Electronic supplementary information for

Transition-metal-free oxindole synthesis: quinone-K₂CO₃ catalyzed intramolecular radical cyclization

Shiyuan Wu, Qiuting Zhao, Chao Wu, Chengming Wang,* and Hao Lei*

College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory

of Functional Supramolecular Coordination Materials and Applications, Jinan

University, Guangzhou 510632, China

E-mail: tleihao@jnu.edu.cn (H. Lei), cmwang2019@jnu.edu.cn (C. Wang).

Table of Contents

1.	General Information	S2
2.	Synthesis of 9,10-Phenanthrenequinone (PQ)	S 3
3.	General Procedures for the PQ-Catalyzed Oxindole Synthesis	S4
4.	Characterization of Oxindole Products	S 6
5.	Mechanistic Investigations	S16
6.	NMR Spectra of Oxindole Products	S19
7.	References	S58

General Information

All manipulations were performed under anaerobic and anhydrous conditions by using Schlenk techniques under a dinitrogen atmosphere or in a N₂-filled glovebox, unless otherwise specified. Anhydrous Solvents were obtained with an Innovative Technology PureSolv MD5 solvent purification system or purchased from J&K (1,4-dioxane, SuperDry). The substrates α -bromoanilides (1), α -chloroanilide (1a-Cl) and α -iodoanilide (1a-I) were synthesized according to literature procedures.^{S1,S2} ¹H. ¹³C and ¹⁹F NMR spectra were collected using Bruker Avance III 300 spectrometers at 298 K, and referenced internally to the residual deuterated solvent resonances. All chemical shifts (δ) were given in parts per million (ppm), and coupling constants (J) were given in hertz (Hz). Multiplicities were described as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Thin layer chromatography (TLC) was carried out with glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 300-400 mesh silica gel in petroleum ether (b.p. 60-90 °C). High-resolution ESI mass spectra were obtained using an Agilent 6545 LC/Q-TOF mass spectrometer in positive ion mode, and the data were reported with ion mass-to-charge ratio (m/z) as values in atomic mass units. A single crystal of 2r was mounted on a glass fiber attached to a copper mounting pin and placed in a low-temperature nitrogen stream.^{S3} Crystallographic data were collected on a Rigaku XtaLAB PRO diffractometer with Cu K α radiation ($\lambda = 1.54178$ Å) at 150 K. Empirical absorption corrections were applied using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm.^{S4} All the structures were solved using direct methods, which yielded the positions of all non-hydrogen atoms. Hydrogen atoms were placed in calculated positions in the final structure refinement. Structure determination and refinement were carried out using the SHELXTL software package.^{S5}

Synthesis of 9,10-Phenanthrenequinone (PQ)

A suspension of phenanthrene (1.65 g, 9.25 mmol) in acetic acid (14.3 mL) was added to a solution of CrO₃ (3.70 g, 37 mmol) and 18-crown-6 (367 mg, 1.38 mmol) in acetic acid (27.7 mL) slowly at room temperature. The resulting mixture was stirred for 2.5 hours at 50 °C. Then, additional amount of CrO₃ (1.35 g, 18.5 mmol) was added. After being stirred for another 30 minutes, the resulting mixture was extracted by CH₂Cl₂. The organic extracts was washed with H₂O and a saturated aqueous solution of NaHCO₃. The combined organic extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by recrystallization from hexane to afford 9,10-phenanthrenequinone (1.80 g, 8.64 mmol, 93%) as yellow needles. ¹H NMR (300 MHz, CDCl₃): δ 8.20 (2H, d, *J* = 7.8 Hz), 8.03 (2H, d, *J* = 8.0 Hz), 7.73 (2H, t, *J* = 7.8 Hz), 7.48 (2H, t, *J* = 7.7 Hz). The ¹H NMR data was identical with that reported in the literature.^{S6}

General Procedures for the PQ-Catalyzed Oxindole Synthesis

In a nitrogen-filled glovebox, α -bromoanilide **1** (0.3 mmol, 1.0 equiv.), PQ (1 mol%), K₂CO₃ (0.3 mmol, 1.0 equiv.) and 1,4-dioxane (2 mL) were added to a 25 mL pressure tube equipped with a magnetic stir bar. The tube was sealed, taken out of the glovebox and heated at 100 °C for 24 h. Upon completion, the reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure to remove all volatiles. The crude product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (20:1) as the eluent to afford the desired compound.

Procedure for the synthesis of 2a with other α -haloanilides:

In a nitrogen-filled glovebox, α -chloroanilide **1a-Cl** or α -iodoanilide **1a-I** (0.3 mmol, 1.0 equiv.), PQ (1 mol%), K₂CO₃ (0.3 mmol, 1.0 equiv.) and 1,4-dioxane (2 mL) were added to a 25 mL pressure tube equipped with a magnetic stir bar. The tube was sealed, taken out of the glovebox and heated at 100 °C for 24 h. Upon completion, the reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure to remove all volatiles. The crude product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (20:1) as the eluent to afford **2a** in 87% or 89% yields, respectively.

Procedure for the gram-scale synthesis of 2a:

In a nitrogen-filled glovebox, α -bromoanilide **1a** (1.54 g, 6.0 mmol), PQ (1 mol%), K₂CO₃ (0.82 g, 6.0 mmol) and 1,4-dioxane (30 mL) were added to a 50 mL pressure tube equipped with a magnetic stir bar. The tube was sealed, taken out of the glovebox and heated at 100 °C for 24 h. Upon completion, the reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure to remove all volatiles. The crude product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (20:1) as the eluent to afford compound **2a** as a yellow oil. Yield: 0.914 g (87%).

Characterization of Oxindole Products

1,3,3-Trimethylindolin-2-one (**2a**):^{S7} Colorless oil (96% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.25 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.3 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 3.21 (s, 3H), 1.37 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.4, 142.6, 135.8, 127.7, 122.5, 122.2, 108.0, 44.2, 26.2, 24.4.

5-Fluoro-1,3,3-trimethylindolin-2-one (**2b**):^{S7} Yellow solid (94% yield). ¹H NMR (300 MHz, CDCl₃): δ 6.93–6.88 (m, 2H), 6.74–6.70 (m, 1H), 3.16 (s, 3H), 1.32 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.0, 159.4 (d, ¹*J*_{CF} = 240.2 Hz), 138.5, 137.5 (d, ³*J*_{CF} = 7.8 Hz), 113.7 (d, ²*J*_{CF} = 23.4 Hz), 110.5 (d, ²*J*_{CF} = 24.5 Hz), 108.5 (d, ³*J*_{CF} = 8.1 Hz), 44.6, 26.3, 24.3. ¹⁹F NMR (282 MHz, CDCl₃): δ –120.9.

5-Chloro-1,3,3-trimethylindolin-2-one (**2c**):^{S8} Yellow solid (90% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.18 (dd, J = 8.2, 1.8 Hz, 1H), 7.14 (d, J = 1.7 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 3.16 (s, 3H), 1.32 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 180.8, 141.2, 137.5, 127.8, 127.6, 122.9, 109.0, 44.4, 26.3, 24.3.

5-Bromo-1,3,3-trimethylindolin-2-one (**2d**):^{S8} White solid (98% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.36 (dd, J = 8.2, 2.0 Hz, 1H), 7.29 (d, J = 1.9 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 3.18 (s, 3H), 1.34 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 180.7, 141.7, 137.9, 130.5, 125.7, 115.2, 109.5, 44.4, 26.3, 24.3.

1,3,3-Trimethyl-5-(trifluoromethyl)indolin-2-one (**2e**):^{S8} Yellow oil (90% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.52 (d, *J* = 8.1 Hz, 1H), 7.41 (s, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 3.23 (s, 3H), 1.37 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.3, 145.8, 136.4, 125.6 (q, ³*J*_{CF} = 4.0 Hz), 124.8 (q, ²*J*_{CF} = 32 Hz), 124.6 (q, ¹*J*_{CF} = 270 Hz), 119.4 (q, ³*J*_{CF} = 3.7 Hz), 107.8, 44.3, 26.5, 24.3. ¹⁹F NMR (282 MHz, CDCl₃): δ –61.4.

Methyl 1,3,3-trimethyl-2-oxoindoline-5-carboxylate (**2f**):^{S8} Yellow solid (88% yield). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (dd, J = 8.2, 1.7 Hz, 1H), 7.86 (d, J = 1.6 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 3.89 (s, 3H), 3.23 (s, 3H), 1.38 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.7, 167.1, 146.9, 135.8, 130.6, 124.5, 123.7, 107.7, 52.1, 44.1, 26.5, 24.3.

1,3,3-Trimethyl-2-oxoindoline-5-carbonitrile (**2g**):^{S8} White solid (98% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.56 (dd, J = 8.1, 1.1 Hz, 1H), 7.42 (s, 1H), 6.89 (d, J = 8.1 Hz, 1H), 3.21 (s, 3H), 1.35 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 180.9, 146.6, 136.7, 133.2, 125.7, 119.3, 108.5, 105.5, 44.0, 26.5, 24.1.

1,3,3-Trimethyl-5-nitroindolin-2-one (**2h**):^{S8} Yellow solid (88% yield). ¹H NMR (300 MHz, CDCl₃): δ 8.21 (dd, J = 8.6, 2.2 Hz, 1H), 8.06 (d, J = 2.1 Hz, 1H), 6.91 (d, J = 8.6 Hz, 1H), 3.26 (s, 3H), 1.39 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.3, 148.4, 143.5, 136.5, 125.2, 118.3, 107.7, 44.2, 26.7, 24.2.

1,3,3,5-Tetramethylindolin-2-one (**2i**):^{S7} Yellow oil (96% yield). ¹H NMR (300 MHz, CDCl₃): *δ* 7.04–7.01 (m, 2H), 6.71 (d, *J* = 7.7 Hz, 1H), 3.17 (s, 3H), 2.33 (s, 3H), 1.34 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): *δ* 181.2, 140.1, 135.7, 131.8, 127.8, 123.0, 107.7, 44.1, 26.1, 24.3, 21.0.

1,3,3-Trimethyl-5-(propan-2-yl)indolin-2-one (**2j**):^{S7} White solid (98% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.11 (d, J = 8.0 Hz, 1H), 7.08 (s, 1H), 6.76 (d, J = 7.9 Hz, 1H), 3.19 (s, 3H), 2.90 (hept, J = 6.9 Hz, 1H), 1.36 (s, 6H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.4, 143.4, 140.6, 135.9, 125.3, 120.5, 107.8, 44.3, 34.0, 26.2, 24.5, 24.4.

5-(*tert-Butyl*)-1,3,3-trimethylindolin-2-one (**2k**):^{S7} White solid (96% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.29 (d, J = 8.1 Hz, 1H), 7.25 (s, 1H), 6.78 (d, J = 8.1 Hz, 1H), 3.20 (s, 3H), 1.38 (s, 6H), 1.33 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 181.5, 145.7, 140.3, 135.5, 124.2, 119.4, 107.4, 44.4, 34.6, 31.7, 26.2, 24.5.

1,3,3-Trimethyl-5-phenylindolin-2-one (**2l**):^{S7} Yellow oil (91% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.59 (d, J = 7.3 Hz, 2H), 7.52–7.42 (m, 4H), 7.34 (t, J = 7.3 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 3.26 (s, 3H), 1.44 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.4, 142.1, 141.1, 136.4, 136.0, 128.8, 127.0, 126.9, 126.6, 121.3, 108.3, 44.4, 26.3, 24.5.

1,3,3-Trimethyl-5-(methylthio)indolin-2-one (**2m**):^{S9} Colorless oil (90% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.21–7.16 (m, 2H), 6.75 (d, J = 8.0 Hz, 1H), 3.16 (s, 3H), 2.44 (s, 3H), 1.33 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 180.9, 141.0, 136.7, 131.3, 127.9, 123.1, 108.5, 44.3, 26.3, 24.3, 17.9.

5-Methoxy-1,3,3-trimethylindolin-2-one (**2n**):^{S7} Colorless oil (78% yield). ¹H NMR (300 MHz, CDCl₃): δ 6.80 (m, 1H), 6.77–6.70 (m, 2H), 3.77 (s, 3H), 3.16 (s, 3H), 1.33 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.0, 156.1, 137.2, 136.2, 111.6, 110.1, 108.3, 55.8, 44.6, 26.3, 24.4.

5-(*Dimethylamino*)-1,3,3-trimethylindolin-2-one (**2o**):^{S10} Yellow oil (74% yield). ¹H NMR (300 MHz, CDCl₃): δ 6.75–6.72 (m, 2H), 6.65 (dd, *J* = 8.5, 2.4 Hz, 1H), 3.18 (s, 3H), 2.91 (s, 6H), 1.36 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.1, 147.8, 137.0, 133.9, 112.0, 109.3, 108.4, 44.8, 41.9, 26.3, 24.7.

4-Bromo-1,3,3-trimethylindolin-2-one (**2p**):^{S9} Colorless oil (77% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.16–7.08 (m, 2H), 6.77 (d, *J* = 7.0 Hz, 1H), 3.19 (s, 3H), 1.50 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 180.8, 144.7, 133.3, 129.2, 126.8, 118.8, 107.1, 46.5, 26.5, 21.4.

6-*Methoxy*-1,3,3-*trimethylindolin*-2-*one* (**2q**): Colorless oil (47% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.08 (d, J = 8.1 Hz, 1H), 6.55 (dd, J = 8.1, 2.3 Hz, 1H), 6.43 (d, J = 2.3 Hz, 1H), 3.82 (s, 3H), 3.18 (s, 3H), 1.34 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 182.1, 160.0, 144.0, 128.0, 122.8, 106.2, 96.3, 55.7, 43.8, 26.3, 24.7. HRMS calcd for C₁₂H₁₆NO₂: 206.1181 [M+H]⁺, found: 206.1181.

Methyl 1,3,3-*trimethyl*-2-*oxoindoline*-6-*carboxylate* (**2r**): Colorless oil (41% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.79 (dd, J = 7.7, 1.4 Hz, 1H), 7.49 (d, J = 1.2 Hz, 1H), 7.26 (d, J = 7.7 Hz, 1H), 3.93 (s, 3H), 3.25 (s, 3H), 1.38 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.1, 167.0, 143.1, 141.2, 130.0, 124.6, 122.2, 108.8, 52.4, 44.5, 26.5, 24.3. HRMS calcd for C₁₃H₁₆NO₃: 234.1130 [M+H]⁺, found: 234.1130.

4-*Fluoro-1,3,3-trimethylindolin-2-one* (**2s**, α isomer) and 6-*Fluoro-1,3,3-trimethylindolin-2-one* (**2s**, β isomer):^{S11} White solid (95% yield in total, α : β = 1.8:1). ¹H NMR (300 MHz, CDCl₃): δ 7.23–7.16 (m, 1.8H, α), 7.09 (dd, *J* = 8.1, 5.3 Hz, 1H, β), 6.72–6.66 (m, 2.8H, $\alpha + \beta$), 6.62 (d, *J* = 7.8 Hz, 1.8H, α), 6.55 (dd, *J* = 8.9, 2.3 Hz, 1H, β), 3.18 (s, 5.5H, α), 3.16 (s, 3H, β), 1.43 (s, 11H, α), 1.32 (s, 6H, β). ¹³C NMR (75 MHz, CDCl₃): δ 181.6, 180.7, 162.8 (d, ¹*J*_{CF} = 243.9 Hz), 159.0 (d, ¹*J*_{CF} = 246.9 Hz), 144.8 (d, ³*J*_{CF} = 10.3 Hz), 144.1 (d, ³*J*_{CF} = 11.5 Hz), 131.1 (d, ⁴*J*_{CF} = 2.9 Hz), 129.3 (d, ³*J*_{CF} = 8.6 Hz), 123.1 (d, ³*J*_{CF} = 9.7 Hz), 120.8 (d, ²*J*_{CF} = 20.0 Hz), 110.2 (d, ²*J*_{CF} = 21.1 Hz), 108.3 (d, ²*J*_{CF} = 22.3 Hz), 104.2 (d, ⁴*J*_{CF} = 3.1 Hz), 96.9 (d, ²*J*_{CF} = 27.5 Hz), 44.2 (d, ³*J*_{CF} = 2.0 Hz), 43.9, 26.6, 26.3, 24.5, 22.8. ¹⁹F NMR (282 MHz, CDCl₃): δ –113.2, –121.9.

1,3,3,4-Tetramethylindolin-2-one (**2t**, α isomer) and 1,3,3,6-Tetramethylindolin-2-one (**2t**, β isomer):^{S9} Yellow solid (69% yield in total, α:β = 2.3:1). ¹H NMR (300 MHz, CDCl₃): δ 7.15 (t, *J* = 7.8 Hz, 2.3H, α), 7.07 (d, *J* = 7.5 Hz, 1H, β), 6.86 (d, *J* = 7.6 Hz, 1H, β), 6.82 (d, *J* = 7.8 Hz, 2.3H, α), 6.72–6.65 (m, 3.2H, α + β), 3.19 (s, 10.1H, α + β), 2.39 (s, 6.9H, α), 2.38 (s, 3H, β), 1.44 (s, 13.8H, α), 1.34 (s, 6H, β). ¹³C NMR (75 MHz, CDCl₃): δ 181.7, 181.4, 142.9, 142.7, 137.7, 134.0, 133.0, 132.6, 127.5, 125.0, 122.9, 122.0, 109.0, 105.8, 45.0, 44.0, 26.3, 26.2, 24.5, 22.4, 21.8, 18.1.

4-(*tert-Butyl*)-1,3,3-*trimethylindolin-2-one* (**2u**, α isomer) and 6-(*tert-Butyl*)-1,3,3-*trimethylindolin-2-one* (**2u**, β isomer): Colorless oil (95% yield in total, α : β = 1:2.7). ¹H NMR (300 MHz, CDCl₃): δ 7.23 (d, J = 4.4 Hz, 2H, α), 7.12 (d, J = 7.7 Hz, 2.8H, α), 7.07 (dd, J = 7.8, 1.6 Hz, 2.7H, β), 6.86 (d, J = 1.3 Hz, 2.7H, β), 6.76 (t, J = 4.4 Hz, 1H, α), 3.22 (s, 8.1H, β), 3.21 (s, 3H, α), 1.58 (s, 6H, α), 1.46 (s, 9H, α), 1.35 (s, 16.8H, β), 1.34 (s, 23.2H, β). ¹³C NMR (75 MHz, CDCl₃): δ 181.8, 181.7, 151.3, 148.8, 144.2, 142.6, 133.0, 132.2, 127.7, 122.5, 121.8, 119.3, 106.9, 105.4, 46.8, 44.0, 36.8, 35.0, 33.3, 31.6, 26.7, 26.2, 25.6, 24.5. HRMS calcd for C₁₅H₂₂NO: 232.1701 [M+H]⁺, found: 232.1702.

1,3,3,7-Tetramethylindolin-2-one (**2v**):^{S1} Colorless oil (96% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.05–7.01 (m, 1H), 6.97–6.90 (m, 2H), 3.48 (s, 3H), 2.56 (s, 3H), 1.33 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 182.0, 140.3, 136.4, 131.3, 122.4, 120.2, 119.6, 43.4, 29.5, 24.7, 19.0.

1,3,3-Trimethyl-7-phenylindolin-2-one (**2w**):^{S7} Yellow solid (80% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.43–7.34 (m, 5H), 7.21 (dd, J = 6.0, 2.7 Hz, 1H), 7.10–7.03 (m, 2H), 2.75 (s, 3H), 1.42 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 182.4, 139.6, 139.1, 136.9, 130.7, 130.0, 127.8, 127.6, 125.5, 121.8, 121.4, 43.5, 30.2, 24.9.

7-*Chloro-1,3,3-trimethylindolin-2-one* (**2x**):^{S1} Colorless oil (96% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.11 (d, J = 8.1 Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 6.90 (t, J = 7.7 Hz, 1H), 3.53 (s, 3H), 1.31 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.3, 138.5, 138.4, 129.8, 123.2, 120.7, 115.3, 43.8, 29.4, 24.5.

7-Bromo-1,3,3-trimethylindolin-2-one (**2y**):^{S1} Colorless oil (96% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.31 (dd, J = 8.2, 1.1 Hz, 1H), 7.08 (dd, J = 7.3, 1.1 Hz, 1H), 6.88–6.83 (m, 1H), 3.55 (s, 3H), 1.32 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.6, 140.0, 138.9, 133.3, 123.7, 121.4, 102.4, 43.9, 29.8, 24.7.

1-Ethyl-3,3-dimethylindolin-2-one (**2z**):^{S7} Yellow oil (87% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.27–7.19 (m, 2H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 3.77 (q, *J* = 7.2 Hz, 2H), 1.36 (s, 6H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 180.9, 141.6, 136.0, 127.6, 122.4, 122.2, 108.2, 44.0, 34.5, 24.3, 12.7.

1-Isopropyl-3,3-dimethylindolin-2-one (**2aa**):^{S7} Yellow oil (90% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.24–7.19 (m, 2H), 7.05–7.00 (m, 2H), 4.65 (hept, J = 7.0 Hz, 1H), 1.47 (d, J = 7.0 Hz, 6H), 1.34 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.0, 141.2, 136.4, 127.4, 122.5, 121.9, 109.9, 43.8, 43.5, 24.5, 19.4.

1-Butyl-3,3-dimethylindolin-2-one (**2ab**):^{S9} Yellow oil (94% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.23–7.17 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.69 (t, J = 7.2 Hz, 2H), 1.64 (quint, J = 7.4 Hz, 2H), 1.40–1.30 (m, 8H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 181.0, 141.9, 135.8, 127.4, 122.2, 122.1, 108.2, 43.9, 39.4, 29.4, 24.3, 19.9, 13.6.

1-Benzyl-3,3-dimethylindolin-2-one (**2ac**):^{S7} White solid (77% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.19 (m, 6H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 6.71 (d, *J* = 7.7 Hz, 1H), 4.91 (s, 2H), 1.43 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.4, 141.7, 136.1, 135.8, 128.8, 127.6, 127.5, 127.2, 122.5, 122.3, 109.1, 44.2, 43.5, 24.6.

3,3-Dimethyl-1-phenylindolin-2-one (**2ad**):^{S7} White solid (89% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.53–7.47 (m, 2H), 7.43–7.33 (m, 3H), 7.26 (d, *J* = 7.0 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.07 (t, *J* = 7.3 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 1.48 (s, 6H). ¹³C

NMR (75 MHz, CDCl₃): δ 180.6, 142.4, 135.6, 134.6, 129.5, 127.8, 127.5, 126.5, 122.9, 122.6, 109.3, 44.3, 24.8.

1-Cyclohexyl-3,3-dimethylindolin-2-one (**2ae**):^{S9} Yellow solid (90% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.21–7.15 (m, 2H), 7.05–6.95 (m, 2H), 4.21–4.12 (m, 1H), 2.14 (qd, J = 12.5, 3.2 Hz, 2H), 1.86 (d, J = 13.2 Hz, 2H), 1.77–1.70 (m, 2H), 1.46–1.19 (m, 4H), 1.32 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 181.0, 141.5, 136.2, 127.2, 122.3, 121.7, 109.9, 51.7, 43.6, 29.1, 25.9, 25.3, 24.4.

1,1-Dimethyl-5,6-dihydro-4H-pyrrolo[*3,2,1-ij*]*quinolin-2(1H)-one* (**2ag**):^{S6} Yellow solid (80% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.04–6.99 (m, 2H), 6.95–6.90 (m, 1H), 3.71 (t, *J* = 5.7 Hz, 2H), 2.78 (t, *J* = 5.9 Hz, 2H), 2.00 (quint, *J* = 5.8 Hz, 2H), 1.36 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 180.2, 138.4, 134.3, 126.4, 121.9, 120.1, 120.0, 45.5, 38.8, 24.6, 24.2, 21.2.

3-Ethyl-1,3-dimethylindolin-2-one (**2ah**):^{S9} Yellow oil (89% Yield). ¹H NMR (300 MHz, CDCl₃): δ 7.26 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 6.5 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 3.21 (s, 3H), 1.99–1.87 (m, 1H), 1.83–1.71 (m, 1H), 1.35 (s, 3H), 0.59 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 180.7, 143.5, 133.9, 127.6, 122.5, 122.4, 107.8, 48.9, 31.5, 26.0, 23.3, 8.8.

1'-Methylspiro[cyclobutane-1,3'-indolin]-2'-one (**2ai**):^{S9} Colorless oil (72% Yield). ¹H NMR (300 MHz, CDCl₃): δ 7.50 (d, J = 7.3 Hz, 1H), 7.25 (td, J = 7.7, 1.3 Hz, 1H), 7.09 (td, J = 7.6, 0.9 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 3.17 (s, 3H), 2.71–2.61 (m, 2H), 2.42–2.19 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ 180.1, 142.9, 134.3, 127.8, 122.5, 122.2, 107.6, 48.1, 31.3, 26.1, 16.8.

l'-Methylspiro[cyclopentane-1,3'-indolin]-2'-one (**2aj**):⁸⁹ Colorless oil (75% Yield). ¹H NMR (300 MHz, CDCl₃): δ 7.26–7.18 (m, 2H), 7.06–7.01 (m, 1H), 6.81 (d, J = 7.7 Hz, 1H), 3.20 (s, 3H), 2.17–1.94 (m, 6H), 1.86–1.78 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 181.9, 142.9, 136.8, 127.3, 122.5, 122.2, 107.7, 53.9, 38.3, 26.6, 26.2.

Ethyl 1,3-dimethyl-2-oxoindoline-3-carboxylate (**2ak**):^{S12} Colorless oil (35% Yield). ¹H NMR (300 MHz, CDCl₃): δ 7.32 (td, J = 7.7, 1.2 Hz, 1H), 7.28–7.23 (m, 1H), 7.07 (td, J = 7.6, 0.9 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 4.13 (q, J = 7.1 Hz, 2H), 3.26 (s, 3H), 1.66 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 175.4, 169.9, 143.7, 130.4, 129.1, 123.1, 123.0, 108.5, 62.1, 55.2, 26.7, 20.3, 14.0.

1,3-Dihydro-1,3,3-trimethyl-2H-pyrrolo[*3,2-c*]*pyridin-2-one* (**2al**):^{S9} Yellow oil (84% Yield). ¹H NMR (300 MHz, CDCl₃): δ 8.19 (dd, J = 5.1, 1.4 Hz, 1H), 7.15 (dd, J = 7.9, 5.1 Hz, 1H), 7.06 (dd, J = 7.9, 1.3 Hz, 1H), 3.21 (s, 3H), 1.41 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 180.0, 156.3, 142.8, 137.7, 122.6, 114.2, 44.7, 26.0, 22.6.

Mechanistic Investigations

Vendor	Self made	Energy Chemical	J&K	TCI
Yield (%)	96	90	95	84
purity	_	98%	98%	99.0%
photo				

 Table S1 Isolated yields of 2a for the PQ-catalyzed intramolecular cyclization with catalysts purchased from various vendors

PQ-catalyzed reaction performed in the dark

To a solution of **1a** (0.3 mmol, 0.0768 g) and PQ (0.62 mg, 1 mol%) in dry 1,4-dioxane (2 mL) at 100 °C under a nitrogen atmosphere was added K_2CO_3 (0.3 mmol, 0.0415 g) and stirred for 24 h. Upon completion, oxindole **2a** was detected by ¹H NMR in a 97% yield with 1,3,5-trimethoxybenzene as an internal standard.

Heck-type cyclization reaction

To a solution of $3a^{S7}$ (0.3 mmol, 0.0526 g) and PQ (0.62 mg, 1 mol%) in dry 1,4-dioxane (2 mL) at 100 °C under a nitrogen atmosphere was added K₂CO₃ (0.3 mmol, 0.0415 g) and stirred for 24 h. Upon completion, no desired product of **2a** was detected by ¹H NMR.

Radical trapping experiment with TEMPO

To a solution of **1a** (0.3 mmol, 0.0768 g), TEMPO (46.9 mg, 1 equiv) and PQ (0.62 mg, 1 mol%) in dry 1,4-dioxane (2 mL) at 100 °C under a nitrogen atmosphere was added K_2CO_3 (0.3 mmol, 0.0415 g) and stirred for 24 h. Upon completion, only a minimal amount of oxindole **2a** (5%) was detected by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard.

Radical trapping experiment with 1,1-diphenylethylene

To a solution of **1a** (0.3 mmol, 0.0768 g), 1,1-diphenylethylene (54.1 mg, 1 equiv) and PQ (0.62 mg, 1 mol%) in dry 1,4-dioxane (2 mL) at 100 °C under a nitrogen atmosphere was added K_2CO_3 (0.3 mmol, 0.0415 g) and stirred for 24 h. Upon completion, only trace amount of oxindole **2a** (1%) was detected by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard.

Using N-allyl substrate 1ag for PQ-catalyzed cyclization

To a solution of α -bromoanilide **1am** (0.3 mmol, 0.0847 g) and PQ (0.62 mg, 1 mol%) in dry 1,4-dioxane (2 mL) at 100 °C under a nitrogen atmosphere was added K₂CO₃ (0.3 mmol, 0.0415 g) and stirred for 24 h. Upon completion, the residue was

purified by flash chromatography on silica gel (petroleum ether/EtOAc = 20:1 as the eluent) to afford the products **2am'** and **2am''** in 41% and 45% yield, respectively.

3,3,4-Trimethyl-1-phenyl-2-pyrrolidinone (**2ag**):^{S9} white solid (41% yield). ¹H NMR (CDCl₃, 300 MHz): δ 7.65 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 8.0 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H), 3.78 (dd, J = 9.4, 7.6 Hz, 1H), 3.38 (t, J = 9.3 Hz, 1H), 2.25–2.16 (m, 1H), 1.22 (s, 3H), 1.09 (d, J = 6.9 Hz, 3H), 1.03 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 179.4, 139.9, 128.9, 124.3, 119.7, 52.4, 44.8, 37.8, 23.8, 18.5, 12.5.

5-Bromo-3,3-dimethyl-1-phenyl-2-piperidinone (**2ag'**):^{S9} white solid (45% yield). ¹H NMR (CDCl₃, 300 MHz): δ 7.64 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 3.99 (dd, J = 9.9, 7.6 Hz, 1H), 3.60–3.53 (m, 2H), 3.39 (t, J = 10.5 Hz, 1H), 2.62–2.54 (m, 1H), 1.32 (s, 3H), 1.09 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 177.7, 139.4, 129.0, 124.7, 119.8, 50.6, 45.5, 45.3, 31.3, 24.5, 18.6.

NMR Spectra of Oxindole Products

Fig. S2 ¹³C NMR spectrum of 2a in CDCl₃.

Fig. S3 ¹H NMR spectrum of 2b in CDCl₃.

Fig. S4 ¹³C NMR spectrum of 2b in CDCl₃.

Fig. S5 ¹⁹F NMR spectrum of 2b in CDCl₃.

Fig. S6 ¹H NMR spectrum of 2c in CDCl₃.

Fig. S8 ¹H NMR spectrum of 2d in CDCl₃.

Fig. S9 ¹³C NMR spectrum of 2d in CDCl₃.

Fig. S10 ¹H NMR spectrum of 2e in CDCl₃.

Fig. S11 ¹³C NMR spectrum of 2e in CDCl₃.

Fig. S12 ¹⁹F NMR spectrum of 2e in CDCl₃.

Fig. S14 ¹³C NMR spectrum of 2f in CDCl₃.

Fig. S15 ¹H NMR spectrum of 2g in CDCl₃.

Fig. S16¹³C NMR spectrum of 2g in CDCl₃.

Fig. S17 ¹H NMR spectrum of 2h in CDCl₃.

Fig. S18¹³C NMR spectrum of 2h in CDCl₃.

Fig. S19 ¹H NMR spectrum of 2i in CDCl₃.

Fig. S20¹³C NMR spectrum of 2i in CDCl₃.

Fig. S21 ¹H NMR spectrum of 2j in CDCl₃.

Fig. S22 ¹³C NMR spectrum of 2j in CDCl₃.

Fig. S23 ¹H NMR spectrum of 2k in CDCl₃.

Fig. S24 ¹³C NMR spectrum of 2k in CDCl₃.

Fig. S25 ¹H NMR spectrum of 2l in CDCl₃.

Fig. S26¹³C NMR spectrum of 2l in CDCl₃.

Fig. S27 ¹H NMR spectrum of 2m in CDCl₃.

Fig. S28 ¹³C NMR spectrum of 2m in CDCl₃.

Fig. S29 ¹H NMR spectrum of 2n in CDCl₃.

Fig. S30 ¹³C NMR spectrum of 2n in CDCl₃.

Fig. S31 ¹H NMR spectrum of 20 in CDCl₃.

Fig. S32 ¹³C NMR spectrum of 20 in CDCl₃.

Fig. S33 ¹H NMR spectrum of 2p in CDCl₃ (asterisk denotes impurity).

Fig. S34 ¹³C NMR spectrum of 2p in CDCl₃.

Fig. S35 ¹H NMR spectrum of 2q in CDCl₃.

Fig. S36 ¹³C NMR spectrum of 2q in CDCl₃.

Fig. S37 ¹H NMR spectrum of 2r in CDCl₃.

Fig. S38 ¹³C NMR spectrum of 2r in CDCl₃.

Fig. S39 ¹H NMR spectrum of 2s in CDCl₃.

Fig. S40 ¹³C NMR spectrum of 2s in CDCl₃.

Fig. S41 ¹⁹F NMR spectrum of 2s in CDCl₃.

Fig. S42 ¹H NMR spectrum of 2t in CDCl₃.

Fig. S43 ¹³C NMR spectrum of 2t in CDCl₃.

Fig. S44 ¹H NMR spectrum of 2u in CDCl₃.

Fig. S45 ¹³C NMR spectrum of 2u in CDCl₃.

Fig. S46 ¹H NMR spectrum of 2v in CDCl₃.

Fig. S47 ¹³C NMR spectrum of 2v in CDCl₃.

Fig. S48 ¹H NMR spectrum of 2w in CDCl₃.

Fig. S49 ¹³C NMR spectrum of 2w in CDCl₃.

Fig. S50 ¹H NMR spectrum of 2x in CDCl₃.

Fig. S51 ¹³C NMR spectrum of 2x in CDCl₃.

Fig. S52 ¹H NMR spectrum of 2y in CDCl₃.

Fig. S53 ¹³C NMR spectrum of 2y in CDCl₃.

Fig. S54 ¹H NMR spectrum of 2z in CDCl₃.

Fig. S55 ¹³C NMR spectrum of 2z in CDCl₃.

Fig. S56 ¹H NMR spectrum of 2aa in CDCl₃.

Fig. S57 ¹³C NMR spectrum of 2aa in CDCl₃.

Fig. S58 ¹H NMR spectrum of 2ab in CDCl₃.

Fig. S59 ¹³C NMR spectrum of 2ab in CDCl₃.

Fig. S60 ¹H NMR spectrum of 2ac in CDCl₃.

Fig. S61 ¹³C NMR spectrum of 2ac in CDCl₃.

Fig. S62 ¹H NMR spectrum of 2ad in CDCl₃.

Fig. S63 ¹³C NMR spectrum of 2ad in CDCl₃.

Fig. S64 ¹H NMR spectrum of 2ae in CDCl₃.

Fig. S65 ¹³C NMR spectrum of 2ae in CDCl₃.

Fig. S66 ¹H NMR spectrum of 2ag in CDCl₃.

Fig. S67 ¹³C NMR spectrum of 2ag in CDCl₃.

Fig. S68 ¹H NMR spectrum of 2ah in CDCl₃.

Fig. S69 ¹³C NMR spectrum of 2ah in CDCl₃.

Fig. S70 ¹H NMR spectrum of 2ai in CDCl₃.

Fig. S71 ¹³C NMR spectrum of 2ai in CDCl₃.

Fig. S72 ¹H NMR spectrum of 2aj in CDCl₃.

Fig. S73 ¹³C NMR spectrum of 2aj in CDCl₃.

Fig. S74 ¹H NMR spectrum of 2ak in CDCl₃.

Fig. S75 ¹³C NMR spectrum of 2ak in CDCl₃.

Fig. S76 ¹H NMR spectrum of 2al in CDCl₃.

Fig. S77 ¹³C NMR spectrum of 2al in CDCl₃.

References

(S1) C.-P. Chuang, Y.-Y. Chen, T.-H. Chuang and C.-H. Yang, Copper-Salt-Promoted Carbocyclization Reactions of α -Bromo-N-Arylacylamides, *Synthesis*, 2016, **49**, 1273–1284.

(S2) M. J. Black, K. F. Biegasiewicz, A. J. Meichan, D. G. Oblinsky, B. Kudisch, G. D. Scholes and T. K. Hyster, Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent 'ene'-reductases, *Nat. Chem.*, 2020, **12**, 71–75.

(S3) H. Hope, In *Progress in Inorganic Chemistry*; K. D. Karlin, Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp 1–19.

(S4) CrysAlis Pro, Version 1.171.39.28b; Rigaku Oxford Diffraction: Oxford, UK, 2015.

(S5) G. M. Sheldrick, Crystal Structure Refinement with SHELXL, *Acta Crystallogr C Struct Chem.*, 2015, **71**, 3–8.

(S6) D. Kawauchi, K. Noda, Y. Komatsu, K. Yoshida, H. Ueda and H. Tokuyama, Aerobic Dehydrogenation of *N*-Heterocycles with Grubbs Catalyst: Its Application to Assisted-Tandem Catalysis to Construct *N*-Containing Fused Heteroarenes, *Chem. – Eur. J.*, 2020, **26**, 15793–15798.

(S7) K. Lu, X.-W. Han, W.-W. Yao, Y.-X. Luan, Y.-X. Wang, H. Chen, X.-T. Xu, K. Zhang and M. Ye, DMF-Promoted Redox-Neutral Ni-Catalyzed Intramolecular Hydroarylation of Alkene with Simple Arene, *ACS Catal.*, 2018, **8**, 3913–3917.

(S8) J.-Q. Chen, Y.-L. Wei, G.-Q. Xu, Y.-M. Liang and P.-F. Xu, Intramolecular 1,5-H Transfer Reaction of Aryl Iodides through Visible-Light Photoredox Catalysis: A Concise Method for the Synthesis of Natural Product Scaffolds, *Chem. Commun.*, 2016, **52**, 6455–6458.

(S9) C. Wang and L. Liu, NHC-Catalyzed Oxindole Synthesis *via* Single Electron Transfer, *Org. Chem. Front.*, 2021, **8**, 1454–1460.

(S10) C. Liu, D. Liu, W. Zhang, L. Zhou, A. Lei, Nickel-Catalyzed Aromatic C–H Alkylation with Secondary or Tertiary Alkyl–Bromine Bonds for the Construction of Indolones, *Org. Lett.*, 2013, **15**, 6166–6169.

(S11) P. Kilaru, S. P. Acharya and P. Zhao, A Tethering Directing Group Strategy for Ruthenium-Catalyzed Intramolecular Alkene Hydroarylation, *Chem. Commun.*, 2018, **54**, 924–927.

(S12) J. Zhao, X. Song, D. Li, J. Zhao, J. Qu and Y. Zhou, Intramolecular Dehydrogenative Coupling Approach to 2-Oxindoles Using Fe(OAc)₂/NaI/Na₂S₂O₈, *Eur. J. Org. Chem.*, 2020, **2020**, 6392–6398.