Supporting Information

Visible-Light-Initiated Catalyst-Free Trifluoromethylselenolation of Arylsulfonium Salts with [Me₄N][SeCF₃]

Ze-Yu Tian, Cheng-Pan Zhang*

School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.

E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com. ORCID for Cheng-Pan Zhang: 0000-0002-2803-4611.

Table of contents

1. General information	S2
2. The light source and equipments of the reaction	S2
3. Screening of optimal reaction conditions for the trifluoromethylselenolation of	f
arylsulfonium salt (1a) with [Me4N][SeCF3]	S3
4. The UV-vis absorption spectra of the mixtures of arylsulfonium salts and	
[Me ₄ N][SeCF ₃]	S7
5. The CV experiments	S12
6. The NMR spectra of the mixtures of arylsulfonium salt and [Me ₄ N][SeCF ₃] in	1
acetonitrile	S15
7. The light on-off experiment	S21
8. Measurement of the quantum yield	S22
9. The control experiments for mechanistic insights	S23
10. Procedures for the synthesis of arylsulfonium salts	S26
11. General procedures for the trifluoromethylselenolation of arylsulfonoium sal	ts
with [Me ₄ N][SeCF ₃]	S58
12. An example of the scale-up C-H trifluoromethylselenolation	S74
13. Experiments for the catalyst-free trifluoromethylthiolation of arylsulfonium	salt
with [Me ₄ N][SCF ₃]	S75
14. NMR spectra of the products	S78

1. General information

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl₃, CD₃CN, or acetone-d₆ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), 126 MHz (for ¹³C), and 114 MHz (for ⁷⁷Se) spectroscopy. All chemical shifts were reported in ppm relative to TMS (0 ppm for ¹H NMR), PhOCF₃ (-58.0 ppm for ¹⁹F NMR), or PhSeBr (880.5 ppm for ⁷⁷Se NMR) as an internal or external standard. The HPLC experiments were carried out on a Wufeng LC-100 II instrument (column: Shodex, C18, 5 μ m, 4.6 \times 250 mm), and the yields of product were determined by using the corresponding pure compound as an external standard. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = doublettriplet, q = quartet, m = multiplet, brs = broad singlet. Melting points were measured and uncorrected. MS experiments were performed on a TOF-Q ESI or EI instrument. Thianthrene 5-oxide $(TTO)^1$, 2,3,7,8-tetrafluorothianthrene 5-oxide $(TFTO)^1$, dibenzo[b,d]thiophene 5-oxide (DBTO)², 3,7-di-*tert*-butyldibenzo[b,d]thiophene 5-oxide $(2TB-DBTO)^2$, and arylsulfonium salts $1a^3$ and $1h^4$ were prepared according to the literature. Solvents were dried before use according to the literature.⁵ Other reagents in the reactions were all purchased from the commercial sources and used without further purification.

2. The light source and equipments of the reaction

The reaction vial was parallel to a blank vial that was only equipped with solvent and a thermometer to monitor the temperature (left) The vials were placed in a cooler to keep the reaction temperature at around 0 °C and

were irradiated with the blue LED (5 W) (right).

3. Screening of optimal reaction conditions for the trifluoromethylselenolation of arylsulfonium salt (1a) with [Me₄N][SeCF₃]

NC 1a 0.10 mmc	+ [Me ₄ N][SeCF ₃] TTOTf 2 0.12 mmol	MeCN (1.0 mL) w/o blue LED (5 W) <i>Temp.</i> , N ₂ , time	NC 3a SeCF ₃
Entry ^a	Temp.	Time (h)	3a (Yield, %)
1	r.t.	5	trace
2	40 °C	5	trace
3	60 °C	5	trace
4 ^b	r.t.	24	trace

Table S1. Reactions of **1a** and [Me₄N][SeCF₃] without light irradiation.

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.12 mmol), MeCN (1.0 mL), N₂. Yields of **3a** were determined by HPLC ($\lambda = 250$ nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**, t_R = 7.8 min) as an external standard. ^b **1a** (0.10 mmol), **2** (0.16 mmol), MeCN (1 mL), N₂.

Table S2. Blue-LED-irradiated trifluoromethylselenolation of **1a** with [Me₄N][SeCF₃] in different solvents at room temperature.

1	MeCN	62	8
2 ^b	MeCN	62	7
3	acetone	66	16
4	DMF	34	51
5	DMSO	9	<1
6	PhCF ₃	53	trace
7	PhCl	50	3

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.20 mmol), solvent (1.0 mL), blue LED (5 W), room temperature, N₂, 12 h. Yields of **3a** and **4a** were determined by HPLC (λ = 250 nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl)-phenoxy)benzonitrile (**3a**, t_R = 7.8 min) and 4-phenoxybenzonitrile (**4a**, t_R = 5.5 min) as external standards. ^b Purple LED (5 W) was used instead of blue LED (5 W).

Table S3. Blue-LED-irradiated trifluoromethylselenolation of **1a** with [Me₄N][SeCF₃] in MeCN at room temperature with different concentrations.

NC 1a 0.10 mmol	← [Me₄N][SeCF₃] TTOTf 2 0.20 mmol	blue LED (5 W) MeCN (x mL) r.t., N ₂ , 12 h	4a
Entry ^a	Concentration (M)	3a (Yield, %)	4a (Yield, %)
1	0.4	57	trace
2	0.2	65	1
3	0.1	62	8
4	0.067	51	4
5 ^b	0.4	66	9
6 ^b	0.2	66	12

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.20 mmol), MeCN (0.25, 0.5, 1.0, or 1.5 mL), blue LED (5 W), room temperature, N₂, 12 h. Yields of **3a** and **4a** were determined by HPLC ($\lambda = 250$ nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**, t_R = 7.8 min) and 4-phenoxy-benzonitrile (**4a**, t_R = 5.5 min) as external standards. ^b Acetone (0.25 or 0.5 mL) was used as the solvent.

Table S4. Blue-LED-irradiated trifluoromethylselenolation of **1a** with [Me₄N][SeCF₃] at room temperature within different times.

NC 1a 0.10 mmol	+ [Me₄N][SeCF ₃] TTOTf 2 0.20 mmol	blue LED (5 W) MeCN (0.2 M) r.t., N ₂ , time	3a SeCF ₃ + 4a H
Entry ^a	Time (h)	3a (Yield, %)	4a (Yield, %)
1	4	48	< 1
2	6	64	1
3	8	63	1
4	12	65	1

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.20 mmol), MeCN (0.5 mL), blue LED (5 W), room temperature, N₂. Yields of **3a** and **4a** were determined by HPLC (λ = 250 nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl) phenoxy)benzonitrile (**3a**, t_R = 7.8 min) and 4-phenoxybenzonitrile (**4a**, t_R = 5.5 min) as external standards.

Table S5. Blue-LED-irradiated trifluoromethylselenolation of **1a** with [Me₄N][SeCF₃] at room temperature with different reactant ratios.

NC 1a x mmol	+ [Me ₄ N][SeCF ₃] TTOTf 2 y mmol	blue LED (5 W) MeCN (0.2 M) r.t., N ₂ , 6 h NC	4a
Entry ^a	Ratio (x : y)	3a (Yield, %)	4a (Yield, %)
1	1:1	50	7
2	1:1.2	59	4
3	1:1.4	62	4
4	1:1.6	64	3
5	1:1.8	60	3
6	1:2	64	1
7	1:2.4	67	< 1

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.10, 0.12, 0.14, 0.16, 0.18, 0.20, or 0.24

mmol), MeCN (0.5 mL), blue LED (5 W), room temperature, N₂, 6 h. Yields of **3a** and **4a** were determined by HPLC (λ = 250 nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**, t_R = 7.8 min) and 4-phenoxybenzonitrile (**4a**, t_R = 5.5 min) as external standards.

Table S6. Blue-LED-irradiated trifluoromethylselenolation of **1a** with [Me₄N][SeCF₃] at different temperatures.

NC 1a 0.10 mmol	+ [Me₄N][SeCF₃] · TTOTf 2 0.16 mmol	blue LED (5 W) MeCN (0.2 M) <i>Temp.</i> , N ₂ , 6 h	4a
Entry ^a	Temp.	3a (Yield, %)	4a (Yield, %)
1	0 °C	42	< 1
2	r.t.	64	3
3	50 °C	50	6

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.16 mmol), MeCN (0.5 mL), blue LED (5 W), 0 °C or room temperature or 50 °C, N₂, 6 h. Yields of **3a** and **4a** were determined by HPLC ($\lambda = 250$ nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**, t_R = 7.8 min) and 4-phenoxybenzonitrile (**4a**, t_R = 5.5 min) as external standards.

Table S7. Trifluoromethylselenolation of **1a** with [Me₄N][SeCF₃] under different light irradiation.

NC 0.10	1a mmol + [Me ₄ N][SeCF ₃] + [Me ₄ N][SeCF ₃] + 2 0 mmol + [Me ₄ N][SeCF ₃] + [Me ₄ N][SeCF ₃] + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	light source MeCN (0.2 M) r.t., N ₂ , 6 h	3a + 4a H
Entry ^a	Light source	3a (Yield, %)	4a (Yield, %)
1	blue LED (5 W)	64	3
2	purple LED (5 W)	64	4
3	green LED (5 W)	44	4
4	380-385 nm LED (50 W)	65	5

5 ^b 380-385 nm LED (50 W) 63 4	
---	--

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.16 mmol), MeCN (0.5 mL), light source, room temperature, N₂, 6 h. Yields of **3a** and **4a** were determined by HPLC ($\lambda = 250$ nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl) phenoxy)benzonitrile (**3a**, t_R = 7.8 min) and 4-phenoxybenzonitrile (**4a**, t_R = 5.5 min) as external standards. ^b **1a** (0.10 mmol), **2** (0.20 mmol), acetone (1.0 mL), light source, 5 h.

Table S	8. The	e effect	of	counteranions	on	the	trifluoromet	nylsel	enolation.
---------	--------	----------	----	---------------	----	-----	--------------	--------	------------

NC 0.10	D + [Me ₄ N][SeCF ₃] 1 TTX 2 mmol 0.16 mmol	blue LED (5 W) MeCN (0.2 M) r.t., N ₂ , 6 h	3a SeCF ₃ + 4a H
Entry	Anion (X)	3a (Yield, %)	4a (Yield, %)
1	OTf	64	3
2	BF_4	61	5

^a Reaction conditions: **1** (0.10 mmol), **2** (0.16 mmol), MeCN (0.5 mL), blue LED (5 W), room temperature, N₂, 6 h. Yields of **3a** and **4a** were determined by HPLC (λ = 250 nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl) phenoxy)benzonitrile (**3a**, t_R = 7.8 min) and 4-phenoxybenzonitrile (**4a**, t_R = 5.5 min) as external standards.

4. The UV-vis absorption spectra of the mixtures of arylsulfonium salts and [Me₄N][SeCF₃].

All solutions of arylsulfonium salt and [Me₄N][SeCF₃] in MeCN were prepared in a nitrogen-filled glove-box, and were placed in sealed standard quartz cuvettes (l = 1.0 cm) for UV-vis absorption measurement.

Figure 1. The UV-vis absorption spectra of ArTTOTf (1a), ArDBTOTf (1d), and ArDPSOTf (1g) in MeCN (c = 0.00025 M).

Figure 2. The combined UV-vis absorption spectra of $[Me_4N][SeCF_3]$, ArTTOTf (1a), and the 1 : 1 mixture of $[Me_4N][SeCF_3]$ and ArTTOTf (1a) in MeCN (c = 0.05 M).

Figure 3. The combined UV-vis absorption spectra of [Me₄N][SeCF₃], ArDBTOTf (**1d**), and the 1 : 1 mixture of [Me₄N][SeCF₃] and ArDBTOTf (**1d**) in MeCN (c = 0.05 M).

Figure 4. The combined UV-vis absorption spectra of $[Me_4N][SeCF_3]$, ArDPSOTf (**1g**), and the 1 : 1 mixture of $[Me_4N][SeCF_3]$ and ArDPSOTf (**1g**) in MeCN (c = 0.05 M).

Figure 5. The combined UV-vis absorption spectra of ArDBTOTf (1d) and the mixtures of ArDBTOTf (1d) and $[Me_4N][SeCF_3]$ in MeCN (c = 0.00025M (1d)).

Figure 6. The combined UV-vis absorption spectra of ArDBTOTf (1d) and the mixtures of ArDBTOTf (1d) and $[Me_4N][SeCF_3]$ in MeCN (c = 0.0005M (1d)).

Figure 7. The combined UV-vis absorption spectra of the 1 : 1 mixtures of $[Me_4N][SeCF_3]$ and ArDBTOTf (1d) in MeCN at different concentrations (0.00025 to 0.01 M (for both)).

Figure 8. The combined UV-vis absorption spectra of $[Me_4N][SCF_3]$, ArDBTOTf (1d), and the 1 : 1 mixture of $[Me_4N][SCF_3]$ and ArDBTOTf (1d) in MeCN (c = 0.05 M).

5. The CV experiments

The electrochemical studies were performed by using a CHI660E electrochemical workstation with a three-electrode one-compartment cell fitted with a glassy-carbon working electrode (2.0 mm diameter), a Pt wire counter electrode, and a Ag/AgCl reference electrode (Ag wire dipped in saturated KCl aqueous solution). The General Purpose Electrochemical Software (GPES) was utilized to record and process the data. The dry MeCN from commercial source was degassed by bubbling nitrogen gas before use. All experiments were performed at ambient temperature with a scan rate of 0.05 V•s⁻¹ in MeCN solutions containing 2.0 mmol/L analyte and 0.1 mol/L [*n*Bu₄N][PF₆] supporting electrolyte. All data were referenced to an external ferrocene/ferrocenium reference redox couple. *Note*: the half-wave potentials (E^{1/2}) are reported based on the midpoint between the peaks of the anodic and cathodic waves. For irreversible reduction or oxidation waves, the inflection-point potentials (Eⁱ) are calculated by the known literature.^{6,7}

Figure 9. The cyclic voltammogram of $[Me_4N][SeCF_3]$ (2.0 mmol/L) in MeCN containing $[nBu_4N][PF_6]$ supporting electrolyte (0.1 mol/L).

Figure 10. The cyclic voltammogram of $[Me_4N][SCF_3]$ (2.0 mmol/L) in MeCN containing $[nBu_4N][PF_6]$ supporting electrolyte (0.1 mol/L).

Figure 11. The cyclic voltammogram of ArTTOTF (1a, 2.0 mmol/L) in MeCN containing $[nBu_4N][PF_6]$ supporting electrolyte (0.1 mol/L).

Figure 12. The cyclic voltammogram of ArDBTOTF (**1d**, 2.0 mmol/L) in MeCN containing $[nBu_4N][PF_6]$ supporting electrolyte (0.1 mol/L).

Figure 13. The cyclic voltammogram of ferrocene (2.0 mmol/L) in MeCN containing [*n*Bu₄N][PF₆] supporting electrolyte (0.1 mol/L).

6. The NMR spectra of the mixtures of arylsulfonium salt and [Me₄N][SeCF₃] in acetonitrile

Figure 14. The combined ¹⁹F NMR spectra of $[Me_4N][SeCF_3]$ and the mixtures of **1d** and $[Me_4N][SeCF_3]$ in CD₃CN (0.6 mL) without light irradiation (using PhOCF₃ (24.5 mg, 0.15 mmol) as an internal standard).

Figure 15. The ¹⁹F NMR spectrum of the reaction mixture of **1d** (10.5 mg, 0.02 mmol) and $[Me_4N][SeCF_3]$ (4.5 mg, 0.02 mmol) in CD₃CN (0.6 mL) at room temperature

under blue LED (5 W) irradiation for 5 minutes (using PhOCF₃ (24.5 mg, 0.15 mmol) as an internal standard). 13% of **3a** was determined according to the internal standard.

Figure 16. The ¹⁹F NMR spectrum of the reaction mixture of **1d** (10.5 mg, 0.02 mmol) and [Me₄N][SeCF₃] (4.5 mg, 0.02 mmol) in CD₃CN (0.6 mL) at room temperature under blue LED (5 W) irradiation for 20 minutes (using PhOCF₃ (24.5 mg, 0.15 mmol) as an internal standard). 25% of **3a** was determined according to the internal standard.

Figure 17. The ¹⁹F NMR spectrum of the reaction mixture of **1d** (10.5 mg, 0.02 mmol) and [Me₄N][SeCF₃] (4.5 mg, 0.02 mmol) in CD₃CN (0.6 mL) at room temperature under blue LED (5 W) irradiation for 1 hour (using PhOCF₃ (24.5 mg, 0.15 mmol) as an internal standard). 32% of **3a** was determined according to the internal standard.

Figure 18. The combined ¹⁹F NMR spectra of the above reaction mixtures (**Figures 15-17**).

Figure 19. The ¹⁹F NMR analysis of the below reaction mixture of **1d** and [Me₄N][SeCF₃] using PhOCF₃ (14.5 mg, 0.0895 mmol) as an internal standard.

Figure 20. The ¹⁹F NMR analysis of the below reaction mixture of **1d** and [Me₄N][SeCF₃] using PhOCF₃ (20.5 mg, 0.127 mmol) as an internal standard.

Figure 21. The ¹⁹F NMR analysis of the below reaction mixture of **1g** and $[Me_4N][SeCF_3]$ using PhOCF₃ (12.2 mg, 0.075 mmol) as an internal standard.

Figure 22. The ⁷⁷Se NMR spectrum of 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**, δ 555.4) in CD₃CN.

Figure 23. The ⁷⁷Se NMR spectrum of [Me₄N][SeCF₃] (δ 159.5 (q, J = 76.4 Hz)) in CD₃CN.

Figure 24. The ⁷⁷Se NMR spectrum of the mixture of $[Me_4N][SeCF_3]$ (0.06 mmol) and ArDBTOTf (**1d**, 0.02 mmol) in CD₃CN (0.6 mL) without irradiation.

950 900 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 -50 -150 f1 (ppm)

Figure 25. The ⁷⁷Se NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (0.06 mmol) and ArDBTOTF (**1d**, 0.02 mmol) in CD₃CN (0.6 mL) under blue LED (5 W) irradiation for 20 minutes.

7. The light on-off experiment

The light on-off experiments were carried out under the standard reaction conditions using a mixture of **1d** (0.20 mmol), $[Me_4N][SeCF_3]$ (0.32 mmol) and MeCN (5.0 mL). Light was switched on and off with the intervals of 20 minutes, and the reaction mixture was monitored by HPLC after each period.

Time (min)	20	40	60	80	100	120
On\Off	On	Off	On	Off	On	Off
Yield	24	25	32	33	40	42

8. Measurement of the quantum yield

The photo flux of the blue LED (5 W, $\lambda_{max} = 450$ nm) was determined by the standard ferrioxalate actinometry according to the literature.⁸⁻¹⁰

Procedure: A 0.15 M ferrioxalate solution was prepared by dissolving 2.21 g of potassium ferrioxalate trihydrate in 30 mL of aqueous H₂SO₄ solution (0.05 M). A buffered phenanthroline solution was prepared by dissolving 5.0 mg of 1,10-phenanthroline and 1.13 g of NaOAc•3H₂O in 5.0 mL of aqueous H₂SO₄ solution (0.5 M). Both solutions were stored in the dark environment. The ferrioxalate solution (2.0 mL) was placed in a standard cuvette tube (l = 1.00 cm) and its absorbances at 450 and 510 nm were measured. Subsequently, the quartz cuvette was irradiated by the blue LED (5 W) for 90 seconds (the distance between the quartz cuvette and blue LED is 2-3 cm). After irradiation, the phenanthroline solution (0.35 mL) was added to the quartz cuvette immediately, and the mixture was stand in the dark for 30 minutes to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. The above procedure was repeated twice to obtain the corresponding absorbances. The data were summarized in the following tables.

A	1^{st}	2^{nd}	3 rd
A _{510 nm} -non-irradiation	0.094	0.074	0.066
$A_{510 \text{ nm}}$ -irradiation	1.586	1.586	1.600
ΔA_{510} nm	1.492	1.512	1.534

Average $\Delta A_{510 \text{ nm}}$

$$mol of Fe^{2+} = \frac{V \cdot \Delta A_{510 \text{ nm}}}{l \cdot \varepsilon} = \frac{(0.00235 L) \cdot (1.513)}{(1.00 cm) \cdot (11100 L \cdot mol^{-1}cm^{-1})} = 3.20 \times 10^{-7} mol$$

Α	1^{st}	2^{nd}	3 rd
$A_{450 \text{ nm}}$ -non-irradiation	1.725	1.699	1.699
Average $A_{450 \text{ nm}}$ -non-irradiation		1.708	
$f = 1 - 10^{-A}$		0.980	
Photon flux = $\frac{\text{mol of } Fe^{2+}}{\phi \cdot t \cdot f}$ =	$\frac{3.20 \times 10^{-7} mol}{(1.0) \cdot (90s) \cdot (0.980)}$	$\frac{1}{2} = 3.63 \times 10^{-9}$	einstein/s

Note: *V* is the total volume of the solution after addition of phenanthroline (0.00235 L). $\Delta A_{510 \ nm}$ is the difference absorbance at 510 nm between the irradiated and non-irradiated solution. *l* is the path length (1.00 cm). ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11100 L•mol⁻¹•cm⁻¹).⁸ Φ is the quantum yield for the ferrioxalate actinometer (1.0 for a 0.15 M solution at $\lambda = 450 \text{ nm}$).⁸⁻⁹ *t* is the irradiation time. *f* is the fraction of light absorbed at $\lambda = 450 \text{ nm}$, where $f = 1 - 10^{-A}$.

Determination of the quantum yield:

In a nitrogen-filled glove box, **1d** (105.4 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (1.0 mL), and a teflon magnetic stir bar were added to a standard quartz cuvette (l = 1.00 cm). The quartz cuvette was sealed and taken out of the glove box, and its absorbance at 450 nm was measured ($A_{450 \text{ nm}} = 1.096$, $f = 1 - 10^{-A} = 0.920$). Then, the mixture was placed into a cooling tank to keep the reaction temperature at around 0 °C. After 30 minutes of the irradiation with a 5 W blue LED, the mixture was filtrated through a celite pad and washed with MeCN (2 × 0.5 mL). The yield of **3a** (7.8%, 0.16 × 10⁻⁴ mol) was determined by HPLC using pure 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**) as an external standard.

$$\phi = \frac{\text{mol of product}}{\text{photon flux} \cdot t \cdot f} = \frac{0.16 \times 10^{-4}}{3.63 \times 10^{-9} \text{einstein} \cdot s^{-1} \cdot 1800s \cdot 0.92} = 2.66$$

9. The control experiments for mechanistic insights.

In a nitrogen-filled glove box, a sealed reaction vial was charge with 5-(4-(4-cyanophenoxy)phenyl)-5H-dibenzo[b,d]thiophen-5-ium

trifluoromethanesulfonate (**1d**, 105.4 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), 2,2,6,6-tetramethylpiperidinyloxy (TEMPO, 62.5 mg (0.40 mmol) or 125 mg (0.80 mmol)), MeCN (1.0 mL), and a teflon magnetic stir bar. The reaction vial was taken out from the glove box and placed into a cooling tank to keep the reaction temperature at around 0 °C. After irradiation with a 5 W blue LED for 12 h, the reaction mixture was analyzed by HPLC (λ = 250 nm, water / methanol = 20 / 80 (v / v)) using pure 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**, t_R = 7.8 min) as an external standard. The yield of the product (**3a**) was determined to be 52% and 30%, respectively.

In a nitrogen-filled glove box, a sealed reaction vial was charge with 5-(4-(4-cyanophenoxy)phenyl)-5H-dibenzo[b,d]thiophen-5-ium

trifluoromethanesulfonate (**1d**, 105.4 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), 1,1-diphenylethylene (72 mg (0.40 mmol) or 144 mg (0.80 mmol)), MeCN (1.0 mL), and a teflon magnetic stir bar. The reaction vial was taken out from the glove box and placed into a cooling tank to keep the reaction temperature at around 0 °C. After irradiation with a 5 W blue LED for 12 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate (40/0 to 50/1 (v/v)) as eluents to give **3a** (47.8 mg, 69% yield from the reaction with 0.4 mmol of 1,1-diphenylethylene; 32.1 mg, 47% yield from the reaction with 0.4 mmol of 1,1-diphenylethylene; 23.0 mg, 22% yield from the reaction with 0.8 mmol of 1,1-diphenylethylene).

4-(4-(2,2-Diphenyl-2-((trifluoromethyl)selanyl)ethyl)phenoxy)benzonitrile (5)

White solid. M.p.: 163-165 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.6 Hz, 2H), 7.32-7.29 (m, 10H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 6.74 (d, *J* = 8.4 Hz, 2H), 3.92 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -32.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 153.7, 143.7, 134.1, 133.1, 133.0, 129.1, 128.0, 127.6, 122.6 (q, *J* = 333.9 Hz), 119.2, 118.8, 117.9, 105.8, 66.0, 47.1. IR (KBr): 3097, 3060, 3029, 2223, 1593, 1491, 1444, 1415, 1245, 1206, 1163, 1095, 1073, 1002, 958, 873, 838, 758, 736, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₈H₂₀F₃NNaOSe]⁺ ([M + Na]⁺): 546.0554; found: 546.0554.

In a nitrogen-filled glove box, a sealed reaction vial was charge with 5-(2-(allyloxy)-5-(tert-butyl)phenyl)-5H-dibenzo[*b*,*d*]thiophen-5-ium (**1h**, 104.4 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (1.0 mL), and a teflon magnetic stir bar. The reaction vial was taken out from the glove box and placed into a cooling tank to keep the reaction temperature at around 0 °C. After irradiation with a 5 W blue LED for 12 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate (40/0 to 50/1 (v/v)) as eluents to give 24.6 mg of **3b** (36% yield) and 34.9 mg of **6** (52% yield).

(2-(Allyloxy)-5-(*tert*-butyl)phenyl)(trifluoromethyl)selane (**3b**)

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 2.3 Hz, 1H), 7.39 (dd, J = 8.6, 2.5 Hz, 1H), 6.87 (d, J = 8.7 Hz, 1H), 6.04 (m, 1H), 5.46 (dm, J = 17.3 Hz, 1H),

5.29 (dm, J = 10.6 Hz, 1H), 4.60 (dt, J = 5.0, 1.6 Hz, 2H), 1.31 (s, 9H). ¹⁹F NMR (471 MHz, CDCl₃) δ -35.2 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 144.7, 134.7, 132.8, 128.5, 122.7 (q, J = 335.2 Hz), 117.5, 112.5, 112.3, 69.6, 34.2, 31.4. IR (KBr): 3085, 2965, 2870, 1650, 1598, 1498, 1462, 1364, 1290, 1264, 1129, 1099, 1050, 997, 928, 814, 738 cm⁻¹. HRMS-EI (m/z) calcd. for C₁₄H₁₇F₃O⁷⁴Se ([M]): 332.0456; found: 332.0451.

5-(Tert-butyl)-3-(((trifluoromethyl)selanyl)methyl)-2,3-dihydrobenzofuran (6)

Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 1.9 Hz, 1H), 7.22 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 4.68 (t, *J* = 8.9 Hz, 1H), 4.38 (dd, *J* = 9.3, 5.1 Hz, 1H), 3.79 (m, 1H), 3.37 (dd, *J* = 12.6, 5.4 Hz, 1H), 3.14 (dd, *J* = 12.6, 9.0 Hz, 1H), 1.31 (s, 9H). ¹⁹F NMR (471 MHz, CDCl₃) δ -33.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 157.8, 144.0, 128.3, 126.2, 122.5 (q, *J* = 331.4 Hz), 121.3, 109.3, 76.6, 42.4, 34.4, 31.7, 29.9. IR (KBr): 3058, 2964, 2872, 2216, 1614, 1494, 1365, 1293, 1236, 1204, 1099, 970, 887, 822, 739, 692 cm⁻¹. HRMS-EI (m/z) calcd. for C₁₄H₁₇F₃O⁷⁴Se ([M]): 332.0456; found: 332.0451.

10. Procedures for the synthesis of arylsulfonium salts

10.1. Procedures for the synthesis of aryl sulfoxides

2,3,7,8-Tetramethylthianthrene 5-oxide (TMTO)

Step 1: Under an ambient atmosphere, concentrated H_2SO_4 (1.5 mL) was added slowly to a mixture of *o*-xylene (5.3 g, 50 mmol), NaIO₄ (4.3 g, 20 mmol), H₂O (10 mL), AcOH (50 mL), and I₂ (11.4 g, 45 mmol) at 0 °C with vigorous stirring. The mixture was reacted at 70 °C overnight, cooled to room temperature, diluted with DCM (150 mL), washed with an aqueous solution of sodium bisulfite (2 × 200 mL),

and neutralized by an aqueous solution of Na_2CO_3 . The organic phase was dried over anhydrous Na_2SO_4 and concentrated to dryness under reduced pressure to give a yellow crude product, which was recrystallized from methanol to afford 1,2-diiodo-4,5-dimethylbenzene (10.5 g, 58%) as a white solid.

Step 2: Under a N₂ atmosphere, CS₂ (2.4 mL, 40 mmol) and DBU (11.95 mL, 80 mmol) were added to a mixture of 1,2-diiodo-4,5-dimethylbenzene (7.16 g, 20 mmol), CuI (760 mg, 4 mmol), and toluene (60 mL) with vigorous stirring. The mixture was heated at 100 °C for 24 h, cooled to room temperature, diluted with ethyl acetate (100 mL), and washed with H₂O (200 mL \times 2). The aqueous phase was extracted with ethyl acetate (30 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using petroleum ether as an eluent to give 2,3,7,8-tetramethylthianthrene (680 mg, 25%) as white solid.

Step 3: Under an ambient atmosphere, Fe(NO₃)₃•9H₂O (1.0 g, 2.5 mmol) was added to a mixture of DCM (30 mL), AcOH (0.11 mL, 1.84 mmol), NaBr (12.8 mg, 0.125 mmol), and 2,3,7,8-tetramethylthianthrene (680 mg, 2.5 mmol) with stirring. The mixture was reacted at room temperature for 4 h, washed with an aqueous Na₂CO₃ solution, dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate (10/1 to 7/1 (v/v)) as eluents to give 2,3,7,8-tetramethylthianthrene 5-oxide (TMTO, 354 mg, 49%) as a white solid. M.p.: 181-183 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (s, 2H), 7.37 (s, 2H), 2.32 (s, 6H), 2.28 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 139.0, 138.7, 137.5, 130.0, 125.7, 125.3, 19.6, 19.5. IR (KBr): 2918, 2850, 2116, 1588, 1455, 1382, 1357, 1229, 1128, 1066, 882, 868, 813, 754, 719 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₇OS₂]⁺ ([M + H]⁺): 289.0715; found: 289.0722.

3,7-Difluorodibenzo[*b*,*d*]thiophene 5-oxide (2F-DBTO)

Under a N_2 atmosphere, Tf₂O (6.05 mL, 36 mmol) was added to a mixture of CF₃SO₂Na (4.68 g, 30 mmol), 4,4'-difluoro-1,1'-biphenyl (1.9 g, 10 mmol), and sulfolane (10 mL) with vigorous stirring. The mixture was reacted at 40 °C for 24 h

and was then slowly poured into an aqueous NaOH solution (2 M, 500 mL) at 0 °C for 0.5 h. The resulting solid was filtrated, washed with H₂O (2 × 200 mL), and extracted with ethyl acetate (4 × 50 mL). The aqueous phases were extracted with ethyl acetate (100 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by flash column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate/dichloromethane (10/1/1 (v/v/v)) as eluents to give 3,7-difluorodibenzo-[*b*,*d*]thiophene 5-oxide (2F-DBTO, 1.08 g, 46%) as a white solid. M.p.: 194-196 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.6, 4.4 Hz, 2H), 7.69 (dd, *J* = 7.0, 2.4 Hz, 2H), 7.31 (td, *J* = 8.6, 2.4 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -110.1 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 163.0 (d, *J* = 253.3 Hz), 147.0 (d, *J* = 8.7 Hz), 132.4 (d, *J* = 2.0 Hz), 123.1 (d, *J* = 8.7 Hz), 120.2 (d, *J* = 22.4 Hz), 115.3 (d, *J* = 25.0 Hz). IR (KBr): 3050, 3030, 1592, 1465, 1419, 1255, 1208, 1053, 1020, 857, 824, 703, 678 cm⁻¹. HRMS-ESI (m/z) calcd. For [C₁₂H₇F₂OS]⁺ ([M + H]⁺): 237.0180; found: 237.0192.

10.2. Procedures for the synthesis of arylsulfonium salts

5-(4-(4-Cyanophenoxy)phenyl)-5*H*-thianthren-5-ium tetrafluoroborate (**1a**-BF₄)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and Et₂O·HBF₄ (0.2 mL, 1.5 mmol) were successively added to a mixture of 4-phenoxybenzonitrile (195 mg, 1.0 mmol) and thianthrene 5-oxide (232 mg, 1.0 mmol) in MeCN (2 mL) at 0 °C with stirring. The mixture was reacted at room temperature for 1 h, neutralized by a saturated aqueous NaHCO₃ solution, and extracted with DCM (3 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by crystallization from DCM (5 mL) / Et₂O (40 mL) system to afford 5-(4-(4-cyanophenoxy)phenyl)-5*H*-thianthren-5-ium tetrafluoroborate as a white solid (347 mg, 70%). M.p.: 154-156 °C. ¹H NMR (500 MHz, acetone-d₆) δ 9.10 (d, *J* = 8.0, 2H), 8.58 (d, *J* = 8.0 Hz, 2H), 8.46 (m, 2H), 8.38 (t, *J* = 7.7 Hz, 2H), 8.28 (d, *J* = 8.4 Hz, 2H), 7.91 (d, *J* = 8.8 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.68 (d, *J* = 8.4

Hz, 2H). ¹⁹F NMR (471 MHz, acetone-d₆) δ -151.5 (m, 4F). ¹³C NMR (126 MHz, acetone-d₆) δ 159.9, 159.0, 136.4, 135.2, 135.2, 134.7, 131.0, 130.7, 130.1, 120.8, 120.1, 119.3, 118.7, 118.0, 108.1. IR (KBr): 3083, 2993, 2925, 2226, 1606, 1579, 1485, 1449, 1292, 1248, 1172, 1055, 873, 835, 759, 701 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₅H₁₆NOS₂]⁺ ([M]⁺): 410.0668; found: 410.0671.

5-(4-(4-Cyanophenoxy)phenyl)-2,3,7,8-tetrafluoro-5*H*-thianthren-5-ium trifluoromethanesulfonate (**1b**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.46 mL, 3.3 mmol) and HOTf (0.14 mL, 1.65 mmol) was successively added to a mixture of 4-phenoxybenzonitrile (215 mg, 1.1 mmol) and 2,3,7,8-tetrafluorothianthrene 5-oxide (340 mg, 1.1 mmol) in MeCN (1.5 mL) at 0 °C with stirring. The mixture was reacted at room temperature for 3 h, neutralized by a saturated aqueous NaHCO₃ solution, and extracted with DCM (3×20 mL). The combined organic layers were washed with aqueous NaOTf solution $(3 \times 25 \text{ mL}, 5\% \text{ (w/w)})$, dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 (v/v)) as eluents to give 5-(4-(4-cyanophenoxy)phenyl)-2,3,7,8-tetrafluoro-5Hthianthren-5-ium trifluoromethanesulfonate as a white solid (237 mg, 34%). M.p.:140-142 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.86 (m, 2H), 8.27 (dd, J = 10.0, 7.2 Hz, 2H), 7.84 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 9.0 Hz, 2H), 7.26 (d, J = 9.0 Hz, 2H), 7.23 (d, J = 8.6 Hz, 2H). ¹⁹F NMR (471 MHz, acetone-d₆) δ -78.9 (s, 3F), -126.1 (m, 2F), -134.3 (m, 2F). ¹³C NMR (126 MHz, acetone-d₆) δ 160.0, 159.0, 153.7 (dd, J = 261.2, 13.7 Hz), 150.5 (dd, J = 255.6, 13.4 Hz), 134.7, 134.3 (dd, J = 8.7 Hz, 3.8 Hz), 131.3, 125.0 (dd, J = 22.3 Hz, 1.6 Hz), 120.7, 120.1, 120.1 (d, J = 21.9 Hz), 117.9, 117.5, 115.5 (dd, J = 7.2, 3.4 Hz), 108.2. IR (KBr): 3095, 3039, 2228, 1698, 1578, 1482, 1408, 1383, 1286, 1250, 1172, 1029, 967, 873, 836, 798 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{25}H_{12}F_4NOS_2]^+$ ([M]⁺): 482.0291; found: 482.0298.

5-(4-(4-Cyanophenoxy)phenyl)-2,3,7,8-tetramethyl-5*H*-thianthren-5-ium trifluoromethanesulfonate (**1c**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.13 mL, 1.5 mmol) were successively added to mixture of 4-phenoxybenzonitrile (195 mg, 1.0 mmol) a and 2,3,7,8-tetramethylthianthrene 5-oxide (288 mg, 1.0 mmol) in MeCN (3 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 4 h, neutralized by a saturated aqueous NaHCO3 solution, and extracted with DCM (3×20 mL). The combined organic layers were washed with aqueous NaOTf solution (3 \times 20 mL, 5% (w/w)), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) to afford 5-(4-(4-cyanophenoxy)phenyl)-2,3,7,8-tetramethyl-5*H*-thianthren-5-ium trifluoromethanesulfonate as a white solid (533 mg, 87%). M.p.: 121-123 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.39 (s, 2H), 7.85 (s, 2H), 7.82 (dm, J = 9.1 Hz, 2H), 7.46 (dm, J = 9.2 Hz, 2H), 7.24 (d, J = 9.1 Hz, 2H), 7.20 (d, J = 8.9 Hz, 2H), 2.47 (m, 12H). $^{19}\mathrm{F}$ NMR (471 MHz, acetone-d_6) δ -78.7 (s, 3F). $^{13}\mathrm{C}$ NMR (126 MHz, acetone-d₆) δ 159.6, 159.2, 145.8, 139.7, 135.0, 134.7, 133.6, 131.0, 130.7, 121.5 (q, J = 322.6 Hz), 120.8, 120.2, 120.0, 118.0, 115.8, 108.0, 19.2, 18.5. IR (KBr) 3092, 3064, 2878, 2227, 1606, 1580, 1486, 1406, 1387, 1248, 1152, 1030, 947, 873, 836, 754, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{29}H_{24}NOS_2]^+$ ([M]⁺): 466.1294; found: 466.1297.

5-(4-(4-Cyanophenoxy)phenyl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1d**)¹¹

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.84 mL, 6.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.35 mL, 4.0 mmol) were successively added to a solution of 4-phenoxybenzonitrile (390 mg, 2.0 mmol) in MeCN (8 mL) at -40 °C with stirring. Then, dibenzo[*b*,*d*]thiophene 5-oxide (600 mg, 3.0 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 3 h, diluted with DCM (40 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was washed with aqueous NaOTf solution (3×40 mL, 5% (w/w)), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 (v/v)) as eluents to afford 5-(4-(4-cyanophenoxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium

trifluoromethanesulfonate as a white solid (870 mg, 83%). M.p.: 263-265 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.55 (d, *J* = 7.9 Hz, 2H), 8.40 (d, *J* = 8.1 Hz, 2H), 8.05 (t, *J* = 7.7 Hz, 2H), 7.87-7.83 (m, 6H), 7.33 (d, *J* = 9.0 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H). ¹⁹F NMR (471 MHz, acetone-d₆) δ -78.8 (s, 3F). ¹³C NMR (126 MHz, acetone-d₆) δ 161.5, 158.6, 139.5, 134.8, 134.5, 133.5, 132.9, 131.7, 128.3, 124.6, 121.5 (q, *J* = 322.6 Hz), 121.1, 121.0, 120.6, 117.9, 108.5.

5-(4-(4-Cyanophenoxy)phenyl)-3,7-difluoro-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (1e)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.21 mL, 1.5 mmol) and trifluoromethanesulfonic acid (TfOH, 0.09 mL, 1.0 mmol) were successively added to a solution of 4-phenoxybenzonitrile (98 mg, 0.5 mmol) in MeCN (2 mL) at -40 °C with stirring. Then, 3,7-difluorodibenzo[*b*,*d*]thiophene 5-oxide (177 mg, 0.75 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 5 h, diluted with DCM (10 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was washed with aqueous NaOTf solution (3 × 10 mL, 5% (w/w)), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by column

chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 to 20/1 (v/v)) as eluents to afford 5-(4-(4-cyanophenoxy)phenyl)-3,7-difluoro-5*H*-dibenzo [*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (242 mg, 86%). M.p.: 235-237 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.58 (dd, *J* = 8.8, 4.6 Hz, 2H), 8.30 (dd, *J* = 7.6, 2.4 Hz, 2H), 7.90 (dm, *J* = 9.1 Hz, 2H), 7.89-7.83 (m, 4H), 7.34-7.31 (m, 4H). ¹⁹F NMR (471 MHz, acetone-d₆) δ -78.8 (s, 3F), -108.6 (m, 2F). ¹³C NMR (126 MHz, acetone-d₆) δ 163.2 (d, *J* = 253.3 Hz), 161.8, 158.6, 135.3 (d, *J* = 1.7 Hz), 134.9 (d, *J* = 12.2 Hz), 134.8, 133.9, 126.2 (d, *J* = 9.4 Hz), 122.2 (d, *J* = 22.9 Hz), 121.5 (q, *J* = 322.2 Hz), 121.1, 120.7, 119.9, 117.9, 115.9 (d, *J* = 28.3 Hz), 108.6. IR (KBr): 3086, 3044, 2230, 1597, 1577, 1487, 1417, 1397, 1266, 1250, 1214, 1156, 1031, 875, 832, 756, 740, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₅H₁₄F₂NOS]⁺ ([M]⁺): 414.0759; found: 414.0758.

3,7-Di-*tert*-butyl-5-(4-(4-cyanophenoxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (**1f**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.17 mL, 2.0 mmol) were successively added to a solution of 4-phenoxybenzonitrile (195 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, 3,7-di-*tert*-butyldibenzo[*b*,*d*]thiophene 5-oxide (468 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 2 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was washed with aqueous NaOTf solution (3×20 mL, 5% (w/w)), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 to 20/1 (v/v)) as eluents to afford 3,7-di-*tert*-butyl-5-(4-(4-cyanophenoxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a red solid (614 mg, 96%). M.p.: 121-123 °C ¹H NMR (500 MHz, CD₃CN) δ 8.21 (d, *J* = 8.3 Hz, 2H), 8.14 (d, *J* = 1.6 Hz, 2H), 7.98 (d, *J* = 8.3, 1.7 Hz, 2H), 7.78 (dm, *J* = 8.9 Hz, 2H), 7.61 (dm, *J* =

9.1 Hz, 2H), 7.20-7.16 (m, 4H), 1.34 (s, 18H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.2 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 161.5, 158.6, 155.6, 136.7, 134.9, 133.4, 132.6, 131.9, 124.8, 123.9, 121.1, 120.7, 120.5, 118.2, 108.3, 35.5, 30.3. IR (KBr): 3066, 2964, 2227, 1605, 1579, 1486, 1398, 1366, 1252, 1155, 1108, 1030, 873, 836, 754, 715 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₃₃H₃₂NOS]⁺ ([M]⁺): 490.2199; found: 490.2206.

(4-(4-Cyanophenoxy)phenyl)diphenylsulfonium trifluoromethanesulfonate (1g)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.17 mL, 2.0 mmol) were successively added to a solution of 4-phenoxybenzonitrile (195 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, diphenyl sulfoxide (303 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 4 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was washed with aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\% \text{ (w/w)})$, dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 to 20/1 (v/v)) to afford (4-(4-cyanophenoxy)phenyl) diphenylsulfonium trifluoromethanesulfonate as a yellow solid (520 mg, 98%). M.p.: 128-130 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.04 (d, J = 8.9 Hz, 2H), 7.95 (d, J = 8.1 Hz, 4H), 7.92-7.83 (m, 8H), 7.50 (d, J = 8.9 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H). ¹⁹F NMR (471 MHz, acetone-d₆) δ -78.8 (s, 3F). ¹³C NMR (126 MHz, acetone-d₆) δ 161.3, 158.8, 134.8, 134.7, 134.3, 131.6, 131.2, 125.5, 121.6 (q, J = 322.6), 121.4, 120.5, 118.6, 117.9, 108.5. IR (KBr): 3093, 3063, 3048, 2228, 1584, 1492, 1448, 1373, 1260, 1206, 1177, 1153, 1030, 998, 876, 838, 748, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₅H₁₈NOS]⁺ ([M]⁺): 380.1104; found: 380.1110.

5-(4-(2-Methyl-4-nitrophenoxy)phenyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (1i)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of 2-methyl-4-nitro-1-phenoxybenzene (229 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) to 5-(4-(2-methyl-4-nitrophenoxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium give trifluoromethanesulfonate as a pale solid (532 mg, 95%). M.p.: 261-263 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.34 (d, *J* = 7.9 Hz, 2H), 8.21 (d, *J* = 2.5 Hz, 1H), 8.09-8.06 (m, 3H), 7.95 (t, J = 7.7 Hz, 2H), 7.74 (t, J = 7.9 Hz, 2H), 7.58 (d, J = 9.0 Hz, 2H), 7.12 (d, J = 9.0 Hz, 2H), 7.08 (d, J = 8.9 Hz, 1H), 2.25 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 161.9, 157.9, 144.8, 139.3, 134.5, 133.5, 132.4, 131.9, 131.7, 127.9, 127.1, 124.6, 123.4, 121.1 (q, *J* = 321.3 Hz), 120.3, 120.2, 119.5, 15.2. IR (KBr): 3094, 3009, 2926, 1576, 1513, 1482, 1448, 1347, 1282, 1252, 1152, 1090, 1027, 1001, 930, 861, 831, 803, 757, 720, 706 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₅H₁₈NO₃S]⁺ ([M]⁺): 412.1002; found: 412.1009.

5-(4-Oxochroman-6-yl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1j**)¹¹

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of chroman-4-one (148 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃

solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as eluents to give 5-(4-oxochroman-6-yl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (440 mg, 92%). M.p.: 240-242 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.35 (dm, *J* = 7.9 Hz, 2H), 8.33 (d, *J* = 2.6 Hz, 1H), 8.05 (d, *J* = 8.1 Hz, 2H), 7.95 (tm, *J* = 7.7 Hz, 2H), 7.73 (m, 2H), 7.24 (dd, *J* = 9.2 Hz, 2.6 Hz, 1H), 7.10 (d, *J* = 9.1 Hz, 1H), 4.64 (t, *J* = 6.5 Hz, 2H), 2.84 (t, *J* = 6.5 Hz, 2H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 189.5, 166.3, 139.4, 135.4, 134.6, 132.3, 132.1, 131.8, 127.9, 124.7, 122.7, 122.4, 117.5, 68.0, 36.4.

5-(2-Formyl-4-methoxyphenyl)-5H-dibenzo[b,d]thiophen-5-iumtrifluoromethanesulfonate (**1k**)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of 3-methoxybenzaldehyde (136 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as 5-(2-formyl-4-methoxyphenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium eluents to give trifluoromethanesulfonate as a white solid (392 mg, 84%). M.p.: 128-130 °C. ¹H NMR (500 MHz, CD₃CN) δ 10.31 (s, 3H), 8.33 (d, J = 7.8 Hz, 2H), 8.06 (d, J = 8.1 Hz, 2H), 7.95 (t, J = 7.7 Hz, 2H), 7.84 (d, J = 2.9 Hz, 1H), 7.72 (tm, J = 7.8 Hz, 2H), 7.11 (dd, J = 9.0, 2.9 Hz, 1H), 6.79 (d, J = 9.0 Hz, 1H), 3.91 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 193.6, 164.6, 139.6, 138.2, 134.5, 131.6, 131.3, 130.4, 128.2, 124.6, 122.4, 121.1, 115.4, 56.5. IR (KBr) 3107, 2983, 1778, 1724, 1682, 1607, 1484, 1438, 1392, 1360, 1308, 1232, 1157, 1100,

1036, 1004, 946, 900, 852, 755, 708 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₀H₁₅O₂S]⁺ ([M]⁺): 319.0787; found: 319.0789.

5-(4-Methoxy-3-((trifluoromethyl)sulfonyl)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (**1**l)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of 1-methoxy-2-((trifluoromethyl)sulfonyl)benzene (256 mg, 1 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 (v/v)) as eluents to give 5-(4-methoxy-3-((trifluoromethyl)sulfonyl)phenyl)-5Hdibenzo[b,d]thiophen-5-ium trifluoromethane-sulfonate as a white solid (450 mg, 77%). M.p.: 150-152 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.34 (d, J = 7.8 Hz, 2H), 8.07 (d, J = 8.1 Hz, 2H), 7.96 (t, J = 7.7 Hz, 2H), 7.74 (tm, J = 7.8 Hz, 2H), 7.63 (dd, J = 9.0, 2.4 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.34 (d, J = 9.1 Hz, 1H), 3.97 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -74.5 (s, 3F), -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) & 156.8, 139.4, 139.0, 134.7, 133.3, 132.0, 131.8, 127.9, 125.4, 124.7, 121.2 (q, J = 321.3 Hz), 121.1 (q, J = 320.0 Hz), 116.5, 116.3, 57.3. IR (KBr) 3102, 2989,2953, 2854, 2602, 2280, 1601, 1499, 1447, 1428, 1319, 1263, 1221, 1143, 1072, 1032, 1018, 922, 874, 808, 754, 717, 706 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{20}H_{14}F_3O_4S_2]^+$ ([M]⁺): 439.0280; found: 439.0283.

5-(3-Fluoro-4-methoxyphenyl)-5H-dibenzo[b,d]thiophen-5-iumtrifluoromethanesulfonate (**1m**)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of 1-fluoro-2-methoxybenzene (126 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (60/0 to 60/1 to 30/1 (v/v)to give 5-(3-fluoro-4-methoxyphenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (440 mg, 96%). M.p.: 161-163 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.33 (d, J = 7.7 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H), 7.95 (t, J = 7.7 Hz, 2H), 7.72 (tm, J = 7.8 Hz, 2H), 7.58 (dm, J = 8.9 Hz, 1H), 7.28 (m, 1H), 7.18 (dd, J = 10.3, 2.4 Hz, 1H), 3.93 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.28 (s, 3F), -123.0 (m, 1F). ¹³C NMR (126 MHz, CD₃CN) δ 153.8 (d, J = 10.3 Hz), 152.6 (d, J = 253.3 Hz), 139.3, 134.5, 132.2, 131.7, 129.9 (d, J = 3.6 Hz), 127.9, 124.7,117.5, 115.6 (d, J = 2.3 Hz), 115.2 (d, J = 7.1 Hz), 56.7. IR (KBr) 3091, 3057, 2981, 2950, 1602, 1505, 1465, 1441, 1321, 1261, 1223, 1143, 1076, 1029, 954, 875, 806, 756, 706 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₁₄FOS]⁺ ([M]⁺): 309.0744; found: 309.0751.

5-(3-Chloro-4-methoxyphenyl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1n**)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of 1-chloro-2-methoxybenzene (142.5 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1

h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as 5-(3-chloro-4-methoxyphenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium eluents give to trifluoromethanesulfonate as a white solid (442 mg, 93%). M.p.: 173-175 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.33 (d, J = 7.8 Hz, 2H), 8.04 (d, J = 8.1 Hz, 2H), 7.95 (t, J = 7.7 Hz, 2H), 7.73 (m, 2H), 7.55-7.53 (m, 2H), 7.21 (d, J = 9.6 Hz, 1H), 3.94 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 160.6, 139.3, 134.6, 132.2, 132.1, 131.8, 131.7, 127.9, 124.8, 124.7, 115.9, 114.8, 57.0. IR (KBr): 3108, 3090, 2960, 1578, 1491, 1471, 1449, 1396, 1306, 1265, 1158, 1088, 1061, 1028, 1003, 943, 890, 811, 757, 705 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₁₄ClOS]⁺ ([M]⁺): 325.0448; found: 325.0450.

5-(3-Bromo-4-methoxyphenyl)-5H-dibenzo[b,d]thiophen-5-iumtrifluoromethanesulfonate (**10**)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of 1-bromo-2-methoxybenzene (142.5 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as eluents to give 5-(3-bromo-4-methoxyphenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a light yellow solid (462 mg, 89%). M.p.: 196-198 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.33 (d, J = 7.8 Hz, 2H), 8.06 (d, J = 8.1 Hz, 2H), 7.94 (t, J = 7.4 Hz, 2H), 7.74-7.71 (m, 3H), 7.56 (dd, J = 9.0, 2.5 Hz, 1H), 7.16 (d, J =9.0 Hz, 1H), 3.92 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 161.5, 139.3, 135.0, 134.5, 132.6, 132.3, 131.7, 127.9, 124.7,

121.2 (q, J = 321.3 Hz), 116.3, 114.6, 113.5, 57.1. IR (KBr): 3088, 3026, 2947, 1576, 1483, 1451, 1398, 1273, 1221, 1156, 1083, 1051, 1030, 962, 874, 812, 761, 707, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₁₄BrOS]⁺ ([M]⁺): 368.9943; found: 368.9950.

5-(4-(2-Hydroxyethoxy)phenyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1p**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.13 mL, 1.5 mmol) were successively added to a solution of 2-phenoxyethan-1-ol (138 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo[*b*,*d*]thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3 × 20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (40/0 to 40/1 to 20/1 (v/v)) as eluents to give 5-(4-(2-hydroxyethoxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium

trifluoromethanesulfonate as a white solid (346 mg, 74%). M.p.: 159-161 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.33 (d, *J* = 7.5 Hz, 2H), 8.02 (d, *J* = 8.1 Hz, 2H), 7.94 (tm, *J* = 7.7 Hz, 2H), 7.72 (tm, *J* = 7.8 Hz, 2H), 7.49 (dm, *J* = 9.1 Hz, 2H), 7.09 (dm, *J* = 9.1 Hz, 2H), 4.09 (t, *J* = 4.7 Hz, 2H), 3.79 (m, 2H), 3.05 (m, 1H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 164.6, 139.2, 134.3, 133.1, 132.8, 131.6, 127.7, 124.5, 117.6, 114.9, 70.6, 59.9. IR (KBr): 3462, 3091, 3011, 2944, 2924, 1590, 1573, 1496, 1448, 1429, 1250, 1224, 1182, 1158, 1031, 916, 833, 759, 708 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₀H₁₇O₂S]⁺ ([M]⁺): 321.0944; found: 321.0948.

5-(Benzo[d][1,3]dioxol-5-yl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1q**)¹¹

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of benzo[d][1,3]dioxole (136 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as 5-(benzo[d][1,3]dioxol-5-yl)-5H-dibenzo[b,d]thiophen-5-ium eluents give to trifluoromethanesulfonate as a white solid (404 mg, 89%). M.p.: 165-167 °C. ¹H NMR (500 MHz, CD₃CN) δ 8,32 (d, J = 7.9 Hz, 2H), 8.03 (d, J = 8.1 Hz, 2H), 7.94 (t, J = 7.7 Hz, 2H), 7.73 (t, J = 7.7 Hz, 2H), 7.54 (dd, J = 8.2, 1.6 Hz, 1H), 7.06 (d, J =8.3 Hz, 1H), 6.54 (d, J = 1.5 Hz, 1H), 6.07 (s, 2H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.2 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 154.3, 150.5, 139.3, 134.4, 132.3, 131.6, 129.4, 127.7, 124.6, 116.2, 109.9, 107.6, 103.9.

5-(5-Phenylthiophen-2-yl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1r**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.21 mL, 1.5 mmol) was added to a mixture of dibenzo[*b,d*]thiophene 5-oxide (220 mg, 1.1 mmol) and 2-phenylthiophene (160 mg, 1.0 mmol) in MeCN (2 mL) at -78 °C with stirring. The mixture was slowly warmed to room temperature, reacted at room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3×20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as eluents to afford

5-(5-phenylthiophen-2-yl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as white solid (440 mg, 89%). M.p.: 148-150 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.32 (d, *J* = 7.9 Hz, 2H), 8.28 (d, *J* = 4.2 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 2H), 7.95 (tm, *J* = 7.6 Hz, 2H), 7.74 (tm, *J* = 7.8 Hz, 2H), 7.52 (m, 1H), 7.49-7.46 (m, 2H), 7.37-7.36 (m, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.2 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 157.2, 143.6, 138.5, 134.8, 133.4, 131.8, 131.5, 130.3, 129.4, 127.9, 126.3, 125.2, 124.6, 121.2 (q, *J* = 322.6 Hz), 119.2. IR (KBr): 3084, 3023, 1631, 1576, 1486, 1450, 1421, 1267, 1224, 1151, 1030, 997, 952, 811, 758, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₂H₁₅S₂]⁺ ([M]⁺): 343.0610; found: 343.0612.

5-(5-(Benzo[d]thiazol-2-yl)thiophen-2-yl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (1s)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.35 mL, 2.5 mmol) and TMSOTf (0.18 mL, 1.0 mmol) were successively added to a mixture of dibenzo[*b*,*d*]thiophene 5-oxide (220)mg, 1.1 mmol) and 2-(thiophen-2-yl)benzo[d]thiazole (217 mg, 1.0 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with an aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\% \text{ (w/w)})$. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) to afford 5-(5-(benzo[d]thiazol-2-yl)thiophen-2-yl)-5H-dibenzo[b,d]thiophen-5-ium

trifluoromethanesulfonate as a yellow solid (406 mg, 74%). M.p.: 219-221 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.33 (d, *J* = 7.9 Hz, 2H), 8.25 (d, *J* = 4.1 Hz, 1H), 8.20 (d, *J* = 8.1 Hz, 2H), 8.00-7.96 (m, 3H), 7.88 (d, *J* = 8.2 Hz, 1H), 7.78-7.75 (m, 3H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.46 (m, 1H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 159.1, 153.6, 148.6, 142.7, 139.3, 136.0, 135.6, 133.6, 132.5, 129.8, 128.6, 127.8, 127.3, 125.6, 125.4, 123.8, 122.9, 121.8 (q, *J* = 321.8 Hz). IR (KBr): 3085, 3060, 3009, 1591, 1556, 1477, 1449, 1419, 1258, 1222, 1156, 1029,

1000, 906, 808, 758, 726, 702 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{23}H_{14}NS_3]^+$ ([M]⁺): 400.0283; found: 400.0287.

5-(2,6-Di-*tert*-butylpyridin-3-yl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1t**)¹²

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of dibenzo[*b,d*]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (9 mL) at -60 °C with stirring. After 20 minutes, 2,6-di-*tert*-butylpyridine (191 mg, 1.0 mmol) was added. The mixture was slowly warmed to -20 °C over 15 h, reacted at room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel with a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as eluents to give 5-(2,6-di-*tert*-butylpyridin-3-yl)-5*H*-dibenzo [*b,d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (183 mg, 35%). M.p.: 265-267 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.39 (d, *J* = 7.9 Hz, 2H), 7.98 (tm, *J* = 7.7 Hz, 2H), 7.93 (d, *J* = 8.1 Hz, 2H), 7.73 (tm, *J* = 7.8 Hz, 2H), 7.20 (d, *J* = 8.6 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 1.85 (s, 9H), 1.30 (s, 9H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 174.4, 169.5, 139.5, 139.3, 134.7, 132.5, 131.9, 127.5, 125.0, 120.6, 117.5, 40.3, 38.4, 31.3, 28.9.

5-(3-Methoxyquinolin-4-yl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate $(1u)^2$

Under a N_2 atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of 3-methoxyquinoline (159 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with

stirring. Then, dibenzo[*b,d*]thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3 × 40 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as eluents followed by recrystallization from DCM/MTBE to afford 5-(3-methoxyquinolin-4-yl)-5*H*-dibenzo[*b,d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (446 mg, 91%). M.p.: 228-230 °C. ¹H NMR (500 MHz, CD₃CN) δ 9.16 (d, *J* = 8.3 Hz, 1H), 9.04 (s, 1H), 8.51 (d, *J* = 9.4 Hz, 1H), 8.38 (d, *J* = 7.6 Hz, 2H), 7.94-7.88 (m, 5H), 7.67 (t, *J* = 7.7 Hz, 2H), 7.55 (d, *J* = 9.3 Hz, 1H), 3.28 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 160.9, 150.8, 144.4, 141.2, 140.8, 134.2, 131.8, 131.6, 131.5, 129.7, 127.5, 124.9, 124.5, 121.8 (q, *J* = 321.3 Hz), 118.5, 101.6, 57.5.

5-(9-Methyl-9*H*-carbazol-3-yl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1v**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of 9-methyl-9*H*-carbazole (271.5 mg, 1.5 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo[*b*,*d*]thiophene 5-oxide (200 mg, 1.0 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (40 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3×20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (60/0 to 60/1 to 30/1 (v/v)) as eluents to afford 5-(9-methyl-9*H*-carbazol-3-yl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium

trifluoromethanesulfonate as a pale solid (285 mg, 56%). M.p.: 250-252 °C. ¹H NMR

(500 MHz, CD₃CN) δ 8.54 (d, *J* = 1.9 Hz, 1H), 8.37 (d, *J* = 7.9 Hz, 2H), 8.15 (d, *J* = 7.9 Hz, 1H), 8.03 (d, *J* = 8.1 Hz, 2H), 7.95 (tm, *J* = 7.7 Hz, 2H), 7.70 (tm, *J* = 7.7 Hz, 2H), 7.64-7.59 (m, 3H), 7.39 (dd, *J* = 8.9, 2.0 Hz, 1H), 7.34 (tm, *J* = 7.0 Hz, 1H), 3.87 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 144.0, 142.0, 139.0, 134.2, 133.6, 131.6, 127.9, 127.7, 126.5, 125.3, 124.5, 124.3, 121.3, 121.0, 120.9, 112.2, 111.6, 110.1, 29.3. IR (KBr): 3059, 3013, 2949, 1586, 1505, 1474, 1449, 1427, 1327, 1265, 1223, 1150, 1048, 1031, 818, 752, 705 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₅H₁₈NS]⁺ ([M]⁺): 364.1154; found: 364.1160.

3,7-Difluoro-5-(9-methyl-9*H*-carbazol-3-yl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1**w)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of 9-methyl-9H-carbazole (271.5 mg, 1.5 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, 3,7-difluorodibenzo[b,d]thiophene 5-oxide (236 mg, 1 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (40 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\% \text{ (w/w)})$. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (60/0 to 60/1 to 30/1 (v/v)) as eluents to 3,7-difluoro-5-(9-methyl-9*H*-carbazol-3-yl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium give trifluoromethanesulfonate as an off-white solid (408 mg, 74%). M.p.: 256-258 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.52 (s, 1H), 8.34 (dd, J = 8.7, 4.6 Hz, 2H), 8.16 (d, J =7.9 Hz, 1H), 7.84 (dd, J = 7.4, 1.8 Hz, 2H), 7.72-7.66 (m, 3H), 7.64-7.60 (m, 2H), 7.49 (d, J = 8.7 Hz, 1H), 7.36 (m, 1H), 3.89 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.29 (s, 3F), -108.8 (m, 2F). ¹³C NMR (126 MHz, CD₃CN) δ 163.2 (d, J = 252.3 Hz), 144.3, 142.0, 135.3, 135.2, 134.7 (d, J = 1.8 Hz), 128.0, 127.1, 126.0 (d, J = 9.4 Hz), 125.7, 124.4, 122.1 (d, J = 23.1 Hz), 121.3, 121.0 (d, J = 16.1 Hz), 121.2 (q, J =

321.3 Hz), 115.4 (d, J = 28.0 Hz), 112.1, 110.1, 110.1, 29.3. IR (KBr): 3085, 3039, 2989, 2947, 1597, 1505, 1470, 1327, 1254, 1212, 1158, 1064, 1029, 881, 833, 754, 725, 695 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{25}H_{16}F_2NS]^+$ ([M]⁺): 400.0966; found: 400.0974.

(*S*)-5-(4-(2-(1,3-Dioxoisoindolin-2-yl)-3-methoxy-3-oxopropyl)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (**1x**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of methyl (S)-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoate (309 mg, 1 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo[b,d]thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3 \times 20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (40/0 to 40/1 to 20/1 (v/v)) as eluents to give (S)-5-(4-(2-(1,3-dioxoisoindolin-2-yl)-3-methoxy-3-oxopropyl)phenyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a white solid (530 mg, 83%, the molar ratio of the *para-/ortho-*isomers was > 7.7:1). M.p.: 160-162 °C. ¹H NMR (500 MHz, CD₃CN, for the *para*-isomer) δ 8.29 (dd, J = 7.9 Hz, 2H), 7.94 (t, J = 7.5 Hz, 2H), 7.92 (t, J = 7.5 Hz, 2H), 7.80-7.77 (m, 2H), 7.75-7.72 (m, 2H), 7.70-7.65 (m, 2H), 7.38 (m, 4H), 5.12 (dd J = 11.0, 5.2 Hz, 1H), 3.68 (s, 3H), 3.60 (dd, J = 14.2, 5.2 Hz, 1H), 3.43 (dd, J = 14.2, 11.0 Hz, 1H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ^{13}C NMR (126 MHz, CD₃CN, for the para-isomer) & 168.8, 167.2, 145.7, 139.4, 134.8, 134.4, 132.3, 132.0, 131.7, 131.2, 130.5, 127.7, 124.9, 124.5, 123.3, 52.6, 52.2, 34.2. IR (KBr): 3090, 3065, 3013, 2956, 2927, 1776, 1745, 1716, 1613, 1592, 1468, 1450, 1389, 1263, 1157, 1089, 1031, 975, 922, 885, 834, 764, 724, 707 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₃₀H₂₂NO₄S]⁺ ([M]⁺): 492.1264; found: 492.1270.

5-(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydroquinazolin-6-yl)-5*H*-dibenzo[*b*,*d*]thioph en-5-ium trifluoromethanesulfonate $(1y)^2$

Under a N2 atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of 1,3-dimethylquinazoline-2,4(1H,3H)-dione (198 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo[b,d]thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\%)$ (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (40/0 to 40/1 to 20/1 (v/v)) as eluents to give 5-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydroquinazolin-6-yl) -5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a white solid (423 mg, 81%). M.p.: 260-262 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.58 (s, 1H), 8.37 (d, J = 7.8 Hz, 2H), 8.09 (d, J = 8.1 Hz, 2H), 7.96 (t, J = 7.7 Hz, 2H), 7.73 (tm, J = 7.8 Hz, 2H), 7.45 (m, 1H), 7.40 (d, J = 9.1 Hz, 1H), 3.49 (s, 3H), 3.34 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 160.7, 151.2, 146.0, 140.0, 135.3, 135.3, 133.5, 132.7, 132.4, 128.6, 125.3, 121.7 (q, *J* = 321.3 Hz), 119.2, 118.8, 117.6, 31.5, 28.7.

5-(3-Chloro-6-methyl-5,5-dioxido-11-oxo-6,11-dihydrodibenzo[c,f][1,2]thiazepin-9-y 1)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (1z)²

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and

trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of 3-chloro-6-methyldibenzo [c, f] [1,2] thiazepin-11(6H)-one 5,5-dioxide (308 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo [b,d] thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\% \text{ (w/w)})$. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (40/0 to 40/1 to 20/1 (v/v)) as eluents to give 5-(3-chloro-6-methyl-5,5-dioxido-11-oxo-6,11-dihydrodibenzo[c,f][1,2]thiazepin-9-yl)-5H-dibenz o[b,d]thiophen-5-ium trifluoromethanesulfonate as a white solid (592 mg, 93%). M.p.: 230-232 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.64 (s, 1H), 8.37 (d, J = 7.9 Hz, 2H), 8.11 (d, J = 8.1 Hz, 2H), 7.98 (t, J = 7.7 Hz, 2H), 7.94 (s, 1H), 7.85-7.80 (m, 2H), 7.75 (t, J = 7.8 Hz, 2H), 7.54-7.50 (m, 2H), 3.39 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 188.7, 146.5, 139.6, 138.8, 137.7, 135.5, 134.8, 134.5, 134.4, 133.8, 132.8, 131.9, 131.7, 131.1, 128.1, 126.6, 124.8, 122.44, 121.2 (q, *J* = 321.3 Hz), 38.1.

5-(5-Chloro-2-((1-ethoxy-2-methyl-1-oxopropan-2-yl)oxy)phenyl)-5*H*-dibenzo[*b*,*d*]th iophen-5-ium trifluoromethanesulfonate $(1aa)^{11}$

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of ethyl 2-(4-chlorophenoxy)-2-methylpropanoate (Clofibrate, 242 mg, 1.0 mmol) and dibenzo[*b*,*d*]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 (v/v)) as eluents to give 5-(5-chloro-2-((1-ethoxy-2-methyl-1-oxopropan-2-yl)oxy)

phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (543 mg, 95%). M.p.: 151-153 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.33 (d, *J* = 7.9 Hz, 2H), 8.14 (d, *J* = 8.1 Hz, 2H), 7.96 (t, *J* = 7.7 Hz, 2H), 7.76 (tm, *J* = 7.8 Hz, 2H), 7.63 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.45 (brs, 1H), 6.91 (d, *J* = 9.0 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.18 (s, 6H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 172.2, 155.0, 140.6, 137.2, 135.0, 132.1, 129.8, 128.4, 127.8, 125.1, 121.8 (q, *J* = 321.3 Hz), 119.4, 118.1, 83.0, 62.7, 24.8, 13.8.

5-(5-(4-Chlorobenzoyl)-2-((1-isopropoxy-2-methyl-1-oxopropan-2-yl)oxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (**1ab**)¹¹

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added mixture of ethyl isopropyl to a 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (Fenofibrate, 360.1 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 eluents to give 5-(5-(4-chlorobenzoyl)-2-((1-isopropoxy-2-methyl-(v/v)as 1-oxopropan-2-yl)oxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium

trifluoromethanesulfonate as a white solid (564 mg, 82%). M.p.: 197-199 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.31 (d, J = 7.7 Hz, 2H), 8.15 (d, J = 7.8 Hz, 2H), 8.06 (dd, J = 8.8, 1.9 Hz, 1H), 7.96-7.93 (m, 3H), 7.76 (t, J = 7.9 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 8.8 Hz, 1H), 4.94 (m, 1H), 1.39 (s, 6H), 1.09 (d, J = 6.2 Hz, 6H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 191.5, 170.7, 158.3, 140.0, 138.6, 138.3, 135.2, 134.3, 131.5, 131.3, 131.2, 129.3, 128.8, 127.8, 124.5, 121.2 (q, J = 321.3 Hz), 116.9, 82.7, 70.2, 24.1, 20.7.

5-(2-Methoxy-5-(2-oxopyrrolidine-1-carbonyl)phenyl)-5H-dibenzo[b,d]thiophen-5-iu m trifluoromethanesulfonate (1ac)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol) was added to a mixture of 1-(4-methoxybenzoyl)pyrrolidin-2-one (Aniracetam, 219 mg, 1.0 mmol) and dibenzo[b,d]thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 5-(2-methoxy-5-(2-oxopyrrolidine-1-carbonyl) (v/v)as eluents to give phenyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a white solid (438 mg, 79%). M.p.: 109-111 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.32 (d, J = 7.9 Hz, 2H), 8.11 (d, J = 8.1 Hz, 2H), 7.95 (t, J = 7.6 Hz, 2H), 7.91 (dd, J = 8.8, 1.9 Hz, 1H), 7.75 (t, J = 7.5 Hz, 2H), 7.31 (d, J = 8.8 Hz, 1H), 7.20 (d, J = 1.7 Hz, 1H), 4.05 (s, 3H), 3.73 (t, J = 7.1 Hz, 2H), 2.42 (t, J = 8.0 Hz, 2H), 2.00 (m, 2H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 175.7, 167.5, 161.9, 140.5, 138.4, 135.1, 132.1, 131.4, 130.1, 129.8, 128.8, 125.1, 121.8 (q, *J* = 322.6 Hz), 113.7, 113.6, 58.2, 46.8, 33.3, 17.6. IR (KBr): 3090, 2992, 2955, 1740, 1668, 1599, 1567, 1498, 1463, 1450, 1401, 1361, 1318, 1259, 1224, 1150, 1030, 1007, 961, 920, 844, 760, 706 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{24}H_{20}NO_3S]^+$ ([M]⁺): 402.1158; found: 402.1160.

5-(4-((5-Methoxy-4,4-dimethyl-5-oxopentyl)oxy)-2,5-dimethylphenyl)-5*H*-dibenzo[*b*, *d*]thiophen-5-ium trifluoromethanesulfonate (**1ad**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of methyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (Gemfibrozil methyl ester, 264 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo[b,d]thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution and washed with aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\% \text{ (w/w)})$. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to (v/v)) 30/1 to 20/1as eluents to give 5-(4-((5-methoxy-4,4-dimethyl-5-oxopentyl)oxy)-2,5-dimethylphenyl)-5*H*-dibenzo[*b*, *d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (405 mg, 68%). M.p.: 143-145 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.34 (d, J = 7.8 Hz, 2H), 7.99 (d, J = 8.1 Hz, 2H), 7.93 (tm, J = 7.7 Hz, 2H), 7.71 (tm, J = 7.8 Hz, 2H), 7.03 (s, 1H), 6.45 (s, 1H), 4.07 (t, J = 6.0 Hz, 2H), 3.57 (s, 3H), 2.83 (s, 3H), 1.90 (s, 3H), 1.72-1.63 (m, 4H), 1.15 (s, 6H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) & 177.7, 162.5, 144.1, 139.2, 134.2, 132.5, 131.5, 129.4, 127.6, 124.6, 121.2 (q, *J* = 321.3 Hz), 114.7, 112.1, 69.0, 51.2, 41.7, 36.5, 24.4, 24.4, 19.3, 14.6. IR (KBr): 3088, 3062, 2988, 2937, 1725, 1603, 1559, 1500, 1485, 1467, 1450, 1388, 1369, 1328, 1260, 1222, 1199, 1144, 1031, 986, 895, 867, 785, 770, 718, 707 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{28}H_{31}O_{3}S]^{+}$ ($[M]^{+}$): 447.1988; found: 447.1990.

5-(2,5-Dichloro-4-methoxy-3-(methoxycarbonyl)phenyl)-5*H*-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1ae**)²

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of methyl 3,6-dichloro-2-methoxybenzoate (Dicamba methyl ester, 234 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo[*b*,*d*]thiophene

5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3 × 20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 to 20/1 (v/v)) as eluents to give 5-(2,5-dichloro-4-methoxy-3-(methoxycarbonyl) phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (393 mg, 69%). M.p.: 217-219 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.35 (d, *J* = 7.9 Hz, 2H), 8.15 (d, *J* = 8.1 Hz, 2H), 8.00 (tm, *J* = 7.7 Hz, 2H), 7.78 (tm, *J* = 7.8 Hz, 2H), 7.03 (s, 1H), 4.01 (s, 3H), 3.93 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 163.1, 158.8, 140.0, 135.2, 133.2, 132.0, 129.8, 129.2, 128.4, 125.1, 122.0 (q, *J* = 322.5 Hz), 62.5, 53.6.

5-(4-(2-(N-Benzylmethylsulfonamido)-5-nitrophenoxy)phenyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1af**)²

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to solution of N-benzyl-N-(4-nitro-2-phenoxyphenyl)methanesulfonamide a (N-benzyl-Nimesulide, 398 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo [b,d] thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\% \text{ (w/w)})$. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 to 20/1 (v/v)) as eluents to give 5-(4-(2-(*N*-benzylmethylsulfonamido)-5-nitrophenoxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiop hen-5-ium trifluoromethanesulfonate as a light yellow solid (424 mg, 58%). M.p.:

214-216 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.36 (d, *J* = 7.6 Hz, 2H), 8.11 (d, *J* = 8.0 Hz, 2H), 8.00-7.95 (m, 3H), 7.76 (tm, *J* = 7.8 Hz, 2H), 7.72 (d, *J* = 2.5 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.6 Hz, 2H), 7.19 (dm, *J* = 7.8 Hz, 2H), 7.15-7.07 (m, 3H), 7.05 (d, *J* = 9.0 Hz, 2H), 4.79 (s, 2H), 3.05 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 161.2, 153.0, 148.0, 139.4, 136.9, 135.6, 134.6, 133.3, 132.9, 132.3, 131.8, 128.8, 128.5, 128.0, 128.0, 124.7, 120.8, 120.3, 120.0, 115.5, 54.0, 39.3.

5-(3-(Acetoxymethyl)-4-(((2S,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl))tetrah ydro-2H-pyran-2-yl)oxy)phenyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (**1ag**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.21 mL, 1.5 mmol) was added to a mixture of 3,7-difluorodibenzo[*b*,*d*]thiophene 5-oxide (260 mg, 1.1 mmol) and (2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(2-(acetoxymethyl)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (Salicin pentaacetate, 496 mg, 1.0 mmol) in DCM (4 mL) at -78 °C with stirring. The mixture was warmed to room temperature over 15 minutes, reacted at room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (50/0 to 50/1 to 30/1 (v/v)) as eluents to afford 5-(3-(acetoxymethyl)-4-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahy dro-2*H*-pyran-2-yl)oxy)phenyl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium

trifluoromethanesulfonate as a gray solid (299 mg, 36%). M.p.: 106-108 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.34 (d, *J* = 7.8 Hz, 2H), 8.04 (d, *J* = 7.7 Hz, 2H), 7.95 (t, *J* = 7.7 Hz, 2H), 7.73 (t, *J* = 7.7 Hz, 2H), 7.52 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.48 (d, *J* = 2.1 Hz, 1H), 7.26 (d, *J* = 8.9 Hz, 1H), 5.39 (d, *J* = 7.7 Hz, 1H), 5.35 (t, *J* = 9.5 Hz, 1H), 5.22 (dd, *J* = 9.5, 7.9 Hz, 1H), 5.11 (t, *J* = 9.7 Hz, 1H), 4.91 (s, 2H), 4.20 (dd, *J* = 12.4, 5.2 Hz, 1H), 4.11 (dd, *J* = 12.5, 2.1 Hz, 1H), 4.05 (m, 1H), 1.99 (s, 3H), 1.99 (s, 3H),

1.98 (s, 3H), 1.97 (s, 3H), 1.92 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 170.7, 170.7, 170.5, 170.1, 170.0, 159.3, 139.9, 135.1, 133.0, 132.9, 132.3, 131.5, 130.3, 128.5, 125.2, 119.4, 117.6, 98.1, 72.7, 72.2, 71.0, 68.5, 62.0, 60.2, 20.5, 20.5, 20.5, 20.4, 20.4. IR (KBr): 3090, 2956, 1752, 1598, 1489, 1450, 1379, 1225, 1148, 1075, 1030, 907, 817, 762, 736, 706 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₃₅H₃₅O₁₂S]⁺ ([M]⁺): 679.1844; found: 679.1846.

5-(5-(2-Chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin-2-yl)-5*H*-dibenzo[*b*,*d*]th iophen-5-ium trifluoromethanesulfonate (**1ah**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.21 mL, 1.5 mmol) was added to a mixture of dibenzo [b,d] thiophene 5-oxide (220 mg, 1.1 mmol), 5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (Ticlopidine, 263 mg, 1.0 mmol) in MeCN (2 mL) at -78 °C with stirring. The mixture was slowly warmed to room temperature over 3 h, reacted at room temperature for another 3 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution $(3 \times 20 \text{ mL}, 5\% \text{ (w/w)})$. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (50/0 to 50/1 to 30/1 (v/v)) as eluents to give 5-(5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a light yellow solid (533 mg, 90%). M.p.: 175-177 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.30 (d, J = 7.8 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.95-7.92 (m, 3H), 7.73 (t, J = 7.7 Hz, 2H), 7.47 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.32-7.26 (m, 2H), 3.78 (s, 2H), 3.60 (s, 2H), 2.78 (m, 4H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.2 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 149.3, 140.5, 138.4, 137.2, 135.8, 134.7, 134.0, 133.5, 131.8, 131.0, 129.5, 128.8, 127.8, 127.0, 124.6, 121.2 (q, J = 321.3 Hz), 57.8, 51.8, 49.3, 26.0. IR (KBr): 3089, 3068, 2928, 2832, 1593, 1572, 1466, 1426, 1354, 1265, 1152, 1030, 958, 861, 756, 707, 682 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{26}H_{21}CINS_2]^+$ ([M]⁺): 446.0798; found: 446.0802.

5-(5-(2-Chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl)-3,7-difluoro-5H-d ibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (1ai)

Under a N2 atmosphere, trifluoroacetic anhydride (TFAA, 0.21 mL, 1.5 mmol) was added to a mixture of 3,7-difluorodibenzo[b,d]thiophene 5-oxide (260 mg, 1.1 mmol) and 5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (Ticlopidine, 263 mg, 1.0 mmol) in MeCN (2 mL) at -78 °C with stirring. The mixture was slowly warmed to room temperature over 3 h, reacted at room temperature for 3 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3 \times 20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (50/0 to 50/1 to 30/1 (v/v)) as eluents to give 5-(5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl)-3,7-difluoro-5H-di benzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a light yellow solid (318 mg, 50%). M.p.: 213-215 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.26 (dd, J = 8.7, 4.5 Hz, 2H), 7.90-7.89 (m, 3H), 7.70 (td, J = 8.7, 1.8 Hz, 2H), 7.48 (d, J = 7.4 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.33-7.27 (m, 2H), 3.80 (s, 2H), 3.61 (s, 2H), 2.83 (m, 4H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.2 (s, 3F), -108.1 (m, 2F). ¹³C NMR (126 MHz, CD₃CN) δ 163.2 (d, J = 253.3 Hz), 150.3, 141.1, 137.7, 137.4, 135.7 (d, J = 2.0 Hz), 135.2 (d, *J* = 11.2 Hz), 134.1, 134.0, 131.0, 129.5, 128.8, 127.0, 126.1 (d, *J* = 9.3 Hz), 122.5 (d, J = 22.9 Hz), 115.4 (d, J = 28.2 Hz), 57.8, 51.7, 49.3, 26.1. IR (KBr): 3074, 2927, 2833, 1596, 1468, 1354, 1263, 1215, 1167, 1100, 1030, 972, 877, 840, 756, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{26}H_{19}ClF_2NS_2]^+$ ([M]⁺): 482.0610; found: 482.0612.

5-(2'-Fluoro-4'-(1-methoxy-1-oxopropan-2-yl)-[1,1'-biphenyl]-4-yl)-5*H*-dibenzo[*b*,*d*]t hiophen-5-ium trifluoromethanesulfonate $(1aj)^2$

Under a N2 atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of methyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (Flurbiprofen methyl ester, 258 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo [b,d] thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO3 solution, and washed with aqueous NaOTf solution (3×20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 to 20/1(v/v)eluents give as to 5-(2'-fluoro-4'-(1-methoxy-1-oxopropan-2-yl)-[1,1'-biphenyl]-4-yl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a white solid (508 mg, 86%). M.p.: 174-176 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.37 (d, J = 7.8 Hz, 2H), 8.12 (d, J = 8.1 Hz, 2H), 7.97 (t, J = 7.8 Hz, 2H), 7.77-7.73 (m, 4H), 7.65 (d, J = 8.7 Hz, 2H), 7.45 (t, J = 8.1 Hz, 1H), 7.23-7.18 (m, 2H), 3.83 (q, J = 7.2 Hz, 1H), 3.63 (s, 3H), 1.46 (d, J =7.2 Hz, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.2 (s, 3F), -118.8 (m, 1F). ¹³C NMR $(126 \text{ MHz}, \text{CD}_3\text{CN}) \delta 174.6, 160.0 \text{ (d, } J = 248.2 \text{ Hz}), 145.4 \text{ (d, } J = 8.1 \text{ Hz}), 142.8,$ 140.1, 135.2, 132.6, 132.4 (d, *J* = 3.4 Hz), 132.4, 131.5 (d, *J* = 3.1 Hz), 131.3, 128.6, 126.4, 125.4, 125.3, 124.9 (d, J = 3.3 Hz), 121.8 (d, J = 322.6 Hz), 116.0 (d, J = 23.4 Hz), 52.3, 45.1, 18.3.

5-(4'-((1H-Imidazol-1-yl)(phenyl)methyl)-[1,1'-biphenyl]-4-yl)-5H-dibenzo[b,d]thiop hen-5-ium trifluoromethanesulfonate (**1ak**)²

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.42 mL, 3.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.26 mL, 3.0 mmol) were successively added to a solution of 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (Bifonazole, 310 mg, 1.0 mmol) in MeCN (4 mL) at -40 °C with stirring. Then, dibenzo[b,d]thiophene 5-oxide (300 mg, 1.5 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), neutralized by a saturated aqueous NaHCO₃ solution, and washed with aqueous NaOTf solution (3 \times 20 mL, 5% (w/w)). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (40/0 to 40/1 to 30/1 (v/v)) as eluents to give 5-(4'-((1H-imidazol-1-yl)(phenyl)methyl)-[1,1'-biphenyl]-4-yl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a white solid (411 mg, 64%). M.p.: 106-108 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.36 (d, *J* = 7.9 Hz, 2H), 8.10 (d, *J* = 8.1 Hz, 2H), 7.96 (t, *J* = 7.5 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H), 7.74 (tm, J = 7.7 Hz, 2H), 7.66-7.63 (m, 4H), 7.52 (s, 1H), 7.42-7.37 (m, 3H), 7.24 (d, J = 8.3 Hz, 2H), 7.18-7.17 (m, 2H), 7.00 (d, J = 11.5 Hz, 2H), 6.76 (s, 1H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 147.7, 141.9, 140.4, 140.3, 138.7, 138.2, 135.5, 133.0, 132.7, 132.5, 132.1, 130.8, 129.8, 129.6, 129.3, 129.0, 128.9, 128.7, 126.2, 125.6, 122.1 (q, *J* = 321.4 Hz), 120.3, 64.9.

5-(4'-Chloro-6-(2-chloronicotinamido)-[1,1'-biphenyl]-3-yl)-5*H*-dibenzo[*b*,*d*]thiophen -5-ium trifluoromethanesulfonate (**1al**)

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.2 mL, 1.2 mmol)

was added to a mixture of dibenzo [b,d] thiophene 5-oxide (220 mg, 1.1 mmol) in DCM (4 mL) at -40 °C with stirring. Then, 2-chloro-*N*-(4'-chloro-[1,1'-biphenyl]-2-yl) nicotinamide (Boscalid, 342 mg, 1.0 mmol) was slowly added. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 1 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 (v/v)) as eluents to give 5-(4'-chloro-6-(2-chloronicotinamido)-[1,1'-biphenyl]-3-yl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate as a light yellow solid (504 mg, 75%). M.p.: 124-126 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.53 (brs, 1H), 8.42 (dd, J = 4.8, 1.9 Hz, 1H), 8.38 (d, J = 8.9 Hz, 1H), 8.34 (d, J = 7.9 Hz, 2H), 8.12 (d, J = 8.1 Hz, 2H), 7.96 (tm, J = 7.7Hz, 2H), 7.84 (dd, J = 7.7, 1.9 Hz, 1H), 7.75 (tm, J = 7.9 Hz, 2H), 7.64 (d, J = 2.4 Hz, 1H), 7.50-7.47 (m, 3H), 7.40-7.35(m, 3H). $^{19}\mathrm{F}$ NMR (471 MHz, CD_3CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 164.2, 151.1, 146.7, 140.9, 139.5, 138.2, 135.7, 134.6, 134.5, 134.4, 133.4, 132.0, 131.8, 131.7, 131.1, 130.3, 129.2, 128.0, 125.5, 124.7, 122.9, 121.3, 121.2 (q, J = 321.3 Hz). IR (KBr): 3371, 3230, 3087, 3060, 3003, 1674, 1574, 1513, 1449, 1400, 1257, 1223, 1153, 1090, 1066, 1029, 898, 832, 757, 705 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{30}H_{19}Cl_2N_2OS]^+$ ([M]⁺): 525.0590; found: 525.0598.

5-(1-(4-Chlorobenzoyl)-5-methoxy-3-(2-methoxy-2-oxoethyl)-2-methyl-1*H*-indol-6-y l)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate (**1am**)

Under a N₂ atmosphere, trifluoroacetic anhydride (TFAA, 0.21 mL, 1.5 mmol) was added to a mixture of dibenzo[*b*,*d*]thiophene 5-oxide (110 mg, 0.55 mmol) and methyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (Indometacin methyl ester, 186 mg, 0.5 mmol) in MeCN (2 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 2 h, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer

was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of DCM / MeOH (30/0 to 30/1 (v/v)) as eluents to give 5-(1-(4-chlorobenzoyl)-5-methoxy-3-(2-methoxy-2-oxoethyl)-2-methyl-1*H*-indol-4-yl)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium trifluoromethanesulfonate as a white solid (200 mg, 57%). M.p.: 211-213 °C. ¹H NMR (500 MHz, CD₃CN) δ 8.24 (d, *J* = 7.8 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.91 (t, *J* = 7.6 Hz, 2H), 7.66 (t, *J* = 7.8 Hz, 2H), 7.37 (s, 1H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 6.23 (s, 1H), 4.11 (s, 3H), 3.77 (s, 2H), 3.67 (s, 3H), 2.35 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -79.3 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 171.4, 167.9, 155.5, 142.9, 139.8, 139.8, 137.0, 134.9, 133.2, 132.0, 131.7, 131.2, 131.0, 129.7, 128.5, 124.8, 121.8 (q, *J* = 321.3 Hz), 114.6, 113.6, 108.6, 103.0, 58.1, 52.3, 29.5, 13.1. IR (KBr): 3094, 3014, 2958, 2932, 1742, 1695, 1588, 1466, 1428, 1400, 1355, 1313, 1266, 1225, 1170, 1088, 1030, 939, 842, 765, 717, 686 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₃₂H₂₅ClNO₄S]⁺ ([M]⁺): 554.1187; found: 554.1196.

11. General procedures for the trifluoromethylselenolation of arylsulfonoium salts with [Me₄N][SeCF₃].

Procedure A: In a nitrogen-filled glove box, a sealed reaction vial was charge with arylsulfonium salts (1, 0.10 mmol), $[Me_4N][SeCF_3]$ (2, 35.7 mg, 0.16 mmol, 1.6 equiv), MeCN (0.5 mL), and a teflon magnetic stir bar. The reaction vial was taken out from the glove box and placed into a cooling tank to keep the reaction temperature at around 0 °C. After irradiated with a 5 W blue LED for 12 h, the reaction mixture was concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using mixtures of petroleum ether/ethyl acetate, hexane/THF, or petroleum ether/dichloromethane as eluents to give the corresponding trifluoromethylselenolated product (3).

Procedure B: In a nitrogen-filled glove box, a sealed reaction vial was charge with arylsulfonium salts (1, 0.10 mmol), $[Me_4N][SeCF_3]$ (2, 35.7 mg, 0.16 mmol, 1.6 equiv), MeCN (0.5 mL), and a teflon magnetic stir bar. The reaction vial was taken out from the glove box and irradiated with a 5 W blue LED for 6 h. The reaction mixture was concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using mixtures of petroleum ether/ethyl

acetate, hexane/THF, or petroleum ether/dichloromethane as eluents to give the corresponding trifluoromethylselenolated product (**3**).

4-(4-((Trifluoromethyl)selanyl)phenoxy)benzonitrile (3a)

28.2 mg, 82% yield from **Procedure A** using **1d** (52.7 mg, 0.10 mmol), $[Me_4N][SeCF_3]$ (35.7 mg, 0.16 mmol), and MeCN (0.5 mL).

23.2 mg, 69% from **Procedure B** using **1d** (52.7 mg, 0.10 mmol), [Me₄N][SeCF₃] (35.7 mg, 0.16 mmol), and MeCN (0.5 mL).

A mixture of hexane/THF = 50/0 to 50/1 (v/v) as eluents for column chromatography. Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dm, *J* = 8.7 Hz, 2H), 7.65 (dm, *J* = 8.9 Hz, 2H), 7.09-7.04 (m, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.4 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 160.3, 157.4, 139.3, 134.4, 122.4 (q, *J* = 333.9 Hz), 120.8, 119.0, 118.5, 118.4, 107.1. IR (KBr): 3098, 3060, 2230, 1604, 1579, 1499, 1482, 1404, 1282, 1244, 1170, 1106, 1070, 1005, 964, 873, 835, 816, 738, 701 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₄H₉F₃NOSe]⁺ ([M + H]⁺): 343.9796; found: 343.9802.

(4-(2-Methyl-4-nitrophenoxy)phenyl)(trifluoromethyl)selane (3c)

64.1 mg, 85% yield from **Procedure A** using **1i** (112.2 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 50/0 to 50/1 (v/v) as eluents for column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (dm, J = 2.8 Hz, 1H), 8.05 (dd, J = 8.9, 2.8 Hz, 1H), 7.76 (dm, J = 8.7 Hz, 2H), 7.01 (dm, J = 8.8 Hz, 2H), 6.92 (d, J = 8.9 Hz, 1H), 2.38 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.5 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 157.9, 143.6, 139.4, 130.6, 127.0, 123.2, 122.4 (q, J = 333.9 Hz), 119.9, 117.8, 117.3, 16.3. IR (KBr): 3075, 2930, 2857, 1724, 1618, 1579, 1521, 1483, 1345, 1281, 1212, 1130, 1096, 1068, 1012, 932, 900, 828, 774, 746, 715, 705 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₄H₁₁F₃NO₃Se]⁺ ([M + H]⁺): 377.9851; found: 377.9857.

6-((Trifluoromethyl)selanyl)chroman-4-one (**3d**)¹³

46.7 mg, 79% yield from **Procedure A** using **1j** (96.0 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 40/0 to 40/1 (v/v) as eluents for column chromatography.

Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 1H), 7.79 (dd, J = 8.6, 2.0 Hz, 1H), 7.00 (d, J = 8.6 Hz, 1H), 4.58 (t, J = 6.5 Hz, 2H), 2.84 (t, J = 6.5 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 190.5, 163.2, 144.2, 136.6, 122.3 (q, J = 333.9 Hz), 122.0, 119.7, 114.4, 67.2, 37.4.

5-Methoxy-2-((trifluoromethyl)selanyl)benzaldehyde (3e)

48.7 mg, 86% yield from **Procedure A** using **1k** (93.6 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 50/0 to 50/1 (v/v) as eluents for column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 10.41 (s, 1H), 7.77 (d, J = 8.6 Hz, 1H), 7.52 (d, J = 3.0 Hz, 1H), 7.17 (dd, J = 8.6, 3.0 Hz, 1H), 3.90 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.5 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 192.7, 161.4, 138.7, 138.1, 122.2 (q, J = 333.9 Hz), 121.7, 118.1, 114.9, 55.8. IR (KBr): 3073, 3014, 2943, 2846, 1703, 1588, 1563, 1476, 1384, 1281, 1193, 1100, 1020, 932, 873, 822, 783, 738 cm⁻¹. HRMS-EI (m/z) calcd. for [C₉H₇F₃O₂⁷⁴Se] ([M]): 277.9623; found: 277.9619.

2-Methoxy-5-((trifluoromethyl)selanyl)phenyl trifluoromethanesulfonate (**3f**) $T_{0} \longrightarrow SeCF_{3}$

57.2 mg, 71% yield from **Procedure A** using **11** (117.6 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 50/0 to 50/1 (v/v) as eluents for column

chromatography.

Light yellow solid. M.p.: 60-62 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 8.6, 2.0 Hz, 1H), 7.61 (d, J = 1.9 Hz, 1H), 7.06 (d, J = 8.6 Hz, 1H), 3.96 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.8 (s, 3F), -73.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 153.5, 138.7, 138.5, 131.3, 122.2 (q, J = 333.9 Hz), 118.7 (q, J = 320.0 Hz), 113.9, 112.8, 56.4. IR (KBr): 3091, 3022, 2990, 2953, 2851, 2228, 1597, 1499, 1445, 1414, 1302, 1259, 1219, 1154, 1075, 1017, 909, 808, 770, 747, 719 cm⁻¹. HRMS-EI (m/z) calcd. for [C₉H₆F₆O₄S⁷⁴Se] ([M]): 397.9116; found: 397.9110.

(3-Fluoro-4-methoxyphenyl)(trifluoromethyl)selane (3g)

31.7 mg, 58% yield from **Procedure A** using **1m** (91.6 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

Petroleum ether as eluent for column chromatography.

Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.46 (m, 2H), 6.96 (m, 1H), 3.92 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.9 (s, 3F), -132.8 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 151.9 (d, *J* = 252.0 Hz), 150.0 (d, *J* = 10.1 Hz), 134.1 (d, *J* = 3.8 Hz), 124.8 (q, *J* = 18.9 Hz), 122.4 (q, *J* = 333.9 Hz), 113.9 (d, *J* = 1.3 Hz), 112.5 (d, *J* = 7.6 Hz), 56.2. IR (KBr): 3081, 3019, 2937, 2846, 1602, 1580, 1506, 1444, 1408, 1302, 1272, 1215, 1134, 1096, 1026, 878, 808, 762, 738 cm⁻¹. HRMS-EI (m/z) calcd. for [C₈H₆F₄O⁷⁴Se] ([M]): 267.9580; found: 267.9574.

(3-Chloro-4-methoxyphenyl)(trifluoromethyl)selane (**3h**)¹³

42.0 mg, 72% yield from **Procedure A** using **1n** (94.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

Petroleum ether as eluent for column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 2.0 Hz, 1H), 7.60 (dd, J = 8.6, 2.0 Hz, 1H), 6.92 (d, J = 8.6 Hz, 1H), 3.93 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 138.7, 137.2, 123.4, 122.3 (q, J = 333.9 Hz), 113.2, 112.7, 56.3.

(3-Bromo-4-methoxyphenyl)(trifluoromethyl)selane (3i)

Br SeCF₃

52.3 mg, 78% yield from **Procedure A** using **10** (103.6 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

Petroleum ether as eluent for column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 2.0 Hz, 1H), 7.65 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.90 (d, *J* = 8.5 Hz, 1H), 3.93 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 157.9, 141.6, 137.9, 122.4 (q, *J* = 333.9 Hz), 113.7, 112.6, 112.4, 56.4. IR (KBr): 3068, 3016, 2941, 2844, 1579, 1557, 1482, 1439, 1373, 1293, 1257, 1128, 1099, 1021, 886, 809, 738, 710 cm⁻¹. HRMS-EI (m/z) calcd. for [C₈H₆BrF₃O⁷⁴Se] ([M]): 327.8779; found: 327.8773.

2-(4-((Trifluoromethyl)selanyl)phenoxy)ethan-1-ol (3j)

HO______Secf3

26.4 mg, 46% yield from **Procedure A** using **1p** (109.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 50/0 to 50/1 (v/v) as eluents for column chromatography.

White solid. M.p.: 69-71 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 4.11 (t, J = 4.5 Hz, 2H), 3.99 (m, 2H), 2.00 (t, J = 6.2 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 160.5, 139.0, 122.5 (q, J = 333.9 Hz), 115.7, 113.5, 69.4, 61.3. IR (KBr): 3451, 2935, 2856, 1592, 1571, 1493, 1456, 1382, 1303, 1247, 1180, 1144, 1094, 1005, 942, 894, 836, 812, 735 cm⁻¹. HRMS-EI (m/z) calcd. for [C₉H₉F₃O₂⁷⁴Se] ([M]): 279.9779; found: 279.9774.

5-((Trifluoromethyl)selanyl)benzo[d][1,3]dioxole (**3k**)¹⁴

30.0 mg, 56% yield from **Procedure A** using 1q (90.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 50/0 to 50/1 (v/v) as eluents for column

chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.24 (dd, J = 8.0, 1.7 Hz, 1H), 7.19 (d, J = 1.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.02 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 148.4, 132.1, 122.5 (q, J = 333.9 Hz), 117.1, 113.7, 109.4, 101.8.

2-Phenyl-5-((trifluoromethyl)selanyl)thiophene (3l)

53.0 mg, 86% yield from **Procedure A** using **1r** (98.2 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

Hexane as eluent for column chromatography.

Light yellow solid. M.p.: 44-46 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dm, J = 7.3 Hz, 2H), 7.43-7.40 (m, 3H), 7.35 (tm, J = 7.4 Hz, 1H), 7.28 (d, J = 3.8 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -38.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 153.5, 140.9, 133.3, 129.1, 128.6, 126.1, 124.3, 121.9 (q, J = 336.4 Hz), 114.5. IR (KBr): 3094, 2924, 1595, 1489, 1447, 1423, 1326, 1234, 1207, 1166, 1095, 999, 945, 835, 804, 758, 736 cm⁻¹. HRMS-EI (m/z) calcd. for [C₁₁H₇F₃S⁷⁴Se] ([M]): 301.9445; found: 301.9440.

2-(5-((Trifluoromethyl)selanyl)thiophen-2-yl)benzo[*d*]thiazole (**3m**)

37.8 mg, 52% yield from **Procedure A** using **1s** (109.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (1 mL).

45.7 mg, 63% yield from **Procedure B** using **1s** (109.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 40/0 to 40/1 (v/v) as eluents for column chromatography.

Light yellow solid. M.p.: 120-122 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 3.8 Hz, 1H), 7.50 (tm, J = 7.7 Hz, 1H), 7.43 (d, J = 3.8 Hz, 1H), 7.40 (tm, J = 7.6 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.4 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 153.6, 145.5, 140.3, 134.8, 128.9,

126.7, 125.8, 123.4, 121.7 (q, J = 336.4 Hz), 121.6, 119.6. IR (KBr): 3085, 3057, 1536, 1475, 1435, 1413, 1313, 1231, 1200, 1140, 1100, 1014, 904, 832, 813, 755, 727, 703 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{12}H_7F_3NS_2Se]^+$ ([M + H]⁺): 365.9132; found: 365.9140.

2,6-Di-*tert*-butyl-3-((trifluoromethyl)selanyl)pyridine (**3n**)

23.7 mg, 47% yield from **Procedure A** using **1t** (78.5 mg, 0.15 mmol), [Me₄N][SeCF₃] (53.5 mg, 0.24 mmol), and MeCN (1 mL).

21.5 mg, 42% yield from **Procedure B** using **1t** (78.5 mg, 0.15 mmol), [Me₄N][SeCF₃] (53.5 mg, 0.24 mmol), MeCN (1 mL).

Hexane as eluent for column chromatography.

Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 1.50 (s, 9H), 1.35 (s, 9H). ¹⁹F NMR (471 MHz, CDCl₃) δ -35.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 167.9, 147.7, 122.4 (q, *J* = 333.9 Hz), 117.0, 114.7, 40.6, 37.9, 30.5, 30.0. IR (KBr): 3056, 2966, 2930, 2870, 1568, 1478, 1420, 1365, 1262, 1204, 1151, 1096, 1009, 932, 833, 739, 692 cm⁻¹. HRMS-EI (m/z) calcd. for [C₁₄H₂₀F₃N⁷⁴Se] ([M]): 333.0773; found: 333.0767.

6-Methoxy-5-((trifluoromethyl)selanyl)quinolone (30)

53.1 mg, 86% yield from **Procedure A** using **1u** (98.2 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 50/0 to 50/1 (v/v) as eluents for column chromatography.

White solid. M.p.: 76-78 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.79 (dd, J = 4.2, 1.5 Hz, 1H), 8.76 (d, J = 8.7 Hz, 1H), 8.26 (d, J = 9.3 Hz, 1H), 7.57 (d, J = 9.3 Hz, 1H), 7.46 (dd, J = 8.6, 4.2 Hz, 1H), 4.04 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -34.9 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 159.6, 148.7, 144.3, 135.6, 135.2, 132.3, 122.7, 122.3 (q, J = 336.4 Hz), 116.1, 106.5, 57.0. IR (KBr): 3069, 2969, 2943, 2844, 1605, 1586, 1499, 1463, 1322, 1260, 1188, 1101, 1059, 966, 894, 808, 768, 735, 720 cm⁻¹.

9-Methyl-3-((trifluoromethyl)selanyl)-9H-carbazole (3p)

20.2 mg, 31% yield from **Procedure A** using **1v** (102.6 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (2 mL), 24 hours.

38.7 mg, 59% yield from **Procedure B** using **1w** (109.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 40/0 to 40/1 (v/v) as eluents for column chromatography.

White solid. M.p.: 106-108 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, J = 1.5 Hz, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.82 (dd, J = 8.5, 1.6 Hz, 1H), 7.53 (tm, J = 7.7 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.30 (tm, J = 7.5 Hz, 1H), 3.86 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 141.8, 141.3, 134.5, 130.1, 126.6, 124.0, 122.7 (q, J = 335.2 Hz), 122.1, 120.6, 119.8, 111.1, 109.5, 108.8, 29.2. IR (KBr): 3054, 2940, 2874, 1589, 1496, 1458, 1355, 1315, 1274, 1244, 1157, 1100, 1006, 883, 801, 749, 734 cm⁻¹. HRMS-EI (m/z) calcd. for [C₁₄H₁₀F₃N⁷⁴Se] ([M]): 322.9990; found: 322.9985.

Methyl

(*S*)-2-(1,3-dioxoisoindolin-2-yl)-3-(4-((trifluoromethyl)selanyl)phenyl)propanoate (**3q**)

52.9 mg, 58% yield from **Procedure A** using **1x** (128.2 mg, 0.20 mmol), $[Me_4N][SeCF_3]$ (71.4 mg, 0.32 mmol), and MeCN (1 mL). The molar ratio of the *para-/ortho*-isomers was found to be > 7.7:1 according to the NMR data.

A mixture of petroleum ether/methyl *t*-butyl ether = 30/1 to 10/1 (v/v) as eluents for column chromatography.

Colorless oil. ¹H NMR (500 MHz, CDCl₃, for the *para*-isomer) δ 7.80 (m, 2H), 7.72 (m, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 5.18 (m, 1H), 3.80 (s, 3H),

3.66-3.56 (m, 2H). ¹⁹F NMR (471 MHz, CDCl₃, for the *para*-isomer) δ -36.3 (s, 3F). ¹³C NMR (126 MHz, CDCl₃, for the *para*-isomer) δ 169.0, 167.4, 139.5, 137.3, 134.3, 134.2, 131.5, 130.2, 123.6, 122.4 (q, *J* = 333.9 Hz), 53.0, 52.8, 34.5. IR (KBr): 3062, 3031, 2955, 2926, 2849, 1777, 1749, 1717, 1614, 1594, 1469, 1437, 1388, 1309, 1246, 1202, 1101, 1071, 1015, 919, 884, 808, 738, 720, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₁₅F₃NO₄Se]⁺ ([M + H]⁺): 458.0113; found: 458.0120.

1,3-Dimethyl-6-((trifluoromethyl)selanyl)quinazoline-2,4(1*H*,3*H*)-dione (**3r**)

62.9 mg, 93% yield from **Procedure A** using **1y** (104.4 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (1 mL).

A mixture of petroleum ether/THF = 10/1 to 6/1 (v/v) as eluents for column chromatography.

Light yellow solid. M.p.: 103-105 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (m, 1H), 7.99 (m, 1H), 7.21 (d, *J* = 8.6 Hz, 1H), 3.61 (s, 3H), 3.47 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.3 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 160.9, 150.9, 143.3, 141.9, 137.9, 122.3 (q, *J* = 333.9 Hz), 116.3, 116.1, 114.9, 31.0, 28.7. IR (KBr): 3087, 3045, 2959, 2892, 1709, 1662, 1601, 1581, 1493, 1424, 1363, 1312, 1241, 1129, 1001, 871, 821, 781, 738, 719, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₁H₉F₃N₂NaO₂Se]⁺ ([M + Na]⁺): 360.9674; found: 360.9673.

3-Chloro-6-methyl-9-((trifluoromethyl)selanyl)dibenzo[c,f][1,2]thiazepin-11(6H)-one 5,5-dioxide (**3s**)

82.0 mg, 90% yield from **Procedure B** using **1z** (127.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 40/1 to 30/1 (v/v) as eluents for column chromatography.

Yellow solid. M.p.: 125-127 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 1.5 Hz,

1H), 7.97 (dd, J = 8.4, 1.4 Hz, 1H), 7.94 (d, J = 1.5 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.70 (dd, J = 8.3, 1.5 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 3.42 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -35.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 188.6, 143.0, 142.6, 140.5, 139.0, 138.3, 134.1, 133.6, 133.2, 131.0, 125.1, 124.8, 122.3 (q, J = 332.6 Hz), 119.7, 38.6. IR (KBr): 3091, 2959, 2871, 1661, 1585, 1469, 1431, 1364, 1287, 1231, 1137, 1088, 950, 890, 820, 770, 737, 702, 681 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₉ClF₃NNaO₃SSe]⁺ ([M + Na])⁺: 477.9001; found: 477.9002.

Ethyl 2-(4-chloro-2-((trifluoromethyl)selanyl)phenoxy)-2-methylpropanoate (**3t**)

57.4 mg, 74% yield from **Procedure A** using **1aa** (114.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/THF = 60/0 to 60/1 (v/v) as eluents for column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 2.4 Hz, 1H), 7.23 (dd, J = 8.9, 2.5 Hz, 1H), 6.72 (d, J = 8.9 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.63 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -34.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 153.5, 135.1, 130.3, 127.4, 122.5 (q, J = 333.9 Hz), 121.8, 117.6, 80.8, 61.8, 25.1, 14.0. IR (KBr): 3074, 2990, 2876, 1739, 1579, 1470, 1385, 1283, 1243, 1138, 1099, 1023, 969, 910, 816, 768, 738, 721 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₃H₁₄ClF₃NaO₃Se]⁺ ([M + Na]⁺): 412.9641; found: 412.9641.

Isopropyl

2-(4-(4-chlorobenzoyl)-2-((trifluoromethyl)selanyl)phenoxy)-2-methylpropanoate (**3u**)

86.7 mg, 85% yield from **Procedure A** using **1ab** (138.2 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/THF = 30/0 to 30/1 (v/v) as eluents for column chromatography.

Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 1.8 Hz, 1H), 7.79 (dd, J = 8.7, 2.1 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 8.7 Hz, 1H), 5.08 (m, 1H), 1.71 (s, 6H), 1.19 (d, J = 6.3 Hz, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -34.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 193.1, 172.5, 159.0, 139.2, 138.9, 135.7, 133.1, 131.2, 130.9, 128.7, 122.5 (q, J = 333.9 Hz), 115.4, 115.0, 81.0, 69.6, 25.2, 21.5. IR (KBr): 3068, 2985, 2877, 1734, 1659, 1589, 1482, 1387, 1269, 1148, 1098, 1015, 944, 848, 760, 739, 700 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₁H₂₁ClF₃O₄Se]⁺ ([M + H]⁺): 509.0240; found: 509.0245.

1-(4-Methoxy-3-((trifluoromethyl)selanyl)benzoyl)pyrrolidin-2-one (**3v**)

46.9 mg, 64% yield from **Procedure A** using **1ac** (112.0 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/dichloromethane = 1/10 to 1/20 (v/v) as eluents for column chromatography.

Light yellow solid. M.p.: 76-78 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 2.0 Hz, 1H), 7.75 (dd, J = 8.6, 2.1 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H), 3.95-3.92 (m, 5H), 2.61 (t, J = 8.0 Hz, 2H), 2.14 (m, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -35.0 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 168.8, 162.2, 139.4, 134.0, 127.2, 122.4 (q, J = 333.9 Hz), 111.8, 110.2, 56.4, 46.7, 33.3, 17.7. IR (KBr): 3088, 2989, 2844, 1745, 1660, 1595, 1562, 1491, 1397, 1360, 1232, 1124, 1101, 1015, 919, 834, 767, 736, 694 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₃H₁₃F₃NO₃Se]⁺ ([M + H]⁺): 368.0007; found: 368.0009.

Methyl 5-(2,5-dimethyl-4-((trifluoromethyl)selanyl)phenoxy)-2,2-dimethylpentanoate (**3w**)

55.7 mg, 68% yield from **Procedure A** using **1ad** (119.2 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), MeCN (1 mL).

A mixture of petroleum ether/dichloromethane = 10/1 to 2/1 (v/v) as eluents for

column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (s, 1H), 6.73 (s, 1H), 3.95 (t, J = 5.9 Hz, 2H), 3.66 (s, 3H), 2.51 (s, 3H), 2.18 (s, 3H), 1.78-1.69 (m, 4H), 1.22 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 178.2, 159.3, 142.7, 141.1, 125.6, 122.7 (q, J = 335.2 Hz), 113.3, 112.7, 68.0, 51.8, 42.1, 37.0, 25.2, 25.0, 23.5, 15.5. IR (KBr): 2981, 2953, 2928, 2874, 1732, 1601, 1563, 1497, 1474, 1386, 1366, 1309, 1249, 1198, 1124, 1097, 1018, 991, 843, 802, 774, 737 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₂₃F₃NaO₃Se]⁺ ([M + Na]⁺): 435.0657; found: 435.0666.

Methyl 2,5-dichloro-6-methoxy-3-((trifluoromethyl)selanyl)benzoate (**3x**)

31.0 mg, 41% yield from **Procedure A** using **1ae** (113.2 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

24.9 mg, 33% yield from **Procedure B** using **1ae** (113.2 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/ethyl acetate = 40/0 to 40/1 (v/v) as eluents for column chromatography.

Light yellow solid. M.p.: 58-60 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (s, 1H), 3.98 (s, 3H), 3.95 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -34.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 155.6, 139.9, 134.9, 131.5, 127.3, 122.2 (q, *J* = 333.9 Hz), 120.0, 62.4, 53.2. IR (KBr): 3079, 3019, 2960, 2951, 2883, 2848, 1745, 1560, 1461, 1404, 1266, 1168, 1126, 1098, 1008, 965, 894, 862, 795, 736 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₀H₈Cl₂F₃O₃Se]⁺ ([M + H]⁺): 382.8962; found: 382.8970.

N-Benzyl-*N*-(4-nitro-2-(4-((trifluoromethyl)selanyl)phenoxy)phenyl)methanesulfona mide (**3y**)

12.4 mg, 11% yield from **Procedure A** using **1af** (146.0 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

78.4 mg, 72% yield from **Procedure A** using **1af** (146.0 mg, 0.20 mmol), $[Me_4N][SeCF_3]$ (71.4 mg, 0.32 mmol), and MeCN (2 mL), and the reaction run for 24 h.

A mixture of petroleum ether/ethyl acetate = 10/1 to 5/1 (v/v) as eluents for column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.86-7.81 (m, 3H), 7.66 (d, J = 2.4 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 7.26 (m, 5H), 7.05 (dm, J = 7.4 Hz, 2H), 4.87 (s, 2H), 3.04 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 156.7, 154.4, 147.9, 139.7, 135.2, 135.1, 134.1, 128.8, 128.4, 122.4 (q, J = 333.9 Hz), 120.5, 118.8, 118.8, 118.7, 113.4, 54.2, 40.6. IR (KBr): 3089, 3034, 2935, 2860, 2259, 1734, 1583, 1528, 1486, 1418, 1347, 1247, 1215, 1153, 1099, 1012, 911, 843, 795, 737, 702 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₁H₁₈F₃N₂O₅SSe]⁺ ([M + H]⁺): 547.0048; found: 547.0059.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(Acetoxymethyl)-6-(2-(acetoxymethyl)-4-((trifluoromethyl)selan yl)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (**3**z)

30.2 mg, 47% yield from **Procedure A** using **1ag** (82.8 mg, 0.10 mmol), [Me₄N][SeCF₃] (35.7 mg, 0.16 mmol), MeCN (0.5 mL).

30.5 mg, 47% yield from **Procedure B** using **1ag** (82.8 mg, 0.10 mmol), [Me₄N][SeCF₃] (35.7 mg, 0.16 mmol), MeCN (0.5 mL).

A mixture of petroleum ether/ethyl acetate/dichloromethane = 10/3/0 to 10/3/2 (v/v/v) as eluents for column chromatography.

Light yellow solid. M.p.: 74-76 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 1.9 Hz, 1H), 7.64 (dd, J = 8.5, 2.0 Hz, 1H), 7.06 (d, J = 8.5 Hz, 1H), 5.33-5.28 (m, 2H), 5.21-5.10 (m, 3H), 5.02 (d, J = 13.4 Hz, 1H), 4.27 (dd, J = 12.3, 5.4 Hz, 1H), 4.18 (dd, J = 12.3, 2.4 Hz, 1H), 3.89 (m, 1H), 2.11 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.04 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.5 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 170.5, 170.2, 169.4, 169.3, 155.9, 138.4, 138.0, 127.8, 122.4 (q, J = 12.3 + 12.3 + 12.4 (q, J = 12.3 + 12.4

332.6 Hz), 116.2, 116.2, 98.7, 72.5, 72.2, 70.9, 68.2, 61.8, 60.3, 20.9, 20.6, 20.6. IR (KBr): 3019, 2964, 2947, 2893, 2848, 1743, 1647, 1594, 1579, 1486, 1434, 1379, 1229, 1127, 1097, 1046, 982, 922, 895, 827, 726, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₄H₂₇F₃NaO₁₂Se]⁺ ([M + Na]⁺): 667.0512; found: 667.0518.

5-(2-Chlorobenzyl)-2-((trifluoromethyl)selanyl)-4,5,6,7-tetrahydrothieno[3,2-*c*]pyridi ne (**3aa**)

CI SecF₃

25.2 mg, 31% yield from **Procedure A** using **1ah** (119.0 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

25.8 mg, 31% yield from **Procedure B** using **1ah** (119.0 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

60.5 mg, 74% yield from **Procedure B** using **1ai** (126.2 mg, 0.20 mmol), $[Me_4N][SeCF_3]$ (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/dichloromethane = 5/1 to 2/1 (v/v) as eluents for column chromatography.

Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 7.4 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.27-7.19 (m, 2H), 7.04 (s, 1H), 3.83 (s, 2H), 3.63 (s, 2H), 2.93 (t, *J* = 5.2 Hz, 2H), 2.87 (t, *J* = 5.3 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -38.5 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 143.5, 138.2, 135.8, 135.8, 134.3, 130.7, 129.6, 128.4, 126.8, 121.8 (q, *J* = 336.4 Hz), 112.5, 58.5, 52.5, 50.3, 25.8. IR (KBr): 3066, 2925, 2839, 1682, 1572, 1462, 1443, 1362, 1290, 1234, 1137, 1097, 1036, 947, 906, 844, 753, 738 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄ClF₃NSSe]⁺ ([M + H]⁺): 411.9647; found: 411.9647.

Methyl 2-(2-fluoro-4'-((trifluoromethyl)selanyl)-[1,1'-biphenyl]-4-yl)propanoate (**3ab**)

64.0 mg, 79% yield from **Procedure A** using **1aj** (118.0 mg, 0.20 mmol), $[Me_4N][SeCF_3]$ (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/THF = 40/0 to 40/1 (v/v) as eluents for column chromatography.

Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 2H), 7.55 (dm, J = 8.2 Hz, 2H), 7.39 (m, 1H), 7.19-7.14 (m, 2H), 3.78 (q, J = 7.2 Hz, 1H), 3.71 (s, 3H), 1.55 (d, J = 7.2 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -35.9 (s, 3F), -117.2 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 174.3, 159.7 (d, J = 250.7 Hz), 142.8 (d, J = 7.6 Hz), 137.7, 137.0, 130.7 (d, J = 3.8 Hz), 130.1 (d, J = 2.5 Hz), 126.5 (d, J = 12.6 Hz), 123.8 (d, J = 3.8 Hz), 122.6 (q, J = 333.9 Hz), 121.8, 115.5 (d, J = 22.7 Hz), 52.3, 45.0, 18.4. IR (KBr): 3064, 3034, 2985, 2954, 2880, 2845, 1739, 1625, 1574, 1515, 1485, 1462, 1429, 1392, 1334, 1199, 1101, 1007, 921, 876, 843, 739, 723 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₄F₄NaO₂Se]⁺ ([M + Na]⁺): 428.9987; found: 428.9987.

1-(Phenyl(4'-((trifluoromethyl)selanyl)-[1,1'-biphenyl]-4-yl)methyl)-1*H*-imidazole (**3ac**)

51.0 mg, 56% yield from **Procedure A** using **1ak** (128.4 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/dichloromethane/ethyl acetate = 10/10/3 as eluents for column chromatography.

Colorless oil. ¹H NMR (500 MHz, CDCl₃) 7.81 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.2 Hz, 4H), 7.54 (s, 1H), 7.41-7.37 (m, 3H), 7.20 (d, J = 8.2 Hz, 2H), 7.16-7.14 (m, 3H), 6.90 (m, 1H), 6.58 (s, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.0 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 142.3, 140.0, 138.7, 138.6, 137.5, 129.1, 128.7, 128.6, 128.2, 128.1, 127.7, 122.5 (q, J = 328.9 Hz), 121.8, 121.8, 119.5, 65.0. IR (KBr): 3060, 3031, 2958, 2926, 1706, 1589, 1485, 1453, 1390, 1224, 1100, 1073, 1004, 905, 822, 738, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₃H₁₈F₃N₂Se]⁺ ([M + H]⁺): 459.0582; found: 459.0585.

2-Chloro-N-(4'-chloro-5-((trifluoromethyl)selanyl)-[1,1'-biphenyl]-2-yl)nicotinamide
(**3ad**)

69.7 mg, 71% yield from **Procedure A** using **1al** (134.8 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (1 mL).

A mixture of petroleum ether/dichloromethane = 1/1 to 2/3 (v/v) as eluents for column chromatography.

Pale solid. M.p.: 164-166 °C. ¹H NMR (500 MHz, CDCl₃) 8.56 (d, J = 8.6 Hz, 1H), 8.43 (dd, J = 4.7, 2.0 Hz, 1H), 8.35 (brs, 1H), 8.15 (dd, J = 7.7, 1.8 Hz, 1H), 7.81 (dd, J = 8.6, 1.9 Hz, 1H), 7.64 (d, J = 2.0 Hz, 1H), 7.46 (dm, J = 8.5 Hz, 2H), 7.37-7.32 (m, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -36.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 162.5, 151.6, 146.6, 140.4, 138.6, 137.7, 136.7, 135.2, 134.7, 132.9, 130.8, 130.6, 129.6, 123.0, 122.4 (q, J = 332.6 Hz), 122.3, 118.1. IR (KBr): 3222, 3084, 3002, 2924, 1669, 1574, 1558, 1512, 1470, 1405, 1381, 1308, 1275, 1148, 1101, 1078, 1011, 899, 853, 779, 737, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₁₂Cl₂F₃N₂OSe]⁺ ([M + H]⁺): 490.9439; found: 490.9441.

Methyl

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-6-((trifluoromethyl)selanyl)-1*H*-indol-3-yl)acetate (**3ae**)

17.8 mg, 17% yield from **Procedure A** using **1am** (140.6 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (2 mL).

55.0 mg, 53% yield from **Procedure B** using **1am** (140.6 mg, 0.20 mmol), [Me₄N][SeCF₃] (71.4 mg, 0.32 mmol), and MeCN (2 mL).

A mixture of petroleum ether/ethyl acetate = 20/1 to 15/1 (v/v) as eluents for column chromatography.

Light yellow solid. M.p.: 129-131 °C. ¹H NMR (500 MHz, CD₃CN) δ 7.64 (d, J = 8.5

Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.36 (s, 1H), 7.14 (s, 1H), 3.89 (s, 3H), 3.73 (s, 2H), 3.67 (s, 3H), 2.27 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -37.2 (s, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 171.7, 168.6, 156.1, 139.3, 138.6, 134.5, 133.8, 131.8, 131.1, 129.7, 124.0, 123.3 (q, J = 332.6 Hz), 113.4, 107.7, 101.1, 56.8, 52.2, 29.7, 13.4. IR (KBr): 2994, 2965, 2952, 2928, 2849, 1732, 1684, 1598, 1464, 1418, 1398, 1344, 1305, 1264, 1225, 1126, 1100, 1014, 976, 910, 875, 843, 756, 712 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₁H₁₇ClF₃NNaO₄Se]⁺ ([M + Na]⁺): 541.9856; found: 541.9856.

12. An example of the scale-up C-H trifluoromethylselenolation

Under a N₂ atmosphere, trifluoromethanesulfonic anhydride (Tf₂O, 0.40 mL, 2.4 mmol) was added to a mixture of 4-phenoxybenzonitrile (390 mg, 2.0 mmol) and dibenzo[*b*,*d*]thiophene 5-oxide (440 mg, 2.2 mmol) in DCM (8 mL) at -40 °C with stirring. The mixture was reacted at -40 °C for 1 h, warmed to room temperature for 2 h, diluted with DCM (40 mL), and neutralized by a saturated aqueous NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of DCM / MeOH (20/0 to 20/1 (v/v)) as eluents to give 1.03 g of **1d** as a white solid.

In a nitrogen-filled glove box, a sealed round bottom flask was charge with **1d** (1.03 g), [Me₄N][SeCF₃] (713.6 mg, 3.2 mmol), MeCN (10 mL), and a teflon magnetic stir bar. The flask was taken out from the glove box and placed into a cooling tank to keep the reaction temperature at around 0 °C. After irradiated with a 5 W blue LED for 16 h, the mixture was concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using petroleum ether as eluent to give 542 mg of 4-(4-((trifluoromethyl)selanyl)phenoxy)benzonitrile (**3a**, 79%) with recovery of 340 mg of dibenzo[*b*,*d*]thiophene (92%).

13. Experiments for the catalyst-free trifluoromethylthiolation of arylsulfonium salt with [Me₄N][SCF₃]

Only trace amount of 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile was detected by both ¹⁹F NMR and HPLC ($\lambda = 250$ nm, water / methanol = 20 / 80 (v / v)) analysis of the reaction mixture using pure 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile (δ -43.1 ppm, t_R = 12.46 min) as an external standards.

The ¹⁹F NMR spectrum of the above reaction mixture using PhOCF₃ (29.1 mg, 0.18 mmol) as an internal standard.

None of 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile (0%) was detected by both ¹⁹F NMR and HPLC (λ = 250 nm, water / methanol = 20 / 80 (v / v)) analysis of the reaction mixture using pure 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile (δ -43.1 ppm, t_R = 12.46 min) as an external standards.

The ¹⁹F NMR spectrum of the above reaction mixture using PhOCF₃ (28.0 mg, 0.17 mmol) as an internal standard.

Synthesis of 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile by other method

Under an ambient atmosphere, CsF (798 mg, 5.25 mmol) was added to a mixture of 4-fluorobenzonitrile (605 mg, 5.00 mmol) and 4-((trifluoromethyl)thio)phenol (1.02 g, 5.25 mmol) in DMSO (5 mL). The mixture was reacted at 110 °C overnight, cooled to room temperature, diluted with ethyl acetate (20 mL), and washed with water (3 × 50 mL). The aqueous phases were extracted with ethyl acetate (20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether/ethyl acetate = 40/1 (v/v) as eluents to give 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile as a white solid (1.4 g, 95%). M.p.: 72-74 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.65 (m, 4H), 7.09 (d, *J* = 8.6 Hz, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ -43.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 160.1, 157.8, 138.6, 134.4, 129.4 (q, *J* = 308.7 Hz), 120.5, 119.9, 119.1, 118.5, 107.3. IR (KBr): 3098, 3061, 3048, 2230, 1605, 1582, 1500, 1484, 1410, 1282, 1245, 1119,

1007, 874, 837, 755, 740, 713 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{14}H_8F_3NNaOS]^+$ ($[M + Na]^+$): 318.0171; found: 318.0170.

Note: The product obtained from this procedure was used as a standard reference for the analysis of the above reaction mixtures.

Reference

1. F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho, N. Frank, T. Ritter, *Nature* **2019**, *567*, 223-228.

2. P. Xu, D. Zhao, F. Berger, A. Hamad, J. Rickmeier, R. Petzold, M. Kondratiuk, K. Bohdan, T. Ritter, *Angew. Chem. Int. Ed.* **2020**, *59*, 1956-1960.

3. Z.-Y. Tian, Z.-H. Lin, C.-P. Zhang, Org. Lett. 2021, 23, 4400-4405.

4. M. H. Aukland, M. Siauciulis, A. West, G. J. P. Perry, D. J. Procter, *Nat. Catal.* **2020**, *3*, 163-169.

5. W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 5th ed.; Butterworth Heinemann: Oxford, **2003**.

N. A. Till, L. Tian, Z. Dong, G. D. Scholes, D. W. C. MacMillan, J. Am. Chem. Soc.
2020, 142, 15830-15841.

7. E. M. Espinoza, J. A. Clark, J. Soliman, J. B. Derr, M. Morales, V. I. Vullev, J. *Electrochem. Soc.* **2019**, *166*, H3175-H3187.

8. H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem. 2004, 76, 2105-2146.

9. M. Monalti, A. Credi, L. Prodi, M. T. Gandolfi, *Chemical Actinometry. Handbook* of *Photochemistry*, 3rd ed; Taylor & Francis Group, LLC. Boca Raton, FL, **2006**, 601-616.

10. M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426-5434.

11. A. Selmani, F. Schoenebeck, Org. Lett. 2021, 23, 4779-4784.

12. K. Kafuta, A. Korzun, M. Böhm, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 2020, 59, 1950-1955.

13. J.-B. Han, T. Dong, D. A. Vicic, C.-P. Zhang, Org. Lett. 2017, 19, 3919-3922.

14. Q. Glenadel, C. Ghiazza, A. Tlili, T. Billard, Adv. Synth. Catal. 2017, 359, 3414-3420.

14. NMR spectra of the products

¹H NMR spectrum of 2,3,7,8-tetramethylthianthrene 5-oxide (TMTO)

¹⁹F NMR spectrum of 3,7-difluorodibenzo-[*b*,*d*]thiophene 5-oxide (2F-DBTO)

¹H NMR spectrum of 1a-BF₄

 ^{19}F NMR spectrum of $\textbf{1a-}\text{BF}_4$

¹³C NMR spectrum of **1a-**BF₄

¹H NMR spectrum of **1b**

¹⁹F NMR spectrum of **1b**

--78.89 --126.07 --126.08 --126.10 --126.11 --126.13 --126.15 --126.13 --124.30 --134.30 --134.35 --134.35 --134.35

¹³C NMR spectrum of **1b**

¹H NMR spectrum of **1c**

¹⁹F NMR spectrum of **1c**

¹³C NMR spectrum of **1c**

¹H NMR spectrum of **1d**

¹⁹F NMR spectrum of **1d**

¹³C NMR spectrum of **1d**

¹H NMR spectrum of **1e**

¹⁹F NMR spectrum of **1e**

¹³C NMR spectrum of **1e**

^1H NMR spectrum of 1f

¹⁹F NMR spectrum of **1f**

^{13}C NMR spectrum of 1f

¹H NMR spectrum of **1g**

 ^{13}C NMR spectrum of 1g

¹H NMR spectrum of **1i**

¹⁹F NMR spectrum of **1i**

¹³C NMR spectrum of **1i**

¹³C NMR spectrum of **1j**

¹H NMR spectrum of **1k**

¹⁹F NMR spectrum of **1k**

 1 H NMR spectrum of **1**l

¹³C NMR spectrum of **11** -156.81 -139.40 -139.40 -133.31 -133.31 -133.31 -133.31 -133.31 -133.40 -124.47 -122.45 -122.4 -57.33 TfO ⁻OTf <u>`</u>0 ¹³C NMR (126 MHz, CD₃CN) 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 30 20 10 0 -10 50 40

¹H NMR spectrum of 1m

¹⁹F NMR spectrum of **1m**

¹³C NMR spectrum of **1m**

¹H NMR spectrum of $\mathbf{1n}$

¹³C NMR spectrum of **1n**

¹H NMR spectrum of **10**

¹⁹F NMR spectrum of **10**

¹³C NMR spectrum of **10**

¹H NMR spectrum of **1p**

¹H NMR spectrum of **1q**

¹⁹F NMR spectrum of **1q**

¹³C NMR spectrum of **1q**

¹H NMR spectrum of 1r

 13 C NMR spectrum of 1r

¹H NMR spectrum of 1s

¹⁹F NMR spectrum of **1s**

¹³C NMR spectrum of **1s**

¹H NMR spectrum of **1t**

S108
¹H NMR spectrum of **1u**

¹⁹F NMR spectrum of **1u**

¹³C NMR spectrum of **1u**

¹H NMR spectrum of 1v

 ^{13}C NMR spectrum of 1v

¹H NMR spectrum of $\mathbf{1w}$

¹⁹F NMR spectrum of **1**w

¹³C NMR spectrum of 1w

¹H NMR spectrum of **1**x

¹³C NMR spectrum of **1**x

¹H NMR spectrum of **1**y

¹⁹F NMR spectrum of **1**y

¹³C NMR spectrum of **1**y

¹H NMR spectrum of 1z

 13 C NMR spectrum of 1z

¹H NMR spectrum of **1aa**

¹⁹F NMR spectrum of **1aa**

¹³C NMR spectrum of **1aa**

¹H NMR spectrum of **1ab**

¹³C NMR spectrum of **1ab**

^1H NMR spectrum of 1ac

---79.31

¹⁹F NMR spectrum of **1ac**

¹⁹F NMR (471 MHz, CD₃CN)

¹³C NMR spectrum of **1ac**

¹H NMR spectrum of **1ad**

¹³C NMR spectrum of **1ad**

¹H NMR spectrum of **1ae**

¹⁹F NMR spectrum of **1ae**

¹³C NMR spectrum of **1ae**

1 H NMR spectrum of **1af**

¹³C NMR spectrum of **1af**

1 H NMR spectrum of **1ag**

¹⁹F NMR spectrum of **1ag**

¹³C NMR spectrum of **1ag**

¹H NMR spectrum of **1ah**

¹³C NMR spectrum of **1ah**

¹H NMR spectrum of **1ai**

¹⁹F NMR spectrum of **1ai**

---79.31 -108.08 -108.10 -108.11 -108.13

¹³C NMR spectrum of **1ai**

¹H NMR spectrum of **1aj**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1 H NMR spectrum of **1ak**

¹⁹F NMR spectrum of **1ak**

¹³C NMR spectrum of **1ak**

¹H NMR spectrum of **1al**

¹³C NMR spectrum of **1al**

¹H NMR spectrum of **1am**

¹⁹F NMR spectrum of **1am**

¹³C NMR spectrum of **1am**

¹H NMR spectrum of **3a**

80 70

60 50

40 30

20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

¹H NMR spectrum of **3b**

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

¹³C NMR spectrum of **3b**

¹H NMR spectrum of **3c**

¹⁹F NMR spectrum of **3d**

¹H NMR spectrum of **3e**

S145

S146

¹³C NMR spectrum of **3g**

80 60 40 20 0 -10 -40 -70 -100 -140 -180 -220 -260 f1 (ppm)

¹³C NMR spectrum of **3h**

¹H NMR spectrum of 3k

¹H NMR spectrum of **3**l

¹⁹F NMR spectrum of **3**l

¹³C NMR spectrum of **3**l

¹H NMR spectrum of 3m

¹³C NMR spectrum of **3m**

¹³C NMR spectrum of **3n**

¹H NMR spectrum of **30**

¹H NMR spectrum of **3p**

¹H NMR spectrum of **3**q

S162

¹H NMR spectrum of **3r**

¹⁹F NMR spectrum of **3r**

¹H NMR spectrum of **3s**

¹³C NMR spectrum of **3s**

¹H NMR spectrum of 3v

¹⁹F NMR spectrum of **3v**

S170

¹⁹F NMR spectrum of **3w**

S173

¹H NMR spectrum of 3z

¹⁹F NMR spectrum of **3z**

¹³C NMR spectrum of 3z

¹⁹F NMR spectrum of **3aa**

¹H NMR spectrum of **3ab**

¹³C NMR spectrum of **3ab**

¹H NMR spectrum of 3ac

¹⁹F NMR spectrum of **3ac**

¹³C NMR spectrum of **3ac**

¹H NMR spectrum of **3ad**

¹⁹F NMR spectrum of **3ad**

¹³C NMR spectrum of **3ad**

¹⁹F NMR spectrum of **3ae**

¹³C NMR spectrum of **3ae**

¹⁹F NMR spectrum of **5**

¹H NMR spectrum of **6**

¹H NMR spectrum of 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile

¹⁹F NMR spectrum of 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile

¹³C NMR spectrum of 4-(4-((trifluoromethyl)thio)phenoxy)benzonitrile