Organic pollutants in water-soluble cavitands and capsules: contortions of molecules in nanospace

Rongzu Liang^{‡a}, Dongdong Bu^{‡a}, Xiaoshi Su^{‡a}, Xin Wei^a, Edvinas Orentas^{b,c}, Julius Rebek, Jr.^d, Qixun Shi*^a

^aInstitute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China. Email: ias qxshi@njtech.edu.cn

^bDepartment of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania

^c Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania

^dSkaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States

‡ These authors contributed equally to this work.

Electronic Supplementary Information

Δδ	C ₈ H ₁₇ OH	$C_9H_{19}OH$	$C_{10}H_{21}OH$
1/(Me)	-4.76	-4.75	-4.73
2	-4.47	-4.48	-4.44
3	-3.63	-3.65	-3.64
4	-2.73	-2.78	-2.8
5	-1.62	-1.7	-1.74
6	-0.85	-0.93	-0.98
7	-0.39	-0.4	-0.45
8	-0.16	-0.17	-0.19
9		-0.05	-0.04
10			0.1

Table S1. $\Delta\delta$ data of C₈H₁₇OH-C₁₀H₂₁OH in cavitand 1^a

 ${}^{a}\Delta\delta = \overline{\delta_{bound\ guest} - \delta_{free\ guest}}$

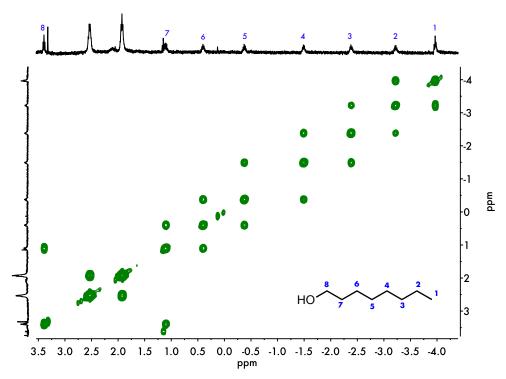


Figure S1. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of *n*-C₈H₁₇OH in cavitand 1.

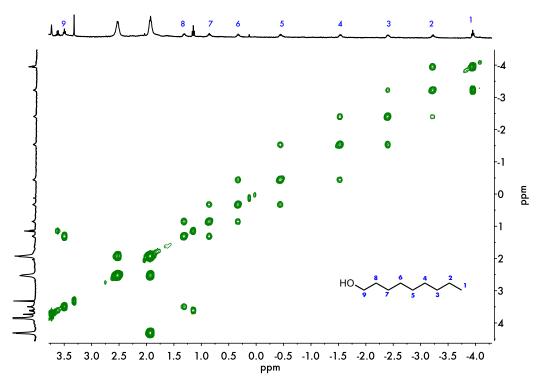
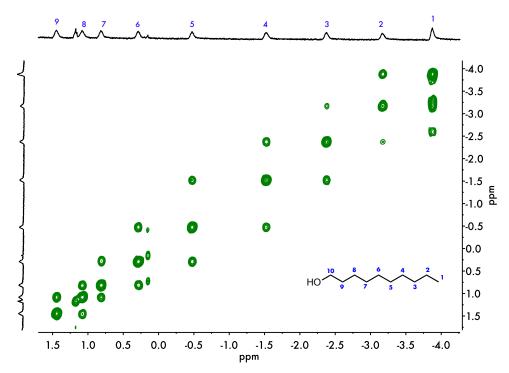
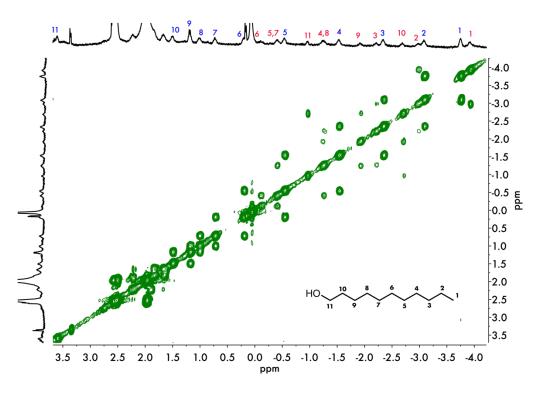
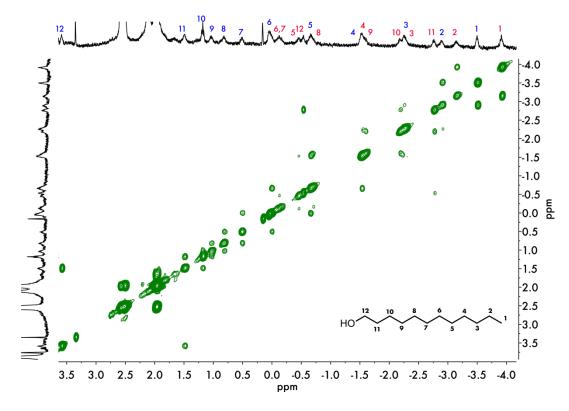
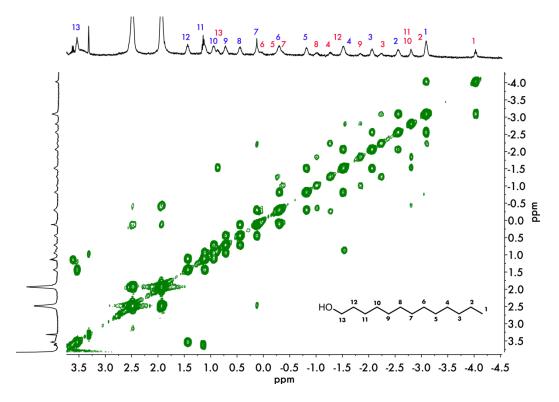
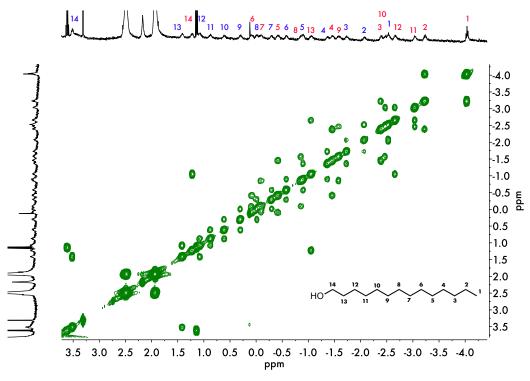


Figure S2. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of *n*-C₉H₁₉OH in cavitand 1.


Figure S3. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of *n*-C₁₀H₂₁OH in cavitand 1.


Figure S4. Partial COSY NMR spectrum (400 MHz, D_2O , 298K) of *n*-C₁₁H₂₃OH in both cavitand **1** (the guest with blue labeled numbers) and capsule **1.1** (the guest with red labeled numbers).

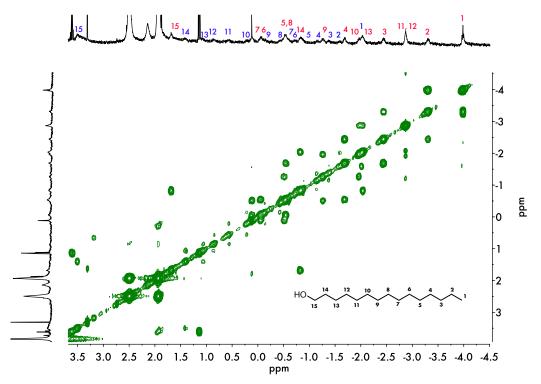
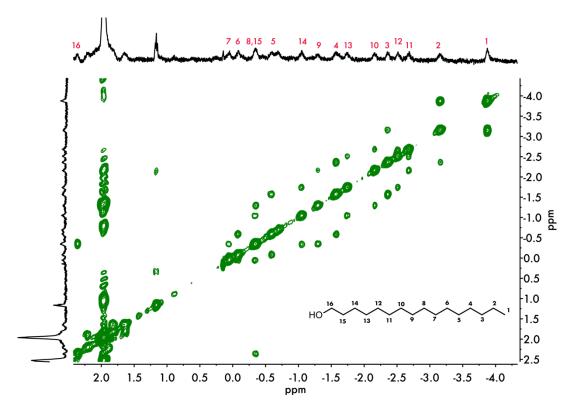
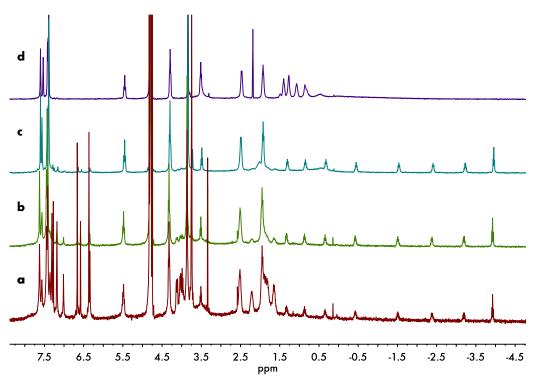
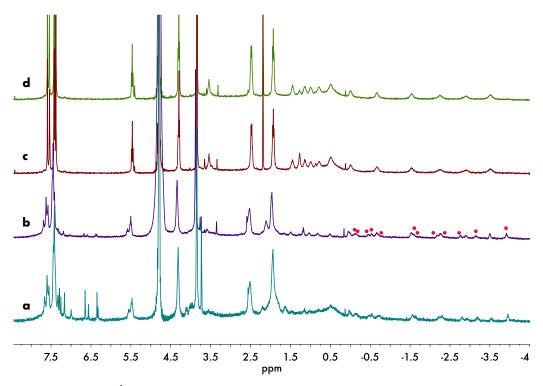
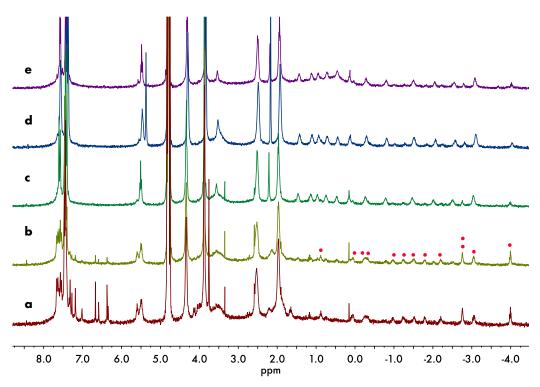

Figure S5. Partial COSY NMR spectrum (400 MHz, D_2O , 298K) of n- $C_{12}H_{25}OH$ in both cavitand **1** (the guest with blue labeled numbers) and capsule **1.1** (the guest with red labeled numbers).

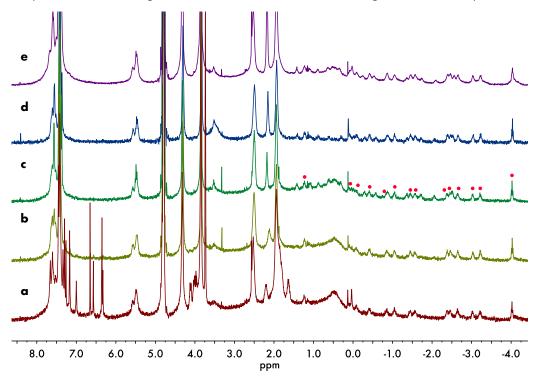
Figure S6. Partial COSY NMR spectrum (400 MHz, D_2O , 298K) of n- $C_{13}H_{27}OH$ in both cavitand **1** (the guest with blue labeled numbers) and capsule **1.1** (the guest with red labeled numbers).

Figure S7. Partial COSY NMR spectrum (400 MHz, D_2O , 298K) of n- $C_{14}H_{29}OH$ in both cavitand **1** (the guest with blue labeled numbers) and capsule **1.1** (the guest with red labeled numbers).

Figure S8. Partial COSY NMR spectrum (400 MHz, D_2O , 298K) of *n*- $C_{15}H_{31}OH$ in both cavitand **1** (the guest with blue labeled numbers) and capsule **1.1** (the guest with red labeled numbers).


Figure S9. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of *n*-C₁₆H₃₃OH in capsule **1.1**.


Figure S10. Stacked partial ¹H NMR spectra (400 MHz, D₂O, 298K) of different equivalents of n-C₉H₁₉OH in cavitand **1**. a) 0.2 equivalent; b) 0.5 equivalent; c) 1.0 equivalent and d) 4.0 equivalent.

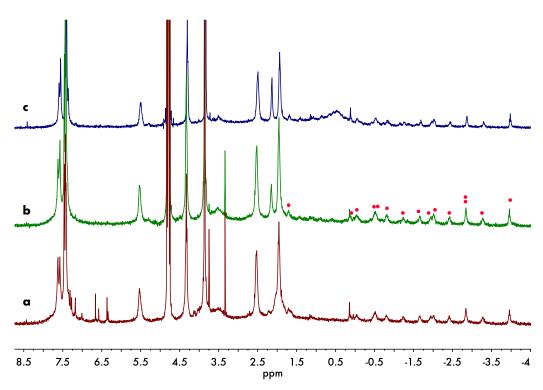

Figure S11. Stacked partial ¹H NMR spectra (400 MHz, D₂O, 298K) of host-guest complex between different equivalents of n-C₁₂H₂₅OH and cavitand **1**. a) 0.2 equivalent; b) 0.5 equivalent; c) 1.0 equivalent and d) 4.0 equivalent. The NMR signals labeled with red circle are from the guest inside the capsule **1.1**.

Figure S12. Stacked partial ¹H NMR spectra (400 MHz, D₂O, 298K) of host-guest complex between different equivalents of n-C₁₃H₂₇OH and cavitand **1**. a) 0.3 equivalent; b) 0.4 equivalent; c) 1.0 equivalent; d) 3.0 equivalent and e) 10.0 equivalent. The NMR signals labeled with red circle are from the guest inside the capsule **1.1**.

Figure S13. Stacked partial ¹H NMR spectra (400 MHz, D₂O, 298K) of host-guest complex between different equivalents of n-C₁₄H₂₉OH and cavitand **1**. a) 0.5 equivalent; b) 1.0 equivalent; c) 2.0 equivalent; d) 4.0 equivalent and e) 10.0 equivalent. The NMR signals labeled with red circle are from the guest inside the capsule **1.1**.

Figure S14. Stacked partial ¹H NMR spectra (400 MHz, D₂O, 298K) of host-guest complex between different equivalents of n-C₁₅H₃₁OH and cavitand **1**. a) 0.5 equivalent; b) 1.0 equivalent and c) 4.0 equivalent. The NMR signals labeled with red circle are from the guest inside the capsule **1.1**.

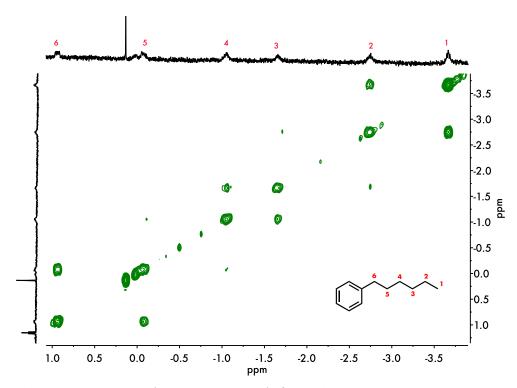


Figure S15. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₆H₁₃Ph in capsule 1.1.

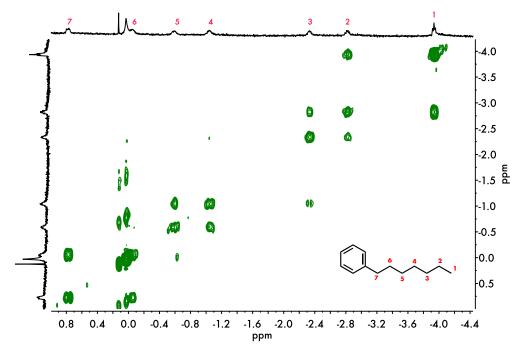


Figure S16. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₇H₁₅Ph in capsule 1.1.

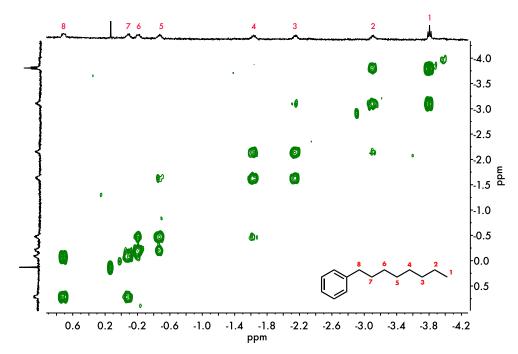


Figure S17. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₈H₁₇Ph in capsule 1.1.

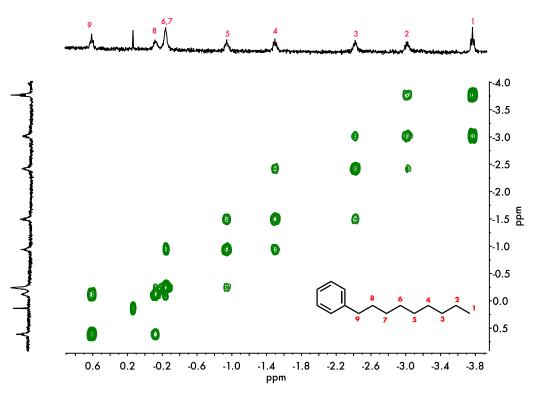


Figure S18. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₉H₁₉Ph in capsule 1.1.

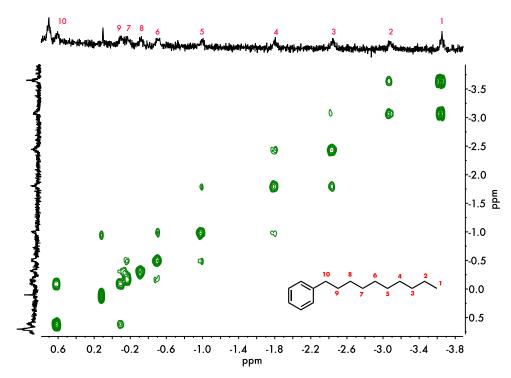


Figure S19. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₁₀H₂₁Ph in capsule 1.1.

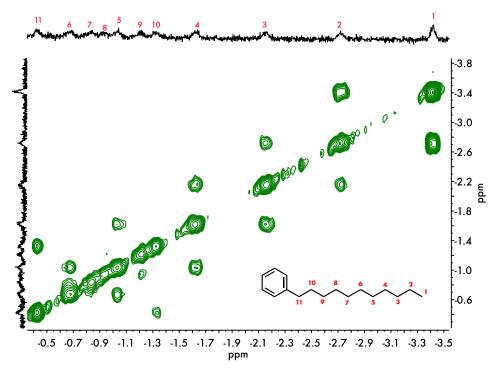


Figure S20. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₁₁H₂₃Ph in capsule 1.1.

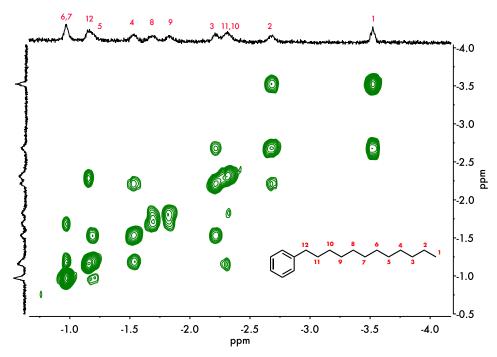


Figure S21. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₁₂H₂₅Ph in capsule 1.1.

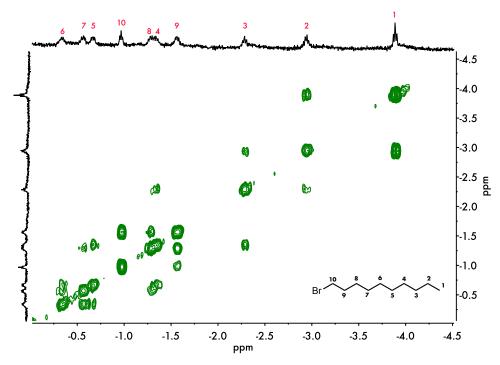


Figure S22. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₁₀H₂₁Br in capsule 1.1.

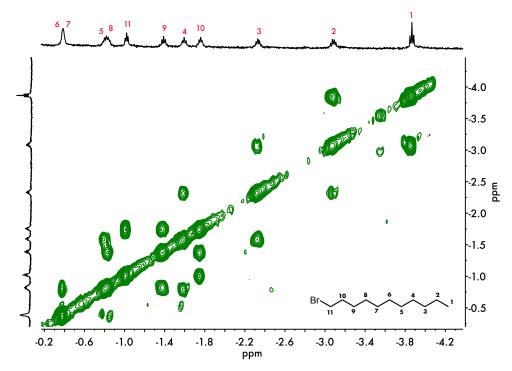


Figure S23. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₁₁H₂₃Br in capsule 1.1.

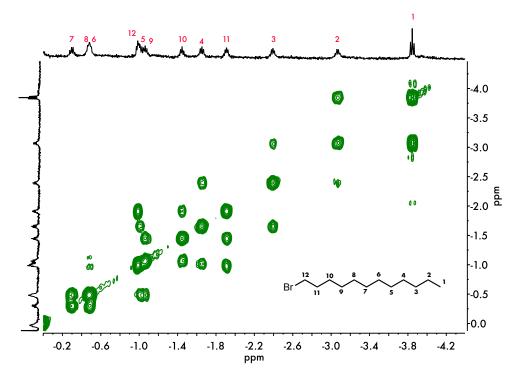


Figure S24. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of C₁₂H₂₅Br in capsule 1.1.

			•
Δδ	$C_{10}H_{21}Br$	$C_{11}H_{23}Br$	$C_{12}H_{25}Br$
1/(Me)	-4.78	-4.74	-4.73
2	-4.25	-4.36	-4.37
3	-3.58	-3.62	-3.70
4	-2.64	-2.89	-2.95
5	-1.97	-2.10	-2.32
6	-1.64	-1.69	-1.79
7	-1.87	-1.69	-1.61
8	-2.73	-2.13	-1.79
9	-3.40	-2.82	-2.37
10	-4.31	-3.58	-2.88
11		-4.35	-3.74
12			-4.33
<u> </u>			

Table S2. $\Delta \delta$ data of $C_{10}H_{21}Br$ - $C_{12}H_{25}Br$ in capsule 1.1^a

^a $\Delta \delta = \delta_{\text{bound guest}} - \delta_{\text{free guest}}$

Figure S25. Stacked ¹H NMR spectra (400 MHz, D₂O, 298K) of 1,4-dioxane (top) and tetrahydropyran (bottom) in cavitand **1**.

Table S3 . $\Delta \delta$ data of tetra	hydropyran and	1,4-dioxane in	cavitand 1 ^a
---	----------------	----------------	-------------------------

	Δδ	Tetrahydropyran	1,4-Dioxane	
	1	-3.19		
	2	-4.25	-4.01	
	3	-4.68		
	-			

^a $\Delta \delta = \overline{\delta_{\text{bound guest}} - \delta_{\text{free guest}}}$

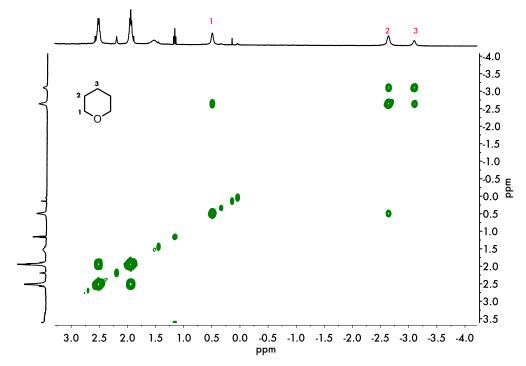


Figure S26. Partial COSY NMR spectrum (400 MHz, D₂O, 298K) of tetrahydropyran in cavitand 1.