Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Information

Water Oxidation by Brønsted Acid-Catalyzed *in situ* Generated Thiol Cation: Dual Function of the Acid Catalyst Leading to Transition Metal-Free Substitution and Addition Reactions of S-S Bonds

Xiantao Ma,*^a Yingying Zhu,^a Jing Yu,^a Ran Yan,^a Xiaoni Xie,^a Lijun Huang,^a Qi Wang,^b Xue-Ping Chang*^a and Qing Xu*^{b,c}

^a College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China

^b School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China

^c College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China

Emails: xiantaoma@126.com; xuepingchang@xynu.edu.cn; qing-xu@wzu.edu.cn

Table of contents

1. Experimental	S2
2. Typical Procedure and Characterization of the Products	S2
3. Control Reactions for Mechanistic Studies	S18
4. Density Functional Theory (DFT) Calculation Studies	S38
5. Copies of the ¹ H, ¹³ C NMR and IR Spectra of the Products	S62

1. Experimental

General. Unless otherwise noted, all chemicals were purchased and used without further purification. Unless otherwise specified, all reactions were carried out in sealed Schlenk tubes under air and then monitored by TLC and/or GC-MS. All products were purified by column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. Unless otherwise noted, ¹H and ¹³C NMR spectra were measured on a JNM-ECZ600R/S3 (Jeol, Japan) (600 and 150 MHz for ¹H and ¹³C NMR, respectively) using CDCl₃ as the solvent. Chemical shifts for ¹H and ¹³C NMR were referred to internal Me₄Si (0 ppm) as the standard. Mass spectra were measured on an Agilent GC-MS-7890A/5975C Plus spectrometer (EI). HRMS were recorded on a LC-TOF spectrometer (Xevo G2-XS QTof) using ESI or EI techniques. Infrared spectra were measured on an Infrared spectroscopy combined with infrared microscopy (Thermo Fisher Nicolelis5). Geometry optimizations and single-point energies calculations in the ground state were using density functional theory (DFT) method with the B3LYP exchange-correlation functional in combination with the all-electron 6-31G* basis set. The nature of all stationary points was confirmed by harmonic vibrational frequency analysis. Grimme-type dispersion corrections (D3) were included throughout. Gibbs free energies of all optimized structures were calculated at 298.15 K and 1 atm. All DFT calculations were carried out using the GAUSSIAN09 package.

2. Typical Procedure and Characterization of the Products

Typical procedure for the Brönsted acid-catalyzed reaction of disulfides and alcohols. The mixture of di(pyridin-2-yl)disulfide **1a** (82.5 mg, 0.375 mmol), benzyl alcohol **2a** (54.0 mg, 0.50 mmol, 1.0 equiv.), and KHSO₄ (17.0 mg, 0.125 mmol, 25 mol%) was directly sealed in a Schlenk tube (10 mL) under air and stirred at 130 °C for 12 h. The reaction mixture was then analyzed by TLC/GC-MS and purified by flash column chromatography on silica gel using ethyl acetate and petroleum ether (0~ 1/20) as the eluent, giving **3aa** in 86% isolated yield.

2-(Benzylthio)pyridine (3aa). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 4.8 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.40 (d, J = 7.2 Hz, 2H), 7.29 (dd, J = 9.6, 4.8 Hz, 2H), 7.23 (dd, J = 9.6, 4.8 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.00 – 6.95 (m, 1H), 4.43 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 149.5, 138.0, 136.1, 129.1, 128.6, 127.2, 122.2, 119.7, 34.5. This compound was known: Jia, X.; Yu, L.; Liu, J.; Xu, Q.; Sickert, M.; Chen, L.; Lautens, M. *Green Chem.* **2014**, *16*, 3444.

2-((4-Methoxybenzyl)thio)pyridine (3ab). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 4.8 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.33 – 7.31 (m, 2H), 7.14 (dd, J = 4.2, 4.2 Hz, 1H), 7.00 – 6.95 (m, 1H), 6.83 – 6.80 (m, 2H), 4.38 (s, 2H), 3.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 158.8, 149.5, 136.1, 130.2, 129.9, 122.2, 119.6, 114.0, 55.4, 34.1. This compound was known: Han, X.; Wu, J. *Org. Lett.* **2010**, *12*, 5780.

2-((4-Nitrobenzyl)thio)pyridine (3ac). Brown solid, m.p. 84 – 85 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.42 (dd, J = 6.0, 1.8 Hz, 1H), 8.14 – 8.09 (m, 2H), 7.56 (dd, J = 9.0, 1.8 Hz, 2H), 7.49 – 7.44 (m, 1H), 7.16 – 7.12 (m, 1H), 7.02 – 6.97 (m, 1H), 4.49 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.2, 149.5, 147.0, 146.7, 136.3, 129.9, 123.7, 122.5, 120.2, 33.4. This compound was known: Goriya, Y.; Ramana, C. V. *Tetrahedron* **2010**, *66*, 7642.

2-((4-Fluorobenzyl)thio)pyridine (3ad). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.46 – 8.43 (m, 1H), 7.47 – 7.43 (m, 1H), 7.39 – 7.34 (m, 2H), 7.14 (d, J = 8.4 Hz, 1H), 7.00 – 6.94 (m, 3H), 4.40 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 162.0 (d, J = 245.2 Hz), 158.5, 149.5, 136.1, 134.0 (d, J = 2.5 Hz), 130.6 (d, J = 8.2 Hz), 122.3, 119.8, 115.4 (d, J = 21.4 Hz), 33.6. This compound was known: Dean, W. M.; Šiaučiulis, M.; Storr, T. E.; Lewis, W.; Stockman, R. A. *Angew. Chem. Int. Ed.* **2016**, *55*, 10013.

2-((4-Chlorobenzyl)thio)pyridine (3ae). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 4.8 Hz, 1H), 7.44 (dd, J = 7.8, 7.8 Hz, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 7.8 Hz, 1H), 6.98 (d, J = 6.0 Hz, 1H), 4.39 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ

158.3, 149.5, 136.9, 136.1, 132.9, 130.4, 128.7, 122.3, 119.9, 33.6. HRMS (ESI) for C₁₂H₁₁ClNS (M+H) Calcd: 236.0301; found: 236.0285. This compound was known: Tresoldi, G.; Lo Schiavo, S.; Lanza, S.; Cardiano, P. *Eur. J. Inorg. Chem.* 2002, 181.

2-((4-Bromobenzyl)thio)pyridine (3af). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.44 (dd, J = 4.8, 1.8 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.40 – 7.38 (m, 2H), 7.29 – 7.26 (m, 2H), 7.13 (dd, J = 4.2, 4.2 Hz, 1H), 7.00 – 6.96 (m, 1H), 4.37 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.2, 149.5, 137.5, 136.1, 131.6, 130.8, 122.3, 121.0, 119.8, 33.7. This compound was known: Haviv, F.; DeNet, R. W.; Michaels, R. J.; Ratajczyk, J. D.; Carter, G. W.; Young, P. R. *J. Med. Chem.* **1983**, 26, 218.

2-((2-Methoxybenzyl)thio)pyridine (3ag). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 4.5 Hz, 1H), 7.44– 7.40 (m, 2H), 7.21 (dd, J = 7.8, 1.2 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 6.97 – 6.94 (m, 1H), 6.88 – 6.85 (m, 2H), 4.47 (s, 2H), 3.85 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.6, 157.6, 149.4, 135.9, 130.6, 128.6, 126.3, 122.2, 120.5, 119.4, 110.6, 55.6, 29.1. This compound was known: Pathak, A. K.; Pathak, V.; Seitz, L. E.; Suling, W. J.; Reynolds, R. C. *J. Med. Chem.* **2004**, *47*, 1273.

2-((2-Chlorobenzyl)thio)pyridine (3ah). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.46 (dd, J = 4.8, 2.4 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.47 – 7.45 (m, 1H), 7.38 – 7.33 (m, 1H), 7.19 – 7.14 (m, 3H), 6.99 (dd, J = 7.8, 4.8 Hz, 1H), 4.56 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.4, 149.4, 136.1, 136.0, 134.4, 131.1, 129.6, 128.6, 126.9, 122.4, 119.7, 31.9. This compound was known: Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. *Adv. Synth. Catal.* **2017**, *359*, 1649.

2-((Naphthalen-1-ylmethyl)thio)pyridine (3ai). White solid. $124 - 125 \,^{\circ}C^{1}H$ NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 4.8 Hz, 1H), 7.85 (s, 1H), 7.79 (t, J = 8.4 Hz, 3H), 7.53 (dd, J = 8.4, 1.2 Hz, 1H), 7.49 - 7.39 (m, 3H), 7.17 (d, J = 8.4 Hz, 1H), 6.99 (dd, J = 7.2, 4.8 Hz, 1H), 4.60 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.8, 149.5, 136.1, 135.5, 133.4, 132.7, 128.4, 127.8, 127.7, 127.6, 127.3, 126.2, 125.9, 122.3, 119.8, 34.8. HRMS (ESI) for C₁₆H₁₄NS (M+H) Calcd: 252.0847; found: 252.0864. Ma, X.; Yu, J.; Yan, R.; Yan, M.; Xu, Q. *J. Org. Chem.* **2019**, *84*, 11294.

2-((Furan-2-ylmethyl)thio)pyridine (3aj). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (dd, J = 4.8, 1.8 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.32 (d, J = 2.4 Hz, 1H), 7.17 (dd, J = 8.4, 1.2 Hz, 1H), 7.00 – 6.97 (m, 1H), 6.27 (dd, J = 3.0, 1.8 Hz, 1H), 6.23 (d, J = 3.0 Hz, 1H), 4.47 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.0, 149.5, 142.1, 136.1, 122.5, 119.8, 110.6, 107.8, 29.8. This compound was known: Dean, W. M.; Šiaučiulis, M.; Storr, T. E.; Lewis, W.; Stockman, R. A. *Angew. Chem. Int. Ed.* **2016**, *55*, 10013.

2-((Thiophen-2-ylmethyl)thio)pyridine (3ak). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.48 (dd, J = 4.8, 0.6 Hz, 1H), 7.53 – 7.44 (m, 1H), 7.20 – 7.11 (m, 2H), 7.01 – 6.96 (m, 1H), 6.89 (dd, J = 5.4, 3.6 Hz, 1H), 4.65 (s, 2H) ¹³C NMR (150 MHz, CDCl₃) δ 158.0, 149.3, 141.1, 136.0, 126.6, 126.3, 124.8, 122.3, 119.7, 28.8. This compound was known: Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. *Adv. Synth. Catal.* **2017**, *359*, 1649.

2-(Cinnamylthio)pyridine (3al). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 4.2 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.35 – 7.16 (m, 6H), 7.01 – 6.96 (m, 1H), 6.61 (d, J = 15.6 Hz, 1H), 6.33 (dt, J = 15.6, 7.2 Hz, 1H), 4.01 (dd, J = 7.2, 1.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.6, 149.6, 136.9, 136.1, 132.8, 128.6, 127.6, 126.4, 125.4, 122.5, 119.7, 32.8. This compound was known: Santos, S.; Quignard, F.; Sinou, D.; Choplin, A. *Top. Catal.* **2000**, *13*, 311.

(E)-2-(Hex-2-en-1-ylthio)pyridine (3am). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 4.8 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.15 (d, J = 7.2 Hz, 1H), 6.99 – 6.93 (m, 1H), 5.71 – 5.64 (m, 1H), 5.58 – 5.52 (m, 1H), 3.77 (d, J = 7.2 Hz, 2H), 1.97 (dd, J = 14.4, 7.2 Hz, 2H), 1.34 (dd, J = 14.4, 7.2 Hz, 2H), 0.84 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 149.5, 136.0, 134.4, 125.1, 122.4, 119.5, 34.5, 32.7, 22.4, 13.7. This compound was known: Goux, C.; Lhoste, P.; Sinou, D. *Tetrahedron* **1994**, *50*, 10321.

2-((2-Methylallyl)thio)pyridine (3an). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 4.8 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.17 (d, J = 7.8 Hz, 1H), 6.96 (dd, J = 7.2, 4.8 Hz, 1H), 5.01 (s, 1H), 4.85 (s, 1H), 3.84 (s, 2H), 1.84 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 149.5, 141.4, 136.0, 122.4, 119.6, 113.8, 37.3, 21.6. This compound was known: Galaka, T.; Casal, M. F.; Storey, M.; Li, C.; Chao, M. N.; Szajnman, S. H.; Docampo, R.; Moreno, S. N. J.; Rodriguez, J. B. *Molecules* **2017**, *22*, 82.

2-((3-Methylbut-2-en-1-yl)thio)pyridine (3ao). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 4.8 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.14 (d, J = 7.8 Hz, 1H), 6.95 (dd, J = 7.2, 4.8 Hz, 1H), 5.35 (t, J = 7.8 Hz, 1H), 3.80 (d, J = 7.8 Hz, 2H), 1.72 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 149.5, 141.4, 136.0, 122.4, 119.6, 113.8, 28.6, 25.8 14.2. This compound was known: Goux, C.; Lhoste, P.; Sinou, D. *Tetrahedron*, **1994**, *50*, 10321.

2-(Butylthio)pyridine (3ap). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.44 – 8.37 (m, 1H), 7.49 – 7.41 (m, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 6.97 – 6.91 (m, 1H), 3.15 (t, *J* = 7.2 Hz, 2H), 1.70 – 1.65 (m, 2H), 1.50 – 1.44 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 149.5, 135.9, 122.2, 119.3, 31.5, 29.9, 22.2, 13.8. This compound was known: Nath, D.; Skilbeck, M. C.; Coldham, I.; Fleming, F. F. *Org. Lett.* **2014**, *16*, 62.

2-(Pentylthio)pyridine (3aq). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, J = 4.8 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.15 (d, J = 7.8 Hz, 1H), 6.98 – 6.90 (m, 1H), 3.14 (t, J = 7.8 Hz, 2H), 1.73 – 1.67 (m, 2H), 1.44 – 1.39 (m, 2H), 1.36 – 1.32 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 149.5, 135.9, 122.2, 119.2, 31.2, 30.2, 29.1, 22.4, 14.1. This compound was known: Xiao, Z.; Wang, L.; Wei, J.; Ran, C.; Liang, S.H.; Shang, J.; Chen, G.-Y.; Zheng, C. *Chem. Commun.* **2020**, 56, 4164.

2-(Octylthio)pyridine (3ar). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (dd, J = 4.8, 2.4 Hz, 1H), 7.45 (dt, J = 7.8, 1.8 Hz, 1H), 7.18 – 7.12 (m, 1H), 6.98 – 6.92 (m, 1H), 3.16 – 3.12 (m, J 2H), 1.69 (dt, J = 15.0, 7.2 Hz, 2H), 1.45 – 1.41 (m, 2H), 1.36 – 1.17 (m, 8H), 0.88 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 149.5, 135.9, 122.2, 119.3, 31.9, 30.2, 29.4, 29.3, 29.1, 22.8, 14.2. This compound was known: Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. *Chem.–Eur. J.* **2009**, *15*, 3666.

2-(Decyl)pyridine (3as). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (dd, J = 4.8, 1.8 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.15 (d, J = 7.8 Hz, 1H), 6.98 – 6.91 (m, 1H), 3.16 – 3.12 (m, 2H), 1.73 – 1.63 (m, 2H), 1.45 – 1.40 (m, 2H), 1.35 – 1.20 (m, 12H), 0.86 (t, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 149.5, 135.9, 122.2, 119.2, 32.0, 30.2, 29.7, 29.42, 29.39, 29.3, 29.1, 22.8, 14.2. This compound was known: Brussaard, Y.; Olbrich, F.; Schaumann, E. *Inorg. Chem.* **2013**, *52*, 13160.

2-(Phenethylthio)pyridine (3at). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.46 – 8.42 (m, 1H), 7.49 – 7.43 (m, 1H), 7.37 – 7.26 (m, 4H), 7.22 (dd, J = 7.2, 7.2 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H) 6.97 (dd, J = 7.8, 4.8 Hz, 1H), 3.43 (t, J = 7.8 Hz, 2H), 3.00 (t, J = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 149.6, 140.7, 135.9, 128.8, 128.5, 126.5, 122.5, 119.4, 35.9, 31.5. This compound was known: Qiao, Z.; Wei, J.; Jiang, X. *Org. Lett.* **2014**, *16*, 1212.

2-((3-Phenylpropyl)thio)pyridine (3au). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 4.2 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.32 – 7.25 (m, 2H), 7.22 – 7.14 (m, 4H), 7.03 – 6.89 (m, 1H), 3.28 – 3.11 (m, 2H), 2.88 – 2.74 (m, 2H), 2.09 – 2.00 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 159.3, 149.6, 141.6, 136.0, 128.6, 128.5, 126.0, 122.3, 119.4, 35.0, 31.1, 29.6. This compound was known: Legarda, P. D.; García-Rubia, A.; Arrayás, R. G.; Carretero, J. C. *Adv. Synth. Catal.* **2016**, *358*, 1065.

2-(Benzhydrylthio)pyridine (3av). White solid. 69 – 70 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 2.4 Hz, 1H), 7.48 (d, J = 7.2 Hz, 4H), 7.42 – 7.39 (m, 1H), 7.34 – 7.25 (m, 4H), 7.22 (dd, J = 7.2, 7.2 Hz, 2H), 7.11 (d, J = 7.8 Hz, 1H), 6.93 (dd, J = 6.6, 5.4 Hz, 1H), 6.35 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 158.4, 149.5, 141.4, 136.3, 128.7, 128.6, 127.2, 122.4, 52.8. This compound was known: Duffy, B. C.; Howard, K. T.; Chisholm, J. D. *Tetrahedron Lett.* **2015**, *56*, 3301.

2-((Di-p-tolylmethyl)thio)pyridine (3aw). White solid. 86 – 87 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.42 – 8.35 (m, 1H), 7.42 – 7.37 (m, 1H), 7.35 (d, *J* = 7.8 Hz, 4H), 7.09 (d, *J* = 7.8 Hz, 5H), 6.92 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.24 (s, 1H), 2.30 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 149.5, 138.6, 136.8, 136.2, 129.3, 128.5, 122.3, 119.8, 52.3, 21.2. IR (KBr): *v* 2954, 2921, 2853, 1574, 1556, 1508, 1453, 1413, 1157, 1146, 1120, 1043, 808, 782, 761, 750 cm⁻¹. HRMS (ESI) for C₂₀H₂₀NS (M+H) Calcd: 306.1316; found: 306.1327.

2-((Bis(4-fluorophenyl)methyl)thio)pyridine (3ax). White solid. 60 – 61 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.38 – 8.35 (m, 1H), 7.41 – 7.45 (m, 1H), 7.41 – 7.36 (m, 4H), 7.10 (d, *J* = 8.4 Hz, 1H), 6.99 – 6.94 (m, 5H), 6.32 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 161.9 (d, *J* = 246.5 Hz), 157.8, 149.6, 137.1, 136.3, 130.2 (d, *J* = 8.2 Hz), 122.5, 120.1, 115.5 (d, *J* = 21.6 Hz). IR (KBr): *v* 2994, 2924, 2853, 1600, 1575, 1554, 1503, 1465, 1453, 1412, 1221, 1157, 1148, 1121, 1099, 864, 826, 821, 793, 779, 751, 732 cm⁻¹. HRMS (ESI) for C₁₈H₁₄F₂NS (M+H) Calcd: 314.0185; found: 314.0174.

2-((1-Phenylethyl)thio)pyridine (3ay). Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 4.8 Hz, 1H), 7.46 – 7.40 (m, 3H), 7.30 (dd, J = 7.2, 7.2 Hz, 2H), 7.22 (dd, J = 7.2, 7.2 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 6.96 (dd, J = 6.6, 5.4 Hz 1H), 5.10 (q, J = 7.2 Hz, 1H), 1.74 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 149.6, 143.4, 136.1, 128.6, 127.5, 127.2, 122.9, 119.7, 43.7, 22.7. This compound was known: Ma, H.; Ren, X.; Zhou, X.; Ma, C.; He, Y.; Huang, G. *Tetrahedron Lett.* **2015**, *56*, 6022.

2-((1-(p-Tolyl)ethyl)thio)pyridine (3az). Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 4.8 Hz, 1H), 7.46 – 7.38 (m, 1H), 7.33 (d, J = 7.8 Hz, 2H), 7.12 – 7.07 (m, 3H), 7.00 – 6.89 (m, 1H), 5.05 (q, J = 7.2 Hz, 1H), 2.30 (s, 3H), 1.72 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 149.6, 140.3, 136.9, 136.0, 129.3, 127.3, 122.9, 119.7, 43.4, 22.7, 21.2. This compound was known: Ma, H.; Ren, X.; Zhou, X.; Ma, C.; He, Y.; Huang, G. *Tetrahedron Lett.* **2015**, *56*, 6022.

2-((1-(4-Fluorophenyl)ethyl)thio)pyridine (3aB). Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.43 (d, J = 4.8 Hz, 1H), 7.46 – 7.35 (m, 3H), 7.08 (d, J = 8.4 Hz, 1H), 6.99 – 6.91 (m, 3H), 5.09 (q, J = 7.2 Hz, 1H), 1.71 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 161.9 (d, J = 245.2 Hz), 158.6, 149.6, 139.2, 136.1, 129.0 (d, J = 8.2 Hz), 123.0, 119.9, 115.3 (d, J = 21.5 Hz), 42.9, 22.7. This compound was known: Ma, H.; Ren, X.; Zhou, X.; Ma, C.; He, Y.; Huang, G. *Tetrahedron Lett.* **2015**, *56*, 6022.

2-((1-(4-Chlorophenyl)ethyl)thio)pyridine (3aC). Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.42 (d, J = 4.8 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.08 (d, J = 8.4 Hz, 1H), 6.96 (dd, J = 7.2, 4.8 Hz, 1H), 5.08 (q, J = 7.2 Hz, 1H), 1.69 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.4, 149.6, 142.2, 136.2, 132.8, 128.9, 128.6, 123.0, 119.9, 42.9, 22.5. This compound was known: Ma, H.; Ren, X.; Zhou, X.; Ma, C.; He, Y.; Huang, G. *Tetrahedron Lett.* **2015**, *56*, 6022.

(*E*)-2-((4-Phenylbut-3-en-2-yl)thio)pyridine (3aD). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 4.2 Hz, 1H), 7.48 – 6.44 (m, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.21 – 7.16 (m, 2H), 7.00 – 6.94 (m, 1H), 6.55 (d, J = 15.6 Hz, 1H), 6.31 (dd, J = 15.6, 7.8 Hz, 1H), 4.72 – 6.67 (m, 1H), 1.59 (d, J = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 158.6, 149.6, 137.0, 136.1, 131.3, 130.0, 128.6, 127.5, 126.4, 123.5, 119.9, 41.9, 20.5. This compound was known: Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. **2018**, 83, 11145.

2-(Cyclopentylthio)pyridine (3aE). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 4.8 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.01 – 6.86 (m, 1H), 4.07 – 3.96 (m, 1H), 2.24 – 2.13 (m, 2H), 1.81 – 1.74 (m, 2H), 1.67 – 1.60 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 160.6, 149.6, 135.9, 122.3, 119.2, 43.1, 33.6, 25.0. This compound was known: Wang, Q.; Zhu, B.; Yang, G; Ma, X.; Xu, Q. *Chin. J. Org. Chem.* **2021**, *41*, 1193.

2-(Cyclohexylthio)pyridine (3aF). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 3.6 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.14 (dd, J = 5.4, 5.4 Hz,1H), 6.98 – 6.89 (m, 1H), 3.79 (d, J = 3.6 Hz, 1H), 2.11 – 2.04 (m, 2H), 1.80 – 1.71 (m, 2H), 1.64 – 1.58 (m, 1H), 1.48 – 1.42 (m, 4H), 1.32 – 1.25 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 159.3, 149.6, 136.0, 123.0, 119.4, 43.0, 33.4, 26.1, 25.9. This compound was known: Zhao, J.; Fang, H.; Han, J.; Pan, Y.; Li, G. *Adv. Synth.*

Catal. 2014, 356, 2719.

2-(Cycloheptylthio)pyridine (3aG). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (dd, J = 4.8, 1.9 Hz), 7.48 – 7.41 (m, 1H), 7.16 – 7.10 (m, 1H), 6.97 – 6.89 (m, 1H), 3.97 (tt, J = 9.0, 4.2 Hz, 1H), 2.12 – 2.07 (m, 2H), 1.74 – 1.66 (m, 4H), 1.64 – 1.55 (m, 6H)... ¹³C NMR (150 MHz, CDCl₃) δ 159.8 149.6, 135.9, 122.9, 119.3, 44.7, 34.9, 28.5, 26.0. This compound was known: Wang, Q.; Zhu, B.; Yang, G.; Ma, X.; Xu, Q. *Chin. J. Org. Chem.* **2021**, *41*, 1193.

2-(Pentan-2-ylthio)pyridine (3aH). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 4.2 Hz, 1H), 7.46 – 6.42 (m, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.02 – 6.88 (m, 1H), 3.90 (dq, J = 13.8, 6.6 Hz, 1H), 1.69 – 1.65 (m, 1H), 1.60 – 1.55 (m, 1H), 1.49 – 1.42 (m, 2H), 1.38 (d, J = 6.6 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 149.6, 135.9, 123.0, 119.3, 39.7, 38.9, 21.5, 20.4, 14.1. This compound was known: Xiao, Z.; Wang, L.; Wei, J.; Ran, C.; Liang, S.H.; Shang, J.; Chen, G.-Y.; Zheng, C. *Chem. Commun.* **2020**, *56*, 4164.

2-(Tert-butylthio)pyridine (3aI). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, J = 4.8 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.32 (d, J = 7.8 Hz, 1H), 7.10 – 7.03 (m, 1H), 1.49 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 158.5, 149.6, 136.1, 127.7, 121.0, 47.7, 31.2. This compound was known: Xiao, Z.; Wang, L.; Wei, J.; Ran, C.; Liang, S.H.; Shang, J.; Chen, G.-Y.; Zheng, C. *Chem. Commun.* **2020**, *56*, 4164.

2-((1-Methylcyclopentyl)thio)pyridine (3aJ). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.46 (dd, J = 4.8, 1.2 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.33 – 7.21 (m, 1H), 7.05 – 6.97 (m, 1H), 2.15 – 2.05 (m, 2H), 1.85 – 1.79 (m, 2H), 1.76 – 1.67 (m, 4H), 1.62 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.6, 135.9, 126.0, 120.3, 41.0 29.8, 28.8, 24.4. IR (KBr): *v*2955, 2923, 2853, 1578, 1556, 1452, 1413, 1123, 757, 733 cm⁻¹. HRMS (ESI) for C₁₁H₁₆NS (M+H) Calcd: 194.1003;

2-(1-Adamantanylthio)pyridine (3aK). White solid. 78 – 79 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, J = 4.8 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.37 (d, J = 7.2 Hz, 1H), 7.12 – 7.06 (m, 1H), 2.05 (d, J = 2.4 Hz, 6H), 2.02 (s, 3H), 1.66 (t, J = 2.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 156.8, 149.7, 136.1, 129.2, 121.5, 50.1, 43.7, 36.3, 30.1. This compound was known: Ho, J.; Zheng, J.; Meana-Pañeda, R.; Truhlar, D. G.; Ko, E. J.; Savage, G. P.; Tsanaktsidis, J. *J. Org. Chem.* **2013**, 78, 6677.

2-((3,3-Diphenylallyl)thio)pyridine (3aL). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, J = 4.8 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.40 (dd, J = 7.2, 7.2 Hz, 2H), 7.34 (dd, J = 7.2, 7.2 Hz, 1H), 7.27 – 7.20 (m, 7H), 7.13 (d, J = 7.8 Hz, 1H), 6.96 (dd, J = 6.6, 4.8 Hz, 1H), 6.28 (t, J = 7.8 Hz, 1H), 3.91 (d, J = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 149.5, 144.4, 142.1, 139.2, 136.0, 130.1, 128.4, 128.2, 127.63, 127.55, 127.51, 124.3, 122.2, 119.5, 30.1. IR (KBr): v 3054, 2972, 2927, 1598, 1577, 1444, 1413, 1123, 1043, 757, 696 cm⁻¹. HRMS (ESI) for C₂₀H₁₈NS (M+H) Calcd: 304.1160; found: 304.1172.

4-(Benzylthio)pyridine (3ba). White solid. 60 – 61 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.43 – 8.32 (m, 2H), 7.39 (d, J = 7.2 Hz, 2H), 7.33 (d, J = 7.2 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.14 – 7.09 (m, 2H), 4.20 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 149.4, 149.1, 135.6, 128.9, 128.8, 127.8, 120.9, 35.8. This compound was known: Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. *Adv. Synth. Catal.* **2017**, *359*, 1649.

$$\langle N \\ N \\ N \rangle$$

2-(Benzylthio)pyrimidine (3ca). White solid. 55 – 56 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, J = 4.8 Hz, 2H), 7.43 (d, J = 7.2 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.26 – 7.21 (m, 1H), 6.96 – 6.94 (m, 1H), 4.41 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.3, 137.5, 129.2, 128.6, 127.3, 116.7, 35.4. This compound was known: Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. *Adv. Synth.*

Catal. 2017, 359, 1649.

$$\mathbb{N}^{S}$$

2-(Benzylthio)benzo[d]thiazole (3da). White solid. 38 - 39 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.47 – 7.39 (m, 3H), 7.35 – 7.27 (m, 4H), 4.60 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 153.2, 136.2, 135.4, 129.3, 128.8, 127.9, 126.2, 124.4, 121.6, 121.1, 37.8. This compound was known: Kumar, D.; Mishra, B. B.; Tiwari, V. K. *J. Org. Chem.* **2013**, *79*, 251.

Ph_S~Ph

Benzyl(phenyl)sulfane (3ea). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.27 (m, 6H), 7.27 – 7.22 (m, 3H), 7.20 – 7.15 (m, 1H), 4.11 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 137.5, 136.4, 129.9, 128.9, 128.6, 127.3, 126.4, 39.1. This compound was known: Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. *Org. Biomol. Chem.* **2017**, *15*, 9638.

Benzyl(p-tolyl)sulfane (3fa). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.25 (m, 4H), 7.24 – 7.19 (m, 2H), 7.07 (d, J = 7.8 Hz, 2H), 4.07 (s, 2H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.9, 136.7, 132.5, 130.8, 129.7, 128.9, 128.5, 127.2, 39.9, 21.2. This compound was known: Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. *Org. Biomol. Chem.* **2017**, *15*, 9638.

Benzyl(4-chlorophenyl)sulfane (3ga). White solid. 48 - 49 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.30 - 7.20 (m, 9H), 4.07 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 137.2, 134.7, 132.6, 131.5, 129.0, 128.9, 128.6, 127.4, 39.4. This compound was known: Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. *Org. Biomol. Chem.* **2017**, *15*, 9638.

Benzyl(2-fluorophenyl)sulfane (3ha). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 6.99 (m, 9H), 4.09 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 161.8 (d, J = 245.2 Hz), 137.3, 133.1, 128.9, 128.9, 128.6, 127.3, 124.4 (d, J = 3.3 Hz), 122.8 (d, J = 17.9 Hz), 115.7 (d, J = 22.5 Hz), 38.5 (d, J = 2.0 Hz). This compound was known: Li, Y.; Pu, J.; Jiang, X. *Org. Lett.* **2014**, *16*, 2692.

2-((1-adamantanyl)thio)benzo[d]thiazole (3dK). White solid. 120 - 121 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.38 (dd, J = 11.5, 4.1 Hz, 1H), 7.31 – 7.27 (m, 1H), 2.09 (d, J = 2.9 Hz, 6H), 2.02 (s, 3H), 1.63 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 161.9, 153.8, 137.1, 126.1, 125.1, 122.9, 121.0, 53.0, 43.6, 36.1, 30.3. IR (KBr): ν 2917, 2849, 1735, 1467, 1371, 1236, 1020, 960, 720, 628, 608 cm⁻¹. HRMS (ESI) for C₁₇H₂₀NS₂ (M+H) Calcd: 301.0959; found: 301.0950.

Benzyl(4-methoxyphenyl)sulfane (3ia). White solid. 48 - 49 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.15 (m, 7H), 6.84 – 6.74 (m, 2H), 3.98 (s, 2H), 3.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.3, 138.2, 134.2, 129.0, 128.5, 127.1, 126.1, 114.5, 55.4, 41.3. This compound was known: Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. *Org. Biomol. Chem.* **2017**, *15*, 9638.

Benzyl(4-fluorophenyl)sulfane (3ja). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.19 (m, 7H), 6.96 – 6.90 (m, 2H), 4.02 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 162.2 (d, J = 246.9 Hz), 137.6, 133.5 (d, J = 7.9 Hz), 130.8, 128.9, 128.6, 127.3, 116.0 (d, J = 21.7 Hz), 40.5. This compound was known: Reeves, J. T.; Camara, K.; Han, Z.; Xu, Y.; Lee, H.; Busacca, C.; Senanayake, C. H. *Org. Lett.* **2014**, *16*, 1196.

Benzyl(2-bromophenyl)sulfane (3ka). White solid. 49 - 50 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 7.2 Hz, 2H), 7.30 (dd, J = 7.2, 7.2 Hz, 2H), 7.28 – 7.19 (m, 3H), 7.08 – 6.97 (m, 1H), 4.15 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 138.0, 136.2, 133.0, 129.1, 128.9, 128.7, 127.8, 127.5, 127.0, 123.7, 38.0. This compound was known: Li, Y.; Pu, J.; Jiang, X. *Org. Lett.* **2014**, *16*, 2692.

2-(Benzylthio)phenol (3la). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.22 (m, 5H), 7.10 – 7.02 (m, 2H), 6.92 (d, J = 7.8 Hz, 1H), 6.82 – 6.78 (m, 1H), 6.54 (d, J = 1.8 Hz, 1H), 3.84 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.2, 137.7, 136.5, 131.5, 128.9, 128.7, 127.5, 120.7, 118.3, 114.8, 41.5. This compound was known: Li, Y.; Pu, J.; Jiang, X. *Org. Lett.* **2014**, *16*, 2692.

Benzyl(naphthalen-2-yl)sulfane (3ma). White solid. 89 – 90 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.77 – 7.72 (m, 2H), 7.71 (d, J = 7.8 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.34 (d, J = 7.2 Hz, 2H), 7.31 – 7.28 (m, 2H), 7.28 – 7.22 (m, 1H), 4.23 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 137.4, 134.0, 133.8, 132.0, 129.0, 128.7, 128.4, 127.8, 127.8, 127.7, 127.4, 127.3, 126.6, 125.8, 39.0. This compound was known: Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. *Org. Biomol. Chem.* **2017**, *15*, 9638.

Ph S Ph

Dibenzylsulfane (3na). White solid. 48 - 49 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.14 (m, 10H), 3.60 (s, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 138.2, 129.1, 128.6, 127.1, 35.7. This compound was known: Y Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. *Org. Biomol. Chem.* **2017**, *15*, 9638.

Benzyl(cyclohexyl)sulfane (3oa). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.20 (m, 5H), 3.73 (s, 2H), 2.59 – 2.52 (m, 1H), 2.01 – 1.90 (m, 2H), 1.77 – 1.70 (m, 2H), 1.41 – 1.10 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 139.0, 128.8, 128.5, 126.9, 43.0, 34.7, 33.5, 26.1, 26.0. This

compound was known: Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. Org. Biomol. Chem. **2017**, *15*, 9638.

Typical procedure for the acid-catalyzed addition reactions of disulfide with alkenens or alkynes. The mixture of di(pyridin-2-yl)disulfide 1a (82.5 mg, 0.375 mmol), styrene 5a (52.0 mg, 0.50 mmol, 1.0 equiv.), water (45.0 mg, 2.5 mmol, 5.0 equiv.) and TsOHH₂O (95.0 mg, 0.50 mmol, 100 mol%) was sealed in a Schlenk tube (10 mL) under nitrogen and stirred at 130 °C for 12 h. The reaction mixture was then analyzed by TLC/GC-MS and purified by flash column chromatography on silica gel using ethyl acetate and petroleum ether (0~ 1/20) as the eluent, giving 6a in 45% isolated yield.

2-((1-Phenylethyl)thio)pyridine (6a). Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 4.8 Hz, 1H), 7.46 – 7.40 (m, 3H), 7.30 (dd, J = 7.2, 7.2 Hz, 2H), 7.22 (dd, J = 7.2, 7.2 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 6.96 (dd, J = 6.6, 5.4 Hz 1H), 5.10 (q, J = 7.2 Hz, 1H), 1.74 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 149.6, 143.4, 136.1, 128.6, 127.5, 127.2, 122.9, 119.7, 43.7, 22.7. This compound was known: Ma, H.; Ren, X.; Zhou, X.; Ma, C.; He, Y.; Huang, G. *Tetrahedron Lett.* **2015**, *56*, 6022.

Ethyl 3-(pyridin-2-ylthio)propanoate (6c). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 4.2 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.99 – 6.89 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.40 (t, J = 7.2 Hz, 2H), 2.74 (t, J = 7.2 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 158.3, 149.5, 136.0, 122.4, 119.5, 60.7, 34.8, 25.0, 14.3. This compound was known: Gholinejad, M.; Firouzabadi, H. *New J. Chem.* **2015**, *39*, 5953.

Benzyl 3-(pyridin-2-ylthio)propanoate (6d). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, J = 4.8 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.37 – 7.29 (m, 5H), 7.14 (d, J = 7.8 Hz, 1H), 6.96 – 6.94 (m, 1H), 5.14 (s, 2H), 3.45 (t, J = 7.2 Hz, 2H), 2.84 (t, J = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 172.1, 158.2, 149.6, 136.0, 135.9, 128.7, 128.3, 122.5, 119.6, 66.6, 34.8, 25.0. IR (KBr): v 3034, 2997, 2939, 2854, 1731, 1578, 1556, 1454, 1414, 1124, 907, 756, 725, 696 cm⁻¹. HRMS (ESI) for C₁₅H₁₆NO₂S (M+H) Calcd: 274.0902; found: 274.0891.

3-(Pyridin-2-ylthio)propanenitrile (6e). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, J = 4.2 Hz, 1H), 7.54 – 7.46 (m, 1H), 7.17 (d, J = 8.4 Hz, 1H), 7.05 – 6.97 (m, 1H), 3.40 (t, J = 7.2 Hz, 2H), 2.85 (t, J = 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 156.7, 149.7, 136.4, 122.8, 120.1 118.7, 25.6, 18.8. This compound was known: Gholinejad, M.; Firouzabadi, H. *New J. Chem.* **2015**, *39*, 5953.

Ethyl 3-(pyridin-2-ylthio)acrylate (6f). Colorless oil. *Z* isomer: ¹H NMR (600 MHz, CDCl₃) *δ* 8.51 (d, *J* = 10.2 Hz, 1H), 8.49 (d, *J* = 4.8 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.10 – 7.08 (m, 1H), 6.06 (d, *J* = 10.2 Hz), 4.22 (q, *J* = 7.8 Hz, 2H), 1.30 (t, *J* = 7.8 Hz, 3H); *E* isomer: ¹H NMR (600 MHz, CDCl₃) *δ* 8.54 (d, *J* = 16.2 Hz, 1H), 8.51 (d, *J* = 4.8 Hz, 1H), 7.60 – 7.58 (m, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.13 – 7.10 (m, 1H), 6.11 (d, *J* = 16.2 Hz, 1H), 4.20 (q, *J* = 14.4 Hz, 2H), 1.28 (t, *J* = 7.8 Hz, 3H); *Z* isomer: ¹³C NMR (150 MHz, CDCl₃) *δ* 116.9, 155.3, 149.7, 142.0, 136.9, 123.4, 121.4, 114.0, 60.5, 14.4; *E* isomer: ¹³C NMR (150 MHz, CDCl₃) *δ* 165.3, 154.3, 150.2, 141.9, 137.0, 123.3, 121.6, 117.4, 60.5, 14.4. This compound was known: Kabir, M. S.; Lorenz, M.; Linn, M. L. V.; Namjoshi, O. A.; Ara, S.; Cook, J. M. *J. Org. Chem.* **2010**, 75, 3626.

3. Control Reactions for Mechanistic Studies

3.1 Studies on the possibilities of S-S bond cleavage

3.1.1 The reaction of 1a and 2a using BHT (7a) as the radical trapping reagent (eq. 1 in the main text)

Detailed Procedure: The mixture of di(pyridin-2-yl)disulfide **1a** (82.5 mg, 0.375 mmol), benzyl alcohol **2a** (54.0 mg, 0.50 mmol), KHSO₄ (17.0 mg, 0.125 mmol, 25 mol%), and BHT **7a** (110.0 mg, 0.50 mmol, 1.0 equiv.) was directly sealed in a Schlenk tube (10 mL) under nitrogen, and then stirred at 130 °C for 12 h. The reaction mixture was analyzed by TLC/GC-MS, and then purified by flash column chromatography on silica gel using ethyl acetate and petroleum ether (0~ 1/50) as the eluent, giving **3aa** in 83% isolated yield.

GC Spectra

Run	Time	Start	Peak	Stop	Peak	Hight	Correction	Correction	Total%
	/min	scanning	scanning	scanning	type		area	maximum%	
1	6.629	755	760	778	М	1283166	19880827	8.01	7.415
2	6.820	791	802	829	М	20587982	248230085	100.00	92.585

MS Spectra

3.1.2 The reaction of 1a and 2a using 1,1-diphenylethene (7b) as the radical trapping reagent (eq. 2 in the main text)

Detailed Procedure: The mixture of di(pyridin-2-yl)disulfide **1a** (82.5 mg, 0.375 mmol), benzyl alcohol **2a** (54.0 mg, 0.50 mmol), KHSO₄ (17.0 mg, 0.125 mmol, 25 mol%), and 1,1-diphenylethene **7b** (90.0 mg, 0.50 mmol, 1.0 equiv.) was directly sealed in a Schlenk tube (10 mL) under nitrogen, and then stirred at 130 °C for 12 h. The reaction mixture was analyzed by TLC/GC-MS, and then purified by flash column chromatography on silica gel using ethyl acetate and petroleum ether (0~ 1/50) as the eluent, giving **3aa** in 86% isolated yield.

Benzophenone (8b). White solid. $48 - 49 \,^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃) δ 7.85 – 7.74 (m, 4H), 7.62 – 7.55 (m, 2H), 7.50 – 7.44 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 196.9, 137.7, 132.5, 130.2, 128.4. This compound was known: Yang, X.-J.; Zheng, Y.-W.; Zheng, L.-Q.; Wu, L.-Z.; Tung, C.-H.; Chen, B. *Green Chem.* **2019**, *21*, 1401.

GC Spectra

Run	Time	Start	Peak	Stop	Peak	Hight	Correction	Correction	Total%
	/min	scanning	scanning	scanning	type		area	maximum%	
1	6.993	811	818	899	М	2846164	118361192	100.00	88.137
2	7.821	1001	1013	1072	M2	201943	15931163	13.46	11.863

MS Spectra

3.1.3 Results and Discussion

When 3,5-di-*t*-butyl 4-hydroxyl toluene (BHT, **7a**) or 1,1-diphenylethene (**7b**) was added to the model reaction of **1a** and **2a**, the target product **3aa** could still be obtained in good yields. Therefore, the reaction should not proceed via the formation of radical intermediates by homolytic cleavage of the S-S bond, but more likely the heterolytic cleavage of the S-S bond to give thiol cation (RS^+) and thiol (RSH) intermediates in the presence of the acid catalyst. Besides, certain amounts of 2,6-di-*tert*-butyl-4-methylenecyclohexa-2,5-dien-1-one (**8a**) and benzophenone (**8b**), the oxidation products of **7a** and **7b**, were also observed by GC-MS analysis of these reactions. This may indicate that, certain oxidizing species may be generated in the reaction that can oxidize **7a** and **7b** to **8a** and **8b**.

3.2 Determination of possible intermediates by isotope labeling experiments

3.2.1 Certificate of analysis of the purchased $H_2^{18}O$ (98 atom% ^{18}O)

3.2.2 The reaction of 1a, 2a and 7b in the presence of $^{18}\text{O-H}_2\text{O}$ (98 atom% ^{18}O) (eq. 3 in the main text)

Detailed Procedure: The mixture of di(pyridin-2-yl)disulfide **1a** (82.5 mg, 0.375 mmol), benzyl alcohol **2a** (54.0 mg, 0.50 mmol), 1,1-diphenylethene **7b** (90.0 mg, 0.50 mmol, 1.0 equiv.), TFA (57.0 mg, 0.50 mmol, 1.0 equiv.), and $H_2^{18}O$ (98 atom% ¹⁸O, 27.0 mg, 1.5 mmol, 3.0 equiv.) was directly sealed in a Schlenk tube (10 mL) under nitrogen, and then stirred at 130 °C for 12 h. The reaction mixture was then analyzed by GC-MS.

GC Spectra

Run	Time	Start	Peak	Stop	Peak	Hight	Correction	Correction	Total%
_	/min	scanning	scanning	scanning	type		area	maximum%	
1	6.899	802	815	866	М	17887132	260324586	100.00	52.156
2	7.695	967	981	1020	М	942556	39770227	15.28	7.968
3	12.830	2073	2087	2235	М	6320215	199032156	76.46	39.876

MS Spectra

Results and Discussion: The observed **9a** should be generated by an electrophilic reaction of 2-pyridylthiol cation 2-PyS^+ (**10a**) with alkene **7b**, implying that the reaction should proceed *via* the formation of 2-PyS^+ (**10a**) and RSH intermediates by heterolytic cleavage of S-S bond of **1a**. Besides, ¹⁸O-**8b** that may be generated from the oxidation of **7b** was also detected by GC-MS, suggesting that certain oxidizing species (containing ¹⁸O) was generated from ¹⁸O-H₂O in the reaction.

3.2.3 The reaction of 1a and 7b in the presence of ${}^{18}\text{O-H}_2\text{O}$ (98% ${}^{18}\text{O}$) (eq. 4 in the main text)

Detailed Procedure: The mixture of di(pyridin-2-yl)disulfide **1a** (82.5 mg, 0.375 mmol), 1,1-diphenylethene **7b** (90.0 mg, 0.50 mmol, 1.0 equiv.), TFA (57.0 mg, 0.50 mmol, 1.0 equiv.), and $H_2^{18}O$ (98 atom % ¹⁸O, 27.0 mg, 1.5 mmol, 3.0 equiv.) was directly sealed in a Schlenk tube (10 mL) under nitrogen, and stirred at 130 °C for 12 h. The reaction mixture was then analyzed by GC-MS and purified by flash column chromatography on silica gel using ethyl acetate and petroleum ether (0~ 1/20) as the eluent, giving **9a** and ¹⁸O-**8b** in 41% and 3% isolated yield, respectively. Then the isotope analysis of the product ¹⁸O-**8b** by HRMS showed that ¹⁸O-**8b**

should contain 60 atom%¹⁸O.

Benzophenone (¹⁸**O-8b**). White solid. 48 – 49 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 – 7.77 (m, 4H), 7.62 – 7.55 (m, 2H), 7.52 –7.46 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 196.9, 137.7, 132.5, 130.2, 128.4. HRMS (EI) for C₁₃H₁₀¹⁸O (M) Calcd: 184.0774; found: 184.0772.

2-((2,2-Diphenylvinyl)thio)pyridine (9a). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.50 (dd, J = 4.8, 1.8 Hz, 1H), 7.75 (s, 1H), 7.52 – 7.48 (m, 1H), 7.42 (dd, J = 8.4, 6.0 Hz, 2H), 7.40 – 7.32 (m, 2H), 7.36 – 7.30 (m, 3H), 7.30 (dd, J = 8.4, 6.6 Hz, 2H), 7.26 – 7.24 (m, 1H), 7.19 – 7.17 (m, 1H), 7.06 – 7.03 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 157.3, 149.8, 141.5, 140.4, 139.9, 136.5, 129.8, 128.6, 128.4, 127.9, 127.4, 122.6, 120.4, 119.6. HRMS (ESI) for C₁₉H₁₆NS (M+H) Calcd: 290.1003; found: 290.1031. Chen, Y.; Wen, S.; Tian, Q.; Zhang, Y.; Cheng, G. *Org. Lett.* **2021**, *23*, 7905.

GC Spectra

Run	Time	Start	Peak	Stop	Peak	Hight	Correction	Correction	Total%
	/min	scanning	scanning	scanning	type		area	maximum%	
1	6.914	805	817	859	М	27958514	430645500	65.24	38.211
2	7.776	963	982	1020	М	786300	36222224	5.49	3.214
3	12.849	2063	2096	2131	М	21851283	660138794	100.00	39.876

MS Spectra

Isotope analysis of the obtained ¹⁸O-8b by HRMS

Results and Discussion: Observation of **9a** in the reaction confirmed again the possibility of heterolytic cleavage of **1a** to generate 2-PyS⁺ (**10a**) under the acid-catalyzed conditions. Moreover, ¹⁸O-**8b** was detected, isolated and determined to be containing 60 atom% ¹⁸O by HRMS analysis, suggesting that certain oxidizing species (containing ¹⁸O, possibly H₂¹⁸O₂) may be generated from the reaction of ¹⁸O-H₂O with **1a** or 2-PyS⁺ (**10a**), but more possibly **10a** because no reaction can occur without the acid catalyst.

3.2.4 Control reaction of lone 7b with ¹⁸O-H₂O (eq. 5 in the main text)

Detailed Procedure: The mixture of 1,1-diphenylethene **7b** (90.0 mg, 0.50 mmol, 1.0 equiv.), TFA (57.0 mg, 0.50 mmol, 1.0 equiv.), and $H_2^{18}O$ (98 atom% ¹⁸O, 27.0 mg, 1.5 mmol, 3.0 equiv.) was directly sealed in a Schlenk tube (1 mL) under nitrogen, and then stirred at 130 °C for 12 h. The reaction mixture was analyzed by GC-MS, showing no **8b** was produced.

GC Spectra

Run	Time	Start	Peak	Stop	Peak	Hight	Correction	Correction	Total%
_	/min	scanning	scanning	scanning	type		area	maximum%	
1	6.871	475	478	512	М	5006000	148767287	100.00	100.000

MS Spectra

Results and Discussion: In the absence of **1a**, 1,1-diphenylethene **7b** cannot be oxidized to **8b**. Therefore, under the **1a**-free conditions, the potential oxidizing species (containing ¹⁸O, possibly hydrogen peroxide $H_2^{18}O_2$) could not be generated from ¹⁸O-H₂O. Ultimately, no **8b** could be generated from **7a**.

3.2.5 Control reaction of 1,1-diphenylethene (7b) with external H₂O₂ (eq. 6 in the main text)

Ph Ph
$$H_2O_2$$
 (2.0 equiv.)
Ph Ph $130 \,^{\circ}\text{C}$, N₂, 12 h Ph **Bb** 70% isolated

Detailed Procedure: The mixture of 1,1-diphenylethene **7b** (90.0 mg, 0.50 mmol, 1.0 equiv.) and H_2O_2 (100 mg, 1.0 mmol, 30 W/W%, 2.0 equiv.) was directly sealed in a Schlenk tube (1 mL) under nitrogen, and then stirred at 130 °C for 12 h. The reaction mixture was analyzed by GC-MS and purified by flash column chromatography on silica gel using ethyl acetate and petroleum ether (0~ 1/20) as the eluent, giving **8b** in 70% isolated yield.

GC Spectra

Run	Time	Start	Peak	Stop	Peak	Hight	Correction	Correction	Total%
	/min	scanning	scanning	scanning	type		area	maximum%	
1	6.939	478	484	510	М	742092	33350179	24.94	19.964
2	7.651	567	571	650	М	1691586	133697340	100.00	80.036

MS Spectra

Results and Discussion: The reaction of **7b** with H_2O_2 could effectively afford **8b** in 70% isolated yield, suggesting that H_2O_2 should be the most possible active oxidizing species generated through the oxidation of H_2O_2 .

3.3 ESI-HRMS analysis of the key intermediates (eq. 7 in the main text)

Detailed Procedure: The mixture of di(pyridin-2-yl)disulfide **1a** (82.5 mg, 0.375 mmol) and KHSO₄ (17.0 mg, 0.125 mmol, 25 mol%) was directly sealed in a Schlenk tube (10 mL) under nitrogen, and stirred at 130 °C for 2 h. The reaction mixture was then analyzed by ESI-HRMS.

S36
Results and Discussion: HRMS analysis of the KHSO₄-catalyzed blank reaction of **1a** showed the generation of trace yields of 2-PySH (**4a**), thiosulfinate **12a**, and thiolsulfonate **13a**. Clearly, the production of **4a** confirmed again the heterolytic cleavage of S-S bond by acid catalysis; whereas, as shown by the scheme below, **12a** and **13a** are in effect the characteristic products of the stepwise disproportionation reactions of sulfenic acids 2-PySOH (**11a**), implying that **11a** were most possibly generated in the process by the reaction of 2-PyS⁺ (**10a**) with water.

4. Density Functional Theory (DFT) Calculation Studies

Run	Structure	E ₀	H ₂₉₈	G ₂₉₈	TCGFE
1	1 a	-1291.613503	-1291.600528	-1291.654395	0.119658
2	$1a-H^+$	-1291.982235	-1291.969190	-1292.022745	0.134138
3	1a-H ⁺ '	-1291.933610	-1291.920357	-1291.975057	0.129341
4	TS1	-1291.939669	-1291.926599	-1291.982043	0.130527
5	TS1'	-1291.892567	-1291.880150	-1291.931988	0.128683
6	14 a	-1291.947738	-1291.935146	-1291.987157	0.133704
7	14a'	-1291.896766	-1291.883289	-1291.939226	0.125765
8	15 a	-1291.901210	-1291.888228	-1291.942367	0.130942
9	15a'	-1291.882636	-1291.869193	-1291.924361	0.125923
10	H_2O	-76.387796	-76.384017	-76.405463	0.003499
11	4a'	-646.395183	-646.388675	-646.425041	0.062249
12	4 a	-646.393999	-646.387114	-646.424095	0.057924
13	10a	-645.446506	-645.439805	-645.476846	0.048146
14	16a	-2013.554089	-2013.532515	-2013.607003	0.214234
15	16a'	-2013.525485	-2013.502852	-2013.583622	0.206703
16	17a	-2013.601334	-2013.579662	-2013.657573	0.213205
17	17a'	-2013.543597	-2013.521720	-2013.598451	0.211095
18	11a	-721.582802	-721.574833	-721.614898	0.061486
19	18 a	-1443.186721	-1443.170389	-1443.232328	0.143947
20	19 a	-1443.138418	-1443.121379	-1443.185181	0.143037

Summary table for the Key Intermediates

E₀: Sum of electronic and zero-point Energies
H₂₉₈: Sum of electronic and thermal Enthalpies
G₂₉₈: Sum of electronic and thermal Free Energies
TCGFE: Thermal correction to Gibbs Free Energy

Standard	orientation:
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	011011000000000000000000000000000000000

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	3.975385	0.467485	-0.541946
2	6	0	3.828909	1.459786	0.425665
3	6	0	2.621111	1.522867	1.124707
4	6	0	1.614528	0.605062	0.838998
5	6	0	1.882148	-0.356851	-0.140938
6	7	0	3.024486	-0.432718	-0.821761
7	1	0	2.459471	2.286482	1.881050
8	1	0	4.894243	0.381088	-1.118743
9	1	0	4.633721	2.161266	0.621551
10	1	0	0.657878	0.637009	1.344090
11	16	0	0.733857	-1.632276	-0.694514
12	16	0	-0.809156	-1.661187	0.690276
13	6	0	-1.926044	-0.340618	0.163147
14	6	0	-3.272547	-0.445732	0.542095
15	6	0	-4.127340	0.595863	0.194261
16	1	0	-3.634233	-1.318596	1.076862
17	6	0	-2.266185	1.674987	-0.855025
18	6	0	-3.619729	1.682184	-0.522823
19	1	0	-5.178518	0.553091	0.466192
20	1	0	-1.825654	2.496441	-1.416615
21	1	0	-4.255219	2.510155	-0.820434
22	7	0	-1.425671	0.689615	-0.511809

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	4.205267	0.168771	-0.276127
2	6	0	3.986265	1.407889	0.285120
3	6	0	2.668957	1.781384	0.598693
4	6	0	1.605038	0.922711	0.341318
5	6	0	1.860491	-0.330678	-0.220332
6	7	0	3.151955	-0.658636	-0.498397
7	1	0	2.473750	2.758744	1.029442
8	1	0	5.181790	-0.211479	-0.551197
9	1	0	4.824445	2.068802	0.471617
10	1	0	0.568982	1.202795	0.518367
11	16	0	0.645897	-1.544321	-0.676385
12	16	0	-0.747813	-1.460619	0.883867
13	6	0	-1.991113	-0.296628	0.276280
14	6	0	-3.317846	-0.728832	0.219074
15	6	0	-4.284893	0.205824	-0.159394
16	1	0	-3.581511	-1.754688	0.452117
17	6	0	-2.521960	1.813980	-0.415055
18	6	0	-3.881589	1.498258	-0.487524
19	1	0	-5.330599	-0.081347	-0.212435
20	1	0	-2.167483	2.809051	-0.671819
21	1	0	-4.598909	2.250502	-0.798257
22	7	0	-1.587563	0.939417	-0.023143
23	1	0	3.337748	-1.584910	-0.879075

1a-H⁺**,** Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-2.412326	1.639305	-0.617475
2	6	0	-3.731357	1.590317	-0.170660
3	6	0	-4.165368	0.451461	0.510260
4	6	0	-3.276450	-0.603901	0.719377
5	6	0	-1.976103	-0.431138	0.245359
6	7	0	-1.535277	0.647066	-0.395400
7	1	0	-5.189690	0.373002	0.861145
8	1	0	-2.033862	2.496935	-1.166618
9	1	0	-4.401409	2.421826	-0.359652
10	1	0	-3.588324	-1.517165	1.215219
11	16	0	-0.755136	-1.732692	0.535663
12	16	0	0.530203	-1.112741	-1.036049
13	6	0	1.895123	-0.134915	-0.318735
14	6	0	1.737558	1.233361	-0.120272
15	6	0	2.855661	1.904407	0.382508
16	1	0	0.800061	1.732187	-0.332855
17	6	0	4.044573	-0.191809	0.393196
18	6	0	4.022735	1.185428	0.641409
19	1	0	2.810696	2.973352	0.565593
20	1	0	4.933531	-0.786857	0.580793
21	1	0	4.906632	1.678230	1.032385
22	7	0	2.981779	-0.854024	-0.081226
23	1	0	1.271520	-2.250978	-1.043258

TS1

Standard	orien	tation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	4.655628	0.559281	0.184248
2	6	0	4.806178	-0.798932	0.028045
3	6	0	3.648738	-1.597449	-0.031365
4	6	0	2.389726	-1.028775	0.081414
5	6	0	2.251928	0.362719	0.243927
6	7	0	3.409609	1.093682	0.266636
7	1	0	3.741186	-2.672484	-0.152319
8	1	0	5.480693	1.259492	0.239154
9	1	0	5.797993	-1.227857	-0.048264
10	1	0	1.491897	-1.633425	0.048831
11	16	0	0.763092	1.231622	0.452869
12	16	0	-0.823309	-0.267480	-1.237279
13	6	0	-2.354048	-0.167514	-0.419194
14	6	0	-2.796460	-1.257946	0.365442
15	6	0	-4.077520	-1.206049	0.912281
16	1	0	-2.149743	-2.114584	0.519033
17	6	0	-4.301870	0.985043	-0.083943
18	6	0	-4.844391	-0.066383	0.686491
19	1	0	-4.461026	-2.030497	1.505080
20	1	0	-4.880003	1.889292	-0.259380
21	1	0	-5.844779	0.027161	1.097423
22	7	0	-3.095368	0.944686	-0.631264
23	1	0	3.320114	2.104065	0.349325

TS1' Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.182201	1.564216	0.723135
2	6	0	3.499601	1.743843	0.238646
3	6	0	4.067235	0.747214	-0.551763
4	6	0	3.316845	-0.394049	-0.819538
5	6	0	1.998264	-0.484869	-0.289587
6	7	0	1.441052	0.497581	0.468126
7	1	0	5.075647	0.847098	-0.940437
8	1	0	1.726203	2.329152	1.347927
9	1	0	4.048889	2.644515	0.492928
10	1	0	3.715879	-1.203122	-1.421728
11	16	0	1.068324	-1.891501	-0.654215
12	16	0	-0.958506	-1.347069	1.353760
13	6	0	-1.985635	-0.226001	0.436686
14	6	0	-1.789379	1.154198	0.591885
15	6	0	-2.640499	1.997663	-0.119396
16	1	0	-1.011361	1.539242	1.240668
17	6	0	-3.713376	0.037024	-1.021033
18	6	0	-3.619723	1.434862	-0.938786
19	1	0	-2.541797	3.075149	-0.032150
20	1	0	-4.461194	-0.436180	-1.651805
21	1	0	-4.300848	2.058347	-1.508290
22	7	0	-2.908333	-0.788079	-0.349409
23	1	0	-1.630736	-2.448198	0.947661

14a Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-2.147301	1.731234	0.515572
2	6	0	-3.530177	1.688077	0.520971
3	6	0	-4.160214	0.525380	0.059056
4	6	0	-3.400411	-0.557813	-0.373200
5	6	0	-1.997802	-0.471935	-0.388677
6	7	0	-1.430741	0.688523	0.050213
7	1	0	-5.243538	0.453708	0.064227
8	1	0	-1.573132	2.578428	0.873244
9	1	0	-4.096989	2.535164	0.888618
10	1	0	-3.870664	-1.480497	-0.692832
11	16	0	-1.007548	-1.764612	-1.007294
12	16	0	0.980891	-1.551194	1.175674
13	6	0	1.986361	-0.363088	0.396829
14	6	0	3.353409	-0.638833	0.194650
15	6	0	4.178994	0.374083	-0.299446
16	1	0	3.744459	-1.621724	0.432616
17	6	0	2.220286	1.765256	-0.462154
18	6	0	3.606501	1.595143	-0.637266
19	1	0	5.240589	0.197283	-0.440856
20	1	0	1.740192	2.695477	-0.755297
21	1	0	4.200776	2.404742	-1.047473
22	7	0	1.431895	0.830914	0.059519
23	1	0	-0.381134	0.769235	0.057531

14a' Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.468810	1.624307	0.572288
2	6	0	3.871584	1.551992	0.395594
3	6	0	4.418974	0.411681	-0.185309
4	6	0	3.557276	-0.612309	-0.571285
5	6	0	2.158394	-0.437612	-0.383870
6	7	0	1.626892	0.674970	0.195543
7	1	0	5.490622	0.313671	-0.326557
8	1	0	2.028777	2.498357	1.047237
9	1	0	4.498215	2.374395	0.725161
10	1	0	3.931248	-1.527252	-1.018054
11	16	0	1.088027	-1.663492	-0.950268
12	16	0	-0.914759	-1.093245	1.366709
13	6	0	-2.133840	-0.183210	0.466389
14	6	0	-1.852355	1.143323	0.095315
15	6	0	-2.856660	1.839409	-0.572453
16	1	0	-0.882334	1.580949	0.303489
17	6	0	-4.224140	-0.144863	-0.431443
18	6	0	-4.064586	1.192172	-0.837395
19	1	0	-2.697759	2.866993	-0.883767
20	1	0	-5.147572	-0.681004	-0.633663
21	1	0	-4.870775	1.699196	-1.357120
22	7	0	-3.276842	-0.830247	0.206330
23	1	0	-1.633824	-2.239916	1.380114

15a Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-3.180883	-1.673726	-0.118635
2	6	0	-2.028540	-2.073171	-0.762959
3	6	0	-0.999089	-1.134559	-0.931143
4	6	0	-1.152595	0.192461	-0.444990
5	6	0	-2.469235	0.647773	-0.011899
6	7	0	-3.365644	-0.386250	0.254319
7	1	0	-0.111452	-1.389465	-1.499905
8	1	0	-4.003511	-2.349681	0.087956
9	1	0	-1.922738	-3.096061	-1.100718
10	1	0	-0.405566	0.955768	-0.630948
11	16	0	-3.004239	2.234484	-0.032276
12	16	0	0.623890	-0.993086	1.159140
13	6	0	2.007782	-0.255752	0.416939
14	6	0	3.060915	-1.085032	-0.042280
15	6	0	4.238336	-0.479320	-0.479995
16	1	0	2.953724	-2.164250	-0.020714
17	6	0	3.162244	1.652422	-0.106394
18	6	0	4.294792	0.911081	-0.512542
19	1	0	5.081559	-1.081343	-0.803702
20	1	0	3.169496	2.738320	-0.164620
21	1	0	5.182504	1.429998	-0.859772
22	7	0	2.053392	1.097872	0.362391
23	1	0	-4.275041	-0.100066	0.609006

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	3.144753	1.709947	-0.009598
2	6	0	2.011106	2.140659	-0.701622
3	6	0	1.006352	1.209853	-0.941283
4	6	0	1.170773	-0.137677	-0.477959
5	6	0	2.503214	-0.500984	-0.020313
6	7	0	3.407807	0.420311	0.270307
7	1	0	0.117903	1.470815	-1.506016
8	1	0	3.913898	2.416485	0.292019
9	1	0	1.910804	3.173329	-1.014271
10	1	0	0.446147	-0.909559	-0.715979
11	16	0	3.052431	-2.195094	-0.070285
12	16	0	-0.638851	0.950982	1.144887
13	6	0	-2.013224	0.221612	0.400805
14	6	0	-3.051565	1.064479	-0.075721
15	6	0	-4.246852	0.475864	-0.488958
16	1	0	-2.917968	2.140976	-0.082372
17	6	0	-3.208715	-1.672902	-0.072740
18	6	0	-4.330874	-0.912700	-0.487381
19	1	0	-5.079482	1.087761	-0.821069
20	1	0	-3.243082	-2.759237	-0.109115
21	1	0	-5.231676	-1.421183	-0.816383
22	7	0	-2.086764	-1.134563	0.374885
23	1	0	4.309053	-1.882745	0.311826

Standard orientation:							
Center	Atomic	Atomic	omic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	1.488502	-1.189382	-0.000139		
2	6	0	2.243288	-0.050854	-0.000084		
3	6	0	1.560446	1.197792	-0.000109		
4	6	0	0.190030	1.252334	-0.000067		
5	6	0	-0.615379	0.063651	0.000802		
6	7	0	0.127782	-1.111415	0.000264		
7	1	0	2.135420	2.119956	0.000366		
8	1	0	1.906315	-2.189885	-0.000904		
9	1	0	3.324783	-0.110063	-0.000533		
10	1	0	-0.336792	2.199116	0.000205		
11	16	0	-2.293744	0.005105	-0.000252		
12	1	0	-0.425619	-1.962156	0.000629		

4a' Standard orientation

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.451073	-1.222134	-0.000034
2	6	0	2.257415	-0.086484	-0.000033
3	6	0	1.629801	1.162269	0.000050
4	6	0	0.241355	1.223772	0.000034
5	6	0	-0.472475	0.014341	0.000026
6	7	0	0.110781	-1.186358	0.000004
7	1	0	2.215774	2.077440	0.000073
8	1	0	1.893213	-2.216755	-0.000056
9	1	0	3.338849	-0.177430	-0.000051
10	1	0	-0.280213	2.175950	-0.000022
11	16	0	-2.260837	0.072607	-0.000063
12	1	0	-2.412711	-1.267003	0.000784

10a Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	16	0	2.228002	0.005512	-0.000310
2	6	0	0.566264	-0.023513	0.000371
3	6	0	-0.169490	1.233400	0.000480
4	6	0	-1.556128	1.208929	-0.000092
5	1	0	0.388404	2.165094	0.000815
6	6	0	-1.378469	-1.250343	-0.000098
7	6	0	-2.171082	-0.043236	-0.000440
8	1	0	-2.139225	2.124250	-0.000158
9	1	0	-1.878395	-2.216564	0.000317
10	1	0	-3.254981	-0.129003	-0.000944
11	7	0	-0.072915	-1.254770	0.000514

Standard orientation:

Center	Atomic	Atomic	Coo	ordinates (Angstro	ms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.099244	2.767219	-0.393306
2	6	0	1.526218	3.483686	0.651678
3	6	0	0.265666	3.091215	1.113648
4	6	0	-0.383083	2.012631	0.516995
5	6	0	0.284959	1.343409	-0.512921
6	7	0	1.499008	1.701297	-0.951920
7	1	0	-0.220117	3.638885	1.916144
8	1	0	3.072032	3.032944	-0.797765
9	1	0	2.048232	4.331558	1.082202
10	1	0	-1.387475	1.708072	0.795083
11	16	0	-0.434697	-0.027261	-1.439985
12	16	0	-1.422022	-1.208321	-0.029032
13	6	0	-3.131642	-0.618548	-0.083117
14	6	0	-4.140950	-1.555279	-0.320863
15	6	0	-5.462563	-1.105974	-0.280838
16	1	0	-3.900727	-2.589760	-0.541207
17	6	0	-4.619934	1.094608	0.168130
18	6	0	-5.709154	0.243735	-0.037189
19	1	0	-6.280704	-1.798052	-0.456341
20	1	0	-4.769436	2.155626	0.352579
21	1	0	-6.720277	0.636276	-0.010643
22	7	0	-3.349803	0.672969	0.163278
23	6	0	1.349395	-2.395720	1.461986
24	6	0	1.244286	-1.426246	2.484981
25	6	0	2.039688	-0.286686	2.429167
26	6	0	2.907827	-0.141828	1.347379
27	6	0	2.947993	-1.170255	0.381155
28	7	0	2.176014	-2.281935	0.433786

29	1	0	1.978525	0.478768	3.195714
30	1	0	0.730518	-3.288614	1.488198
31	1	0	0.542830	-1.580400	3.298613
32	1	0	3.534436	0.735358	1.237499
33	16	0	4.063511	-1.053462	-0.943038
34	8	0	2.761534	-0.371501	-2.442967
35	1	0	2.372466	0.484086	-2.069152
36	1	0	2.014518	-1.010164	-2.431625

Standard orientation:

Center	Atomic	Atomic	Co	ordinates (Angstro	ms)
Number	Number	Туре	Х	Y	Z
1	6	0	3.703524	3.158793	-0.144628
2	6	0	3.078597	4.408477	-0.127987
3	6	0	1.705505	4.464278	0.105458
4	6	0	1.003999	3.273238	0.305063
5	6	0	1.739252	2.086482	0.278075
6	7	0	3.047240	2.011451	0.067831
7	1	0	1.182448	5.415748	0.120847
8	1	0	4.771213	3.069772	-0.327405
9	1	0	3.657678	5.310238	-0.296541
10	1	0	-0.068781	3.271991	0.472793
11	16	0	0.887210	0.518619	0.628515
12	16	0	1.371988	-0.762781	-0.968588
13	6	0	2.667351	-1.831702	-0.286295
14	6	0	3.777733	-1.320084	0.390469
15	6	0	4.725525	-2.244184	0.828480
16	1	0	3.892192	-0.252519	0.544911
17	6	0	3.407105	-3.980551	-0.175982
18	6	0	4.541622	-3.598036	0.540865
19	1	0	5.604607	-1.907403	1.370208
20	1	0	3.232495	-5.022017	-0.434423
21	1	0	5.262876	-4.343526	0.859586
22	7	0	2.465246	-3.112628	-0.572519
23	6	0	-6.271052	0.135287	-0.736563
24	6	0	-6.790273	-0.128689	0.550944
25	6	0	-5.946955	-0.630327	1.537243
26	6	0	-4.608066	-0.848883	1.210261
27	6	0	-4.193722	-0.581946	-0.112923

28	7	0	-5.010267	-0.091032	-1.074799
29	1	0	-6.314906	-0.838664	2.536788
30	1	0	-6.915400	0.536596	-1.515030
31	1	0	-7.838835	0.063469	0.756286
32	1	0	-3.898129	-1.222741	1.939983
33	16	0	-2.572038	-0.976831	-0.581794
34	8	0	-1.740950	0.948412	-0.468957
35	1	0	-1.627063	1.206044	-1.406240
36	1	0	-0.763765	0.834150	-0.038701

17a Standard orientation:

Center	Atomic	Atomic	Coo	ordinates (Angstro	ms)
Number	Number	Туре	X	Y	Z
1	6	0	-0.947785	2.676706	-0.276124
2	6	0	-0.119630	3.521039	-0.987626
3	6	0	1.191345	3.100439	-1.256476
4	6	0	1.644156	1.861671	-0.813059
5	6	0	0.766591	1.033307	-0.109195
6	7	0	-0.494804	1.468168	0.128649
7	1	0	1.868377	3.753012	-1.799419
8	1	0	-1.973645	2.904426	-0.011046
9	1	0	-0.485731	4.485847	-1.318132
10	1	0	2.669526	1.532794	-0.952527
11	16	0	1.155451	-0.563278	0.581297
12	16	0	2.441651	-1.419615	-0.825506
13	6	0	4.089796	-0.987804	-0.217009
14	6	0	5.002414	-2.024316	-0.006216
15	6	0	6.298042	-1.675334	0.380920
16	1	0	4.707369	-3.060718	-0.129334
17	6	0	5.608900	0.622135	0.344990
18	6	0	6.607823	-0.329373	0.565887
19	1	0	7.043319	-2.446239	0.552040
20	1	0	5.808305	1.681532	0.486430
21	1	0	7.598494	-0.016808	0.878877
22	7	0	4.371921	0.305625	-0.056814
23	6	0	-4.383204	-2.215117	-0.816441
24	6	0	-5.665004	-2.052329	-1.329752
25	6	0	-6.407958	-0.934566	-0.930885
26	6	0	-5.853005	-0.020416	-0.040343
27	6	0	-4.557019	-0.281796	0.412431
28	7	0	-3.838051	-1.339428	0.043867

29	1	0	-7.412744	-0.778017	-1.311694
30	1	0	-3.764410	-3.065254	-1.088942
31	1	0	-6.073044	-2.781249	-2.021168
32	1	0	-6.402174	0.855225	0.291776
33	16	0	-3.725260	0.771032	1.608091
34	8	0	-2.228958	-0.052195	1.567247
35	1	0	-1.158778	0.840964	0.649664
36	1	0	-2.468919	-0.904187	1.076864

17a' Standard orientation:

Center	Atomic	Atomic	Coo	ordinates (Angstro	ms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.572267	3.054897	0.440840
2	6	0	-0.759357	3.448464	0.306608
3	6	0	-1.665663	2.544366	-0.246054
4	6	0	-1.219508	1.283566	-0.643141
5	6	0	0.125736	0.984196	-0.426365
6	7	0	1.008564	1.834717	0.097940
7	1	0	-2.707133	2.817619	-0.386810
8	1	0	1.320849	3.733348	0.841238
9	1	0	-1.068399	4.441228	0.615694
10	1	0	-1.888812	0.567842	-1.102725
11	16	0	0.768072	-0.655225	-0.853129
12	16	0	2.657054	0.171574	-1.591182
13	6	0	3.934990	-0.244441	-0.355965
14	6	0	3.962282	0.424836	0.863810
15	6	0	4.999616	0.068805	1.728494
16	1	0	3.208056	1.161384	1.115857
17	6	0	5.776740	-1.493234	0.070523
18	6	0	5.921026	-0.899675	1.327495
19	1	0	5.083772	0.544582	2.700635
20	1	0	6.469348	-2.253755	-0.278533
21	1	0	6.737402	-1.197673	1.976871
22	7	0	4.783121	-1.172718	-0.770308
23	6	0	-4.825704	-0.922434	-1.323118
24	6	0	-5.957238	-0.385212	-0.721066
25	6	0	-5.904429	-0.079240	0.645120
26	6	0	-4.735440	-0.317341	1.359869
27	6	0	-3.656190	-0.865419	0.657560
28	7	0	-3.690545	-1.159163	-0.643029
29	1	0	-6.770168	0.341966	1.147496

30	1	0	-4.810876	-1.179575	-2.378517
31	1	0	-6.856277	-0.212794	-1.302327
32	1	0	-4.661800	-0.092997	2.419589
33	16	0	-2.109217	-1.269290	1.459214
34	8	0	-1.277728	-1.758666	0.063884
35	1	0	-2.010211	-1.822377	-0.622616
36	1	0	2.998793	-0.865081	-2.395244

11a Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.478173	1.350483	-0.000240	
2	6	0	-2.509498	0.418778	0.000002	
3	6	0	-2.171037	-0.941941	0.000120	
4	6	0	-0.835106	-1.315983	0.000165	
5	6	0	0.128308	-0.293126	0.000128	
6	7	0	-0.181789	1.006097	-0.000084	
7	1	0	-2.947615	-1.701857	0.000280	
8	1	0	-1.684583	2.418235	-0.000204	
9	1	0	-3.544381	0.743923	0.000063	
10	1	0	-0.538285	-2.360731	0.000279	
11	16	0	1.866718	-0.647274	-0.000291	
12	8	0	2.459821	0.927833	0.000522	
13	1	0	1.634364	1.482196	-0.000393	

18a Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.357319	0.359228	1.653019
2	6	0	3.041340	1.486865	1.202530
3	6	0	3.134274	1.688815	-0.179114
4	6	0	2.552156	0.765579	-1.038734
5	6	0	1.873824	-0.330137	-0.476671
6	7	0	1.769717	-0.529586	0.840792
7	1	0	3.668160	2.547091	-0.578726
8	1	0	2.260589	0.158907	2.718424
9	1	0	3.491174	2.177609	1.908521
10	1	0	2.629663	0.872368	-2.117025
11	16	0	1.030306	-1.458660	-1.569218
12	8	0	0.869971	-2.830640	-0.642681
13	1	0	0.164782	-2.640175	0.025617
14	6	0	-0.725898	1.962605	0.262861
15	6	0	-1.594968	2.771938	-0.462137
16	6	0	-2.823928	2.232017	-0.862466
17	6	0	-3.135398	0.916773	-0.539036
18	6	0	-2.185530	0.192605	0.195986
19	7	0	-1.022955	0.700146	0.597430
20	1	0	-3.527197	2.830187	-1.435320
21	1	0	0.246282	2.319934	0.593407
22	1	0	-1.319485	3.791498	-0.710545
23	1	0	-4.068444	0.459880	-0.855000
24	16	0	-2.469772	-1.494160	0.692417
25	8	0	-0.905796	-1.884605	1.213250
26	1	0	-0.413943	-1.021872	1.309940

19a Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	3.351094	-1.591492	-0.811643
2	6	0	3.864096	-0.544418	-1.581075
3	6	0	3.366997	0.739755	-1.363769
4	6	0	2.382810	0.932064	-0.393399
5	6	0	1.966878	-0.189842	0.332951
6	7	0	2.428856	-1.423362	0.142101
7	1	0	3.721706	1.580987	-1.953000
8	1	0	3.701338	-2.611532	-0.958347
9	1	0	4.623413	-0.737967	-2.332495
10	1	0	1.920968	1.900310	-0.230023
11	16	0	0.771568	0.070924	1.673523
12	8	0	-0.844912	3.226663	1.073870
13	1	0	-0.189880	2.941528	1.737581
14	6	0	-2.543846	0.783542	-1.277993
15	6	0	-3.652418	0.026649	-1.636273
16	6	0	-3.817022	-1.223507	-1.031224
17	6	0	-2.880797	-1.658677	-0.101657
18	6	0	-1.794314	-0.817242	0.189863
19	7	0	-1.625688	0.367965	-0.388799
20	1	0	-4.669477	-1.850414	-1.277767
21	1	0	-2.364372	1.769363	-1.699964
22	1	0	-4.365451	0.404168	-2.361474
23	1	0	-2.983265	-2.620904	0.391080
24	16	0	-0.615180	-1.442688	1.404068
25	8	0	-0.208874	2.770792	-0.149289
26	1	0	-0.549936	1.839827	-0.181486

5. Copies of the ¹H, ¹³C NMR and IR Spectra of the Products

S79

100 90 f1 (ppm) -1)0

100 90 f1 (ppm) -1)0

S100

S101

-1 100 90 f1 (ppm))0

170 160 100 90 fl (ppm) -])0 120 110

S105

S113

S118

S120

