Fluoro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3g): The resultant residue was purified by flash silica gel column chromatography to afford 3g as white solid (45 mg, 72%); m.p. = 118–120 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 7.80–7.78 (m, 2H), 7.51–7.47 (m, 1H), 7.45–7.41 (m, 2H), 7.28 (d, *J* = 6.0 Hz, 1H), 7.08 (dd, *J* = 2.5, 7.8 Hz, 1H), 7.01 (dt, *J* = 2.6, 8.6 Hz, 1H) 6.80 (q, *J* = 4.2 Hz, 1H), 4.19 (dd, *J* = 8.2, 13.6 Hz, 1H), 3.29 (dd, *J* = 3.2, 13.6 Hz, 1H), 3.24 (s, 3H); ¹⁹F NMR (CDCl₃, 376 MHz) δ : 119.3; ¹³C NMR (CDCl₃, 100 MHz) δ : 179.8, 167.4, 159.5 (d, *J* = 240 Hz, 1C), 138.7 (d, *J* = 1.8 Hz, 1C), 134.1, 133.6 (d, *J* = 8.0 Hz, 1C), 131.5, 128.5, 126.9, 114.7 (d, *J* = 23.4 Hz, 1C), 111.4, (d, J = 24.7 Hz, 1C), 108.8 (d, J = 8.1 Hz, 1C), 47.8 (d, J = 1.4 Hz, 1C), 44.9, 26.3, 20.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇FN₂O₂: 313.1347;Found, 313.1349.

N-((5-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3h): The resultant residue was purified by flash silica gel column chromatography to afford 3h as colorless oil (44 mg, 67%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.80, (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.31–7.24 (m, 3H), 6.81 (d, *J* = 8.0 Hz, 1H), 4.22 (dd, *J* = 8.4, 13.6 Hz, 1H), 3.27-3.23 (m, 4H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.7, 167.5, 141.4, 134.1, 133.6, 131.6, 128.6, 128.5, 126.9, 123.7, 109.3, 47.6, 44.9, 26.3, 20.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇ClN₂O₂: 329.1051; Found, 329.1054.

N-((4-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide or *N*-((6-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3i): The resultant residue was purified by flash silica gel column chromatography to afford **3i** as yellow solid (36 mg, 55%); m.p. = 113–115 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 7.80–7.76 (m, 3H), 7.53–7.41 (m, 4.5H),7.28–7.21 (m, 3H), 7.11–7.05 (m, 1.5H), 6.89 (dd, *J* = 1.8 Hz, 0.5H), 6.79 (dd, *J* = 0.8, 7.8 Hz, 1H), 4.65 (dd, *J* = 8.3, 13.6 Hz, 1H), 4.19 (dd, *J* = 8.2, 13.6 Hz, 0.5H), 3.41 (dd, *J* = 3.0, 13.6 Hz, 1H), 3.29 (dd, *J* = 3.3, 13.6 Hz, 0.5H), 3.25 (s, 3H), 3.24 (s, 1.5H), 1.62 (s, 3H), 1.45 (s, 1.5H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.2, 180.0, 167.5, 167.4, 144.7. 144.1, 134.4, 134.3, 134.2, 131.6, 131.5, 131.2, 131.0, 129.8, 128.6, 128.6, 128.1, 127.0, 124.3, 124.1, 123.0, 109.2, 106.9, 48.9, 47.3, 44.9, 42.7, 26.5, 26.4, 20.3, 17.6; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇CIN₂O₂: 329.1051; Found, 329.1054.

N-((**5-Bromo-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide** (**3j**): The resultant residue was purified by flash silica gel column chromatography to afford **3j** as brown solid (43 mg, 58%); m.p. = 120-122 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 7.82–7.80 (m,

2H), 7.53–7.49 (m, 1H), 7.46–7.43 (m, 4H), 7.27 (d, J = 10.3 Hz, 1H), 6.78 (d, J = 6.4 Hz, 1H), 4.24 (dd, J = 8.4, 13.6 Hz, 1H), 3.25–3.21 (m, 4H), 1.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.6, 167.5, 141.8, 134.1, 134.0, 131.5, 131.4, 128.5, 126.9, 126.4, 115.8, 109.8, 47.5, 44.9, 26.3, 20.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇BrN₂O₂: 373.0546; Found, 373.0550.

N-((**4**-Bromo-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide or *N*-((**6**-Bromo-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3k): The resultant residue was purified by flash silica gel column chromatography to afford 3k as yellow oil (42 mg, 57%); ¹H NMR (CDCl₃, 600 MHz) δ : 7.79–7.75 (m, 2.7H), 7.50–7.47 (m, 1.4H), 7.42 (q, *J* = 8.8 Hz, 2.7H), 7.26–7.16 (m, 4H), 7.03 (d, *J* = 1.6 Hz, 0.3H), 6.82 (dd, *J* = 0.6, 7.6 Hz, 1H), 4.70 (dd, *J* = 8.4, 13,6 Hz, 1H), 4.17 (dd, *J* = 8.2, 13.6 Hz, 0.3H), 3.42 (dd, *J* = 3.0, 13.6, Hz, 1H), 3.31 (dd, *J* = 3.0, 13.6 Hz, 0.3H), 3.23 (s, 3H), 3.22 (s, 1H), 1.63 (s, 3H), 1.45 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ : 180.0, 179.6, 167.5, 167.3, 145.0, 144.2, 134.3, 134.2, 131.6, 131.5, 130.9, 130.0, 129.8, 128.6, 128.6, 127.4, 127.0, 127.0, 125.9, 124.5, 122.1, 119.2, 111.9, 107.4, 49.6, 47.4, 44.8, 42.5, 26.5, 26.4, 20.2, 17.5; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇BrN₂O₂: 373.0546; Found, 373.0549.

N-((**5**-acetyl-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (**3**l): The resultant residue was purified by flash silica gel column chromatography to afford **3**l as yellow oil (48 mg, 71%); ¹H NMR (CDCl₃, 600 MHz) δ: 8.00 (dd, J = 1.7 8.2 Hz, 1H), 7.95 (d, J = 1.6 Hz, 1H), 7.79–7.77 (m, 2H), 7.51–7.48 (m, 1H), 7.44–7.42 (m, 2H), 7.19 (d, J = 5.6 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 4.27 (dd, J = 8.4, 13.6 Hz, 1H), 3.32 (dd, J = 3.2, 13.6 Hz, 1H), 3.29 (s, 3H), 2.60 (s, 3H), 1.51 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ: 196.7, 180.5, 167.6, 147.1, 134.2, 132.6, 132.2, 131.6, 130.3, 128.6, 127.0, 123.3, 108.0, 47.4, 45.0, 26.6, 26.5, 20.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₀H₂₀N₂O₃: 337.1547; Found, 337.1551.

N-((1, 3-Ddimethyl-2-oxo-5-(trifluoromethoxy) indolin-3-yl) methyl) benzamide

(**3m**): The resultant residue was purified by flash silica gel column chromatography to afford **3m** as yellow solid (50 mg, 66%); m.p. = 105-107 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 7.80–7.78 (m, 2H), 7.52–7.48 (m, 1H), 7.45–7.41 (m, 2H), 7.28–7.23 (m, 2H), 7.21–7.18 (m, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 4.21 (dd, *J* = 8.3, 13.6 Hz, 1H), 3.31 (dd, *J* = 3.2, 13.6 Hz, 1H), 3.25 (s, 3H), 1.48 (s, 3H); ¹⁹F NMR (CDCl₃, 376 MHz) δ : 58.3; ¹³C NMR (CDCl₃, 100 MHz) δ : 179.9, 167.5, 145.0 (q, *J* = 1.6 Hz, 1C), 141.4, 134.1, 133.5, 131.6, 128.6. 126.9, 121.6, 120.5 (q, *J* = 255 Hz, 1C), 117.2, 108.8, 47.8, 44.8, 26.4, 20.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₁₇F₃N₂O₃: 379.1264; Found, 379.1266.

N-((5-Cyano-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3n): The resultant residue was purified by flash silica gel column chromatography to afford **3n** as white solid (50 mg, 79%); m.p. = 108–110 °C; ¹H NMR (CDCl₃, 400 MHz) δ: 7.75 (d, J = 7.2 Hz, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.60 (s, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.08 (d, J = 4.0 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 4.16 (dd, J = 8.0, 13.6 Hz, 1H), 3.42 (dd, J = 4.0, 13.6 Hz, 1H), 3.28 (s, 3H), 1.49 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 179.8, 167.5, 146.7, 133.9, 133.8, 133.0, 131.7, 128.6, 126.9, 126.6, 118.8, 108.8, 106.2, 47.7, 44.7, 26.5, 20.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₁₇N₃O₂: 320.1394; Found, 320.1395.

ethyl-3-(Benzamidomethyl)-1,3-dimethyl-2-oxoindoline-5-carboxylate (30): The resultant residue was purified by flash silica gel column chromatography to afford **30** as white solid (53 mg, 72%); m.p. = 164–166 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 8.09 (dd, J = 1.6, 8.2 Hz, 1H), 8.01 (d, J = 1.2 Hz, 1H), 7.82-7.80 (m, 2H), 7.53–7.49 (m, 1H), 7.46–7.42 (m, 2H), 7.28–7.25 (m, 1H), 6.94 (d, J = 8.2 Hz, 1H), 4.41–4.28 (m, 3H), 3.28 (s, 3H), 3.24 (dd, J = 2.8, 13.6 Hz, 1H), 1.51 (s, 3H), 1.42 (t, J = 7.2 Hz,

3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.4, 167.4, 166.0, 146.7, 134.1, 131.8, 131.5, 131.2, 128.5, 126.9, 125.3, 124.2, 107.9, 60.9, 47.1, 44.8, 26.4, 19.9, 14.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₁H₂₂N₂O₄: 367.1652; Found, 367.1656.

N-((1,3-Dimethyl-2-oxo-5-(trifluoromethyl)indolin-3-yl)methyl)benzamide (3p): The resultant residue was purified by flash silica gel column chromatography to afford **3p** as colorless solid (40 mg, 56%); m.p. = 126–128 °C; ¹H NMR (CDCl₃, 600 MHz) δ : 7.80–7.79 (m, 2H), 7.61–7.58 (m, 2H), 7.52–7.49 (m, 1H), 7.45–7.42 (m, 2H), 7.21 (d, *J* = 6.2 Hz, 1H), 6.96, (d, *J* = 8.2 Hz, 1H), 4.25 (dd, *J* = 8.4, 13.6 Hz, 1H), 3.30-2.74 (m, 4H), 1.50 (s, 3H); ¹⁹F NMR (CDCl₃, 376 MHz) δ : 61.5; ¹³C NMR (CDCl₃, 150 MHz) δ : 180.1, 167.5, 145.8, 134.2, 132.6, 131.6, 128.6, 127.2, 126.9, 126.3 (q, *J* = 4.4 Hz, 1C), 125.4, (q, *J* = 32 Hz, 1C), 124.2 (q, *J* = 270 Hz, 1C), 120.2 (q, *J* = 3.4 Hz, 1C), 108.2, 47.4, 44.8, 26.4, 20.0; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₁₇F₃N₂O₂: 363.1315; Found, 363.1317.

N-((1-Methyl-2-oxo-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-1

yl)methyl)benzamide (3q): The resultant residue was purified by flash silica gel column chromatography to afford 3q as yellow oil (35 mg, 55%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.83–7.81 (m, 2H), 7.51–7.39 (m, 4H), 7.14 (d, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 7.0 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 7.25 (dd, *J* = 8.4, 13.6 Hz, 1H), 3.74 (t, *J* = 5.8 Hz, 2H), 3.25 (dd, *J* = 2.7, 13,6 Hz, 1H), 2.81 (t, *J* = 6.0 Hz, 2H), 2.04 (p, *J* = 6.2 Hz, 2H), 1.48 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.1, 167.4, 138.5, 134.3, 131.4, 130.6, 128.5, 127.3, 126.9, 122.6, 120.8, 120.5, 48.4, 45.1, 38.8, 24.4, 21.1, 20.0; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₀H₂₀N₂O₂: 321.1598; Found, 321.1602.

N-((1-Benzyl-3-methyl-2-oxoindolin-3-yl)methyl)benzamide (3r): The resultant residue was purified by flash silica gel column chromatography to afford 3r as

colorless oil (37 mg, 50%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.73–7.71 (m, 2H), 7.54–7.47 (m, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.26 (s, 5H), 7.20 (dt, *J* = 1.1, 7.7 Hz, 2H), 7.11-7.07 (m, 1H), 6.79 (d, *J* = 7.7 Hz, 1H), 4.94 (q, *J* = 20.0 Hz, 2H), 4.27 (dd, *J* = 7.8, 13.6 Hz, 1H), 3.46 (dd, *J* = 3.2, 13.6 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.4, 167.5, 142.0, 135.6, 134.2, 131.9, 131.5, 128.9, 128.6, 128.5, 127.8, 127.2, 127.0, 123.2, 123.2, 109.4, 47.6, 45.2, 43.7, 20.6; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₄H₂₂N₂O₂: 371.1754; Found, 371.1757.

N-((3-Methyl-2-oxo-1-phenylindolin-3-yl)methyl)benzamide (3s): The resultant residue was purified by flash silica gel column chromatography to afford 3s as yellow oil (41 mg, 58%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.83 (d, *J* = 7.2 Hz, 2H), 7.55, (t, *J* = 7.8 Hz, 2H), 7.49–7.40 (m, 8H), 7.28–7.24 (m, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 4.37 (dd, *J* = 8.6, 13.6 Hz, 1H), 3.39 (dd, *J* = 2.8, 13.6Hz, 1H), 1.60 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.9, 167.5, 142.7, 134.2, 134.0, 131.8, 131.5, 129.7, 128.5, 128.4, 128.3, 127.0, 126.4, 123.6, 123.4, 109.7, 47.5, 45.3, 20.5; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₃H₂₀N₂O₂: 357.1598; Found, 357.1601.

N-((**4,6-Dichloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide** (**3t**): The resultant residue was purified by flash silica gel column chromatography to afford **3t** as colorless oil (30 mg, 42%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.74–7.72 (m, 2H), 7.51–7.48 (m, 1H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.17 (d, *J* = 4.6 Hz, 1H), 7.07 (d, *J* = 1.6 Hz, 1H), 6.79 (d, *J* = 1.6 Hz, 1H), 4.53 (dd, *J* = 8.0, 13.6 Hz, 1H), 3.50 (dd, *J* = 3.5, 13.6 Hz, 1H), 3.22 (s, 3H), 1.59 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.6, 167.8, 145.5, 135.2, 131.8, 131.7, 128.6, 127.0, 126.5, 123.8, 107.9, 49.0, 42.8, 26.7, 17.6; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₆Cl₂N₂O₂: 363.0662; Found, 363.0664.

N-((4,6-Dimethoxy-1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide (3u): The resultant residue was purified by flash silica gel column chromatography to afford 3u

as yellow oil (32 mg, 45%); ¹H NMR (CDCl₃, 600 MHz) δ : 7.81 (d, *J* = 5.0 Hz, 2H), 7.49 (t, *J* = 4.8 Hz, 1H), 7.43 (t, *J* = 5.2 Hz, 3H), 6.21 (d, *J* = 1.1 Hz, 1H), 6.13 (d, *J* = 1.1 Hz, 1H), 4.30 (dd, *J* = 5.0, 13.6 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.36 (dd, *J* = 2.0, 13.6 Hz, 1H), 3.21 (s, 3H), 1.50 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ : 180.9, 167.4, 161.9, 157.0, 144.9, 134.7, 131.3, 128.5, 127.0, 109.8, 92.6, 88.7, 55.7, 55.5, 47.2, 44.2, 26.4, 18.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₀H₂₂N₂O₄: 355.1652; Found, 355.1656.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)-4-methylbenzamide (3ab): The resultant residue was purified by flash silica gel column chromatography to afford **3ab** as colorless solid (43 mg, 70%); m.p. = 122-124 °C; ¹H NMR (CDCl₃, 400 MHz) δ: 7.71 (d, *J* = 8.1 Hz, 2H), 7.34–7.29 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.15–7.11 (m, 1H), 6.89 (d, *J* = 7.7 Hz, 1H), 4.24 (dd, *J* = 8.4, 13.6 Hz, 1H), 3.25-3.21 (m, 4H), 2.39 (s, 3H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 180.3, 167.4, 142.7, 141.9, 132.0, 131.4, 129.2, 128.5, 126.9, 123.1, 123.0, 128.3, 47.2, 45.0, 26.2, 21.4, 20.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₀N₂O₂: 309.1598; Found, 309.1599.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)-4-methoxybenzamide (3ac): The resultant residue was purified by flash silica gel column chromatography to afford **3ac** as colorless oil (40 mg, 62%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.80–7.77 (m, 2H), 7.34–7.30 (m, 2H), 7.25 (d, *J* = 10.6 Hz, 1H), 7.14–7.10 (m, 1H), 6.94–6.88 (m, 3H), 4.24 (dd, *J* = 8.4, 13.6 Hz, 1H), 3.84 (s, 3H), 3.25 (s, 3H), 3.22 (dd, *J* = 2.8, 13.6 Hz, 1H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.3, 167.0, 162.1, 142.8, 132.1, 128.7, 128.4, 126.6, 123.1, 123.0, 113.7, 108.3, 55.3, 47.2, 45.0, 26.2, 20.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₀N₂O₃: 325.1547; Found, 325.1548.

4-Chloro-*N***-((1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide** (3ad): The resultant residue was purified by flash silica gel column chromatography to afford

3ad as yellow oil (34 mg, 52%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.76 (d, *J* = 8.5 Hz, 2H), 7.41 (d. *J* = 8.2 Hz, 3H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.7 Hz, 1H), 4.24 (dd, *J* = 8.5, 13.6 Hz, 1H), 3.26 (s, 3H), 3.21 (dd, *J* = 2.6, 13.6 Hz, 1H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.3, 166.4, 142.8, 137.8, 132.7, 132.0, 128.9, 128.6, 128.5, 123.3, 123.0, 108.5, 47.1, 45.2, 26.3, 20.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇ClN₂O₂: 329.1051; Found, 329.1055.

3-Chloro-*N***-**((**1**,**3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide** (**3ae**): The resultant residue was purified by flash silica gel column chromatography to afford **3ae** as white solid (40 mg, 61%); m.p. = 98–100 °C; ¹H NMR (CDCl₃, 600 MHz) δ : 7.79 (t, *J* = 0.8 Hz, 1H), 7.66 (d, *J* = 5.2 Hz, 1H), 7.47–7.45 (m, 1H), 7.38–7.35 (m, 2H), 7.34–7.31 (m, 2H), 7.13 (t, *J* = 3.2 Hz, 1H), 6.90 (d, *J* = 3.2 Hz, 1H), 4.22 (dd, *J* = 3.3, 13.6 Hz, 1H), 3.26–3.24 (m, 4H), 1.47 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ : 180.2, 166.2, 142.8, 136.1, 134.8, 131.9, 131.6, 129.9, 128.6, 127.5, 124.9, 123.3, 123.1, 108.5, 47.2, 45.2, 26.3, 20.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇ClN₂O₂: 329.1051; Found, 329.1053.

2-Chloro-*N***-**((**1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide** (**3af**): The resultant residue was purified by flash silica gel column chromatography to afford **3af** as yellow oil (42 mg, 64%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.50 (dd, *J* = 0.6, 8.0 Hz, 1H), 7.36–7.29 (m, 5H), 7.14–7.10 (m, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 4.10 (dd, *J* = 7.4, 13.6 Hz, 1H), 3.53 (dd, *J* = 4.4, 13.6 Hz, 1H), 3.22 (s, 3H), 1.49 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.8, 166.7, 143.1, 135.1, 131.7, 131.2, 130.6, 130.2, 129.9, 128.6, 127.0, 123.3, 123.1, 108.3, 47.8, 45.2, 26.3, 20.7; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇ClN₂O₂: 329.1051; Found, 329.1054.

4-Bromo-*N***-**((**1,3-dimethyl-2-oxoindolin-3-yl)methyl)benzamide** (**3ag**): The resultant residue was purified by flash silica gel column chromatography to afford **3ag**

as colorless oil (37 mg, 50%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.69 (d, *J* = 8.6 Hz, 2H), 7.57 (d, *J* = 8.6 Hz, 2H), 7.41 (d, *J* = 8.6 Hz, 1H), 7.35–7.31(m, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 6.90 (d, *J* = 7.7 Hz, 1H), 4.24 (dd, *J* = 8.4, 13.6 Hz, 1H), 3.25 (s, 3H), 3.21 (*J* = 2.6, 13.6 Hz, 1H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.3, 166.5, 142.8, 133.1, 131.9, 131.8, 128.6, 126.2, 123.3, 123.0, 108.5, 47.1, 45.2, 26.3, 20.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇BrN₂O₂: 373.0546; Found, 373.0548.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)-4-(trifluoromethyl)benzamide (3ah): The resultant residue was purified by flash silica gel column chromatography to afford **3ah** as white solid (46 mg, 63%); m.p. = 61–63 °C; ¹H NMR (CDCl₃, 400 MHz) δ: 7.92 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 7.0 Hz, 1H), 7.36–7.32 (m, 2H), 7.14 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 4.26 (dd, J = 8.4, 13.6 Hz, 1H), 3.27–3.23 (m, 4H), 1.48 (s, 3H); ¹⁹F NMR (CDCl₃, 376 MHz) δ: 62.9; ¹³C NMR (CDCl₃, 100 MHz) δ: 180.2, 166.2, 142.7, 137.5, 133.4, 131.8, 128.7, 127.4, 125.6, (q, J = 3.7 Hz, 1C), 122.6 (q, J = 270 Hz, 1C), 123.2, 123.0, 108.5, 47.0, 45.2, 26.2, 20.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₁₇F₃N₂O₂: 363.1315; Found, 363.1317.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)nicotinamide (3ai): The resultant residue was purified by flash silica gel column chromatography to afford 3ai as brown oil (28 mg, 48%); ¹H NMR (CDCl₃, 400 MHz) δ: 9.00 (s, 1H), 8.73 (d, J = 3.9 Hz, 1H), 8.11 (td, J = 7.9, 1.9 Hz, 1H), 7.43–7.32 (m, 4H), 7.6–7.12 (m, 1H), 6.92–6.90 (m, 1H), 4.24 (dd, J = 8.2, 13.6Hz, 1H), 2.9, 13.6 Hz, 1H), 3.26 (s, 3H), 1.48 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 180.2, 165.7, 152.3, 148.3, 142.8. 134.9, 131.8, 129.9, 128.7, 123.4, 123.3, 123.1, 108.5, 47.1, 45.2, 26.3, 20.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₇N₃O₂: 296.1394; Found, 296.1396.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)isonicotinamide (3aj): The resultant

residue was purified by flash silica gel column chromatography to afford **3aj** as yellow oil (34 mg, 58%); ¹H NMR (CDCl₃, 400 MHz) δ : 8.74 (dd, J = 1.4, 4.5 Hz, 2H), 7.66–7.63 (m, 3H), 7.37–7.32 (m, 2H), 7.4 (dt, J = 0.8, 7.6 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 4.24 (dd, J = 8.4, 13.6 Hz, 1H), 3.26-3.23 (m, 4H), 1.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.2, 165.6, 150.6, 142.7, 141.3, 131.7, 128.7, 123.3, 123.0, 120.9, 108.6, 46.9, 45.2, 26.3, 20.3; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₇N₃O₂: 296.1394; Found, 296.1390.

N-((**1**,**3**-Dimethyl-2-oxoindolin-3-yl)methyl)furan-2-carboxamide (3ak): The resultant residue was purified by flash silica gel column chromatography to afford **3ak** as yellow oil (18 mg, 31%); ¹H NMR (CDCl₃, 400 MHz) δ: 7.46 (t, J = 0.9 Hz, 1H), 7.33–7.27 (m, 3H), 7,14–7.09 (m, 2H), 6.88 (d, J = 8.2Hz, 1H), 6.48 (q, J = 1.7 Hz, 1H), 4.11 (dd, J = 8.2, 13.6 Hz, 1H), 3.32 (dd, J = 3.6, 13.6 Hz, 1H), 3.25 (s, 3H), 1.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 179.9, 158.6, 147.8, 144.1, 142.9, 131.9, 128.5, 123.1, 114.3, 112.0, 108.4, 47.4, 44.3, 26.3, 20.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₆H₁₆N₂O₃: 285.1234; Found, 285.1237.

N-((**1**,**3**-Dimethyl-2-oxoindolin-3-yl)methyl)-2-phenylacetamide (3al) : The resultant residue was purified by flash silica gel column chromatography to afford **3al** as colorless oil (14 mg, 23%); ¹H NMR (CDCl₃, 400 MHz) δ: 7.33–7.27 (m, 4H), 7.18 (d, J = 7.3 Hz, 1H), 7.08–7.05 (m, 3H), 6.80 (d, J = 7.8 Hz, 1H), 5.89 (s, 1H), 3.73 (dd, J = 6.8, 13.6 Hz, 1H), 3.47 (d, J = 4.6 Hz, 2H), 3.40 (dd, J = 5.2, 13.6 Hz, 1H), 3.10 (s, 3H), 1.30 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 179.5, 171.0, 142.9, 134.7, 131.6, 129.3, 129.0, 128.4, 127.4, 123.2, 123.0, 108.2, 47.9, 44.7, 43.8, 26.2, 20.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₀N₂O₂: 309.1598; Found, 309.1595.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)acetamide (3am): The resultant residue was purified by flash silica gel column chromatography to afford 3am as yellow oil

(23 mg, 49%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.33–7.26 (m, 2H), 7.10 (dt, J = 0.8, 7.6 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.39 (d, J = 4.2 Hz, 1H), 3.98 (dd, J = 8.1, 13.6 Hz, 1H), 3.23 (s, 3H), 3.12 (dd, J = 3.3, 13.6 Hz, 1H), 1.98 (s, 3H), 1.40 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.1, 170.3, 142.8, 132.0, 128.5, 123.1, 123.1, 108.3, 47.2, 44.7, 26.2, 23.3, 20.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₃H₁₆N₂O₂: 233.1285; Found, 233.1288.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)cyclopropanecarboxamide (3an): The resultant residue was purified by flash silica gel column chromatography to afford **3an** as white soild (18 mg, 34%); m.p. = 160–162 °C; ¹H NMR (CDCl₃, 400 MHz) δ: 7.33–7.25 (m, 2H), 7.09 (dt, J = 0.6, 7.6 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 5.2 Hz, 1H), 3.99 (dd, J = 8.2, 13.6 Hz, 1H), 3.24 (s, 3H), 3.14 (dd, J = 3.4, 13.6 Hz, 1H), 1.41–1.34 (m, 4H), 1.00–0.94 (m, 1H), 0.89–0.84 (m, 1H), 0.77–0.66 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ: 180.2, 173.9, 142.9, 132.1, 128.4, 123.1, 123.0, 108.3, 47.4, 44.8, 26.3, 20.1, 14.8, 7.2, 7.1; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₅H₁₈N₂O₂: 259.1441; Found, 259.1444.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)cyclohexanecarboxamide (3ao): The resultant residue was purified by flash silica gel column chromatography to afford **3ao** as yellow solid (23 mg, 38%); m.p. = 60-62 °C; ¹H NMR (CDCl₃, 400 MHz) δ: 7.32-7.26 (m, 2H), 7.10 (dt, *J* = 0.7, 7.6 Hz, 1H), 6.87 (d, *J* = 7.7 Hz, 1H), 6.37 (d, *J* = 4.4 Hz, 1H), 3.95 (dd, *J* = 8.0, 13.6 Hz, 1H), 3.23 (s, 3H), 3.15 (dd, *J* = 3.6, 13.6 Hz, 1H), 2.07 (tt, *J* = 3.0, 11.3 Hz, 1H), 1.86-1.63 (m, 5H), 1.41-1.20 (m, 8H); ¹³C NMR (CDCl₃, 100 MHz) δ: 180.2, 176.2, 142.8, 132.0, 128.4, 123.1, 123.0, 108.2, 47.5, 45.5, 44.2, 29.6, 29.5, 26.2, 25.7, 25.6, 20.0; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₂₄N₂O₂: 309.1911; Found, 309.1913.

N-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)isobutyramide (3ap): The resultant

residue was purified by flash silica gel column chromatography to afford **3ap** as colorless oil (16 mg, 32%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.32–7.27 (m, 2H), 7.10 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 6.31 (s, 1H), 3.92 (dd, J = 7.8, 13.6 Hz, 1H), 3.24–3.20 (m, 4H), 2.33 (p, J = 6.9 Hz, 1H), 1.39 (s, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.03 (dd, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 180.2, 177.1, 142.9, 132.0, 128.4, 123.2, 123.1, 108.2, 47.7, 44.3, 35.7, 26.2, 20.1, 19.5, 19.5; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₅H₂₀N₂O₂: 261.1598; Found, 261.1597.

tert-Butyl ((1,3-dimethyl-2-oxoindolin-3-yl)methyl)carbamate (3aq): The resultant residue was purified by flash silica gel column chromatography to afford **3aq** as colorless oil (34 mg, 59%); ¹H NMR (CDCl₃, 400 MHz) δ : 7.31–7.25 (m, 2H), 7.08 (dt, J = 0.8, 7.6 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 5.10 (s, 1H), 3.64 (dd, J = 7.8, 13.6 Hz, 1H), 3.27–3.22 (m, 4H), 1.38 (d, J = 7.6 Hz, 12H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.7, 155.9, 143.1, 131.9, 128.2, 123.1, 122.7, 108.0, 79.2, 48.1, 46.2, 28.2, 26.2, 19.9; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₆H₂₂N₂O₃: 291.1703; Found, 291.1705.

10. References.

- 1. X. Liu, X. Ma, Y. Huang and Z. Gu, Org. Lett., 2013, 15, 4814–4817.
- 2. A. Pinto, Y. Jia, L. Neuville and J. Zhu, Chem. Eur. J., 2007, 13, 961–967.
- 3. W. Guo, Q. Wang and J. Zhu, Angew. Chem. Int. Ed., 2021, 60, 4085–4089.

11. Copies of NMR spectra

2a; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃)

2j; ¹H NMR (400 Hz, D₂O); ¹³C NMR (100 Hz, D₂O)

2n; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃)

20; ¹H NMR (400 Hz, (CD₃)₂CO); ¹³C NMR (100 Hz, (CD₃)₂CO)

3c; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃)

3g; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃); ¹⁹F NMR (376 Hz, CDCl₃)

3m; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃); ¹⁹F NMR (376 Hz, CDCl₃)

3p; ¹H NMR (600 Hz, CDCl₃); ¹³C NMR (150 Hz, CDCl₃); ¹⁹F NMR (376 Hz, CDCl₃)

3ac; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃)

3ah; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃); ¹⁹F NMR (376 Hz, CDCl₃)

3aj; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃)

3an; ¹H NMR (400 Hz, CDCl₃); ¹³C NMR (100 Hz, CDCl₃)

