(±)-Spiroganoapplanin A, a complex polycyclic meroterpenoid dimer from *Ganoderma applanatum* displaying the potential against Alzheimer's disease

Xing-Rong Peng,^{a,c,‡} Rong-Can Luo,^{b,c,‡} Hai-Guo Su,^a Lin Zhou,^a Xiao-Qian Ran,^{b,c} Ya-Rong Guo,^d Yong-Gang Yao,^{b,c,e,*} Ming-Hua Qiu^{a,c,*}

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China

^b Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China

^c Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China

^d School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

^e CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China

[‡]These authors equally contributed to this work.

Contents

Table S1. ¹ H and ¹³ C NMR Spectroscopic Data (Methanol- d_4) of (±)-1. (δ in <i>ppm</i>)4
1D and 2D NMR spectra of compound 1 (298 K)5
Figure S1. ¹ H NMR (600 MHz, CD ₃ OD) spectrum of 15
Figure S2. ¹³ C NMR (150 MHz, CD ₃ OD) spectrum of 16
Figure S3. ¹ H- ¹ H COSY (600 MHz, CD ₃ OD) spectrum of 17
Figure S4. HSQC (600/150 MHz, CD ₃ OD) spectrum of 18
Figure S5. HMBC (600/150 MHz, CD ₃ OD) spectrum of 19
Figure S6. ROESY (600 MHz, CD ₃ OD) spectrum of 110
1D and 2D NMR spectra of compound 1 (253 K)11
Figure S7. ¹ H NMR (400 MHz, CD ₃ OD) spectrum of 111
Figure S8. The comparison of the ¹ H NMR (400 MHz, CD ₃ OD) spectra of 1 at variational
temperature12
Figure S9. ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of 113
Figure S10. The comparison of the ¹³ C NMR spectra of 1 at 298 K (150 MHz, CD ₃ OD) and
253 K (100 MHz, CD ₃ OD)14
Figure S11. ¹ H- ¹ H COSY (400 MHz, CD ₃ OD) spectrum of 115
Figure S12. HSQC (400/100 MHz, CD ₃ OD) spectrum of 116
Figure S13. HMBC (400/100 MHz, CD ₃ OD) spectrum of 117
HRESIMS, CD spectra, X-ray crystallographic and computational ECD data of 118
Figure S14. HRESIMS spectrum of 118
X-ray crystallographic data for 119
Table S2. Crystal data and structure refinement for 119
Figure S15. CD spectrum of (-)-1 and (+)-121
Figure S16. Four optimized conformers of 1a22
Table S3. Conformational analysis of the four optimized conformers of 1a in the gas phase
(T = 298.15 K)
Table S4. Atomic coordinates (Å) of 1a obtained at the Cam-B3LYP/6-311+G(d,p) level of
theory in the MeOH
Table S5. Atomic coordinates (Å) of 1b obtained at the Cam-B3LYP/6-311+G(d,p) level of
theory in the MeOH25
Table S6. Atomic coordinates (Å) of 1c obtained at the Cam-B3LYP/6-311+G(d,p) level of
theory in the MeOH

No.	$^{1}\mathrm{H}^{a}\left(J\mathrm{~in~Hz} ight)$	$^{13}C^a$	${}^{1}\mathrm{H}^{b}(J \mathrm{in} \mathrm{Hz})$	$^{13}\mathrm{C}^{b}$
1a		166.6 C		165.5 C
2a		121.9 C		120.7 C
3a	6.80, d (2.7)	107.9 CH	6.64, d (2.7)	106.2 CH
4a		154.5 C		152.0 C
5a	7.14, dd (8.9, 2.7)	129.0 CH	7.04, dd (8.9, 2.7)	127.6 CH
6a	6.92, d (8.9)	114.7 CH	6.84, d (8.9)	113.5 CH
7a		n.o.		200.2 C
8a		n.o.		91.3 C
9a	3.82, d (9.7)	56.9 CH	3.76, d (9.4)	55.2 CH
10a	4.85, br s	76.7 CH	4.78 m	75.1 CH
11a	n.o.	n.o.	3.47 m	45.8 CH
12a	n.o.	n.o.	3.18 overlapped	42.8 CH
13a		143.1 C		141.6 C
14a	n.o.	n.o.	6.35, s; 6.76, s	142.3 CH ₂
15a	n.o.	n.o.	8.95, s	192.5 CH
16a		170.1 C		170.5 C
17a	3.50, s	52.6 CH ₃	3.43, s	51.4 CH ₃
1b		153.3 C		151.2 C
2b		120.5 C		119.2 C
3b	6.30, d (2.9)	112.5 CH	6.18, d (2.8)	111.0 CH
4b		149.5 C		148.1 C
5b	6.75, dd (9.0, 2.9)	119.5 CH	6.65, dd (8.9, 2.8)	118.0 CH
6b	6.84, d (9.0)	119.8 CH	6.75, d (8.9)	118.5 CH
7b		87.5 C		86.2 C
8b	8.05, s	154.0 CH	8.02, s	153.3 CH
9b		129.8 C		128.2 C
10b	6.83, overlapped	130.7 CH	6.74, overlapped	129.5 CH
11b	7.89, dd (15.6, 11.6)	131.4 CH	7.81, dd (15.2, 11.4)	130.0 CH
12b	7.22, d (11.6)	152.1 CH	7.15, d (11.6)	151.3 CH
13b		140.5 C		139.1 C
14b	4.25, d (3.7)	64.4 CH ₂	4.14, d (1.9)	62.8 CH ₂
15b	9.49, s	195.2 CH	9.39, s	194.3 CH
16b		171.7 C		170.5 C
17b	3.32, s	58.7 CH ₃	3.21, s	57.6 CH ₃
^a : 600/150 M	MHz, 298 K; ^b : 400/100 MHz, 2	253 K; n.o.: no signal		

Table S1. ¹H and ¹³C NMR Spectroscopic Data (Methanol- d_4) of (±)-1. (δ in *ppm*)

1D and 2D NMR spectra of compound 1 (298 K)

Figure S1. ¹H NMR (600 MHz, CD₃OD) spectrum of 1.

Figure S2. ¹³C NMR (150 MHz, CD₃OD) spectrum of 1.

Figure S3. ¹H-¹H COSY (600 MHz, CD₃OD) spectrum of 1.

Figure S5. HMBC (600/150 MHz, CD₃OD) spectrum of 1.

Figure S6. ROESY (600 MHz, CD₃OD) spectrum of 1.

1D and 2D NMR spectra of compound 1 (253 K)

Figure S7. ¹H NMR (400 MHz, CD₃OD) spectrum of 1.

Figure S8. The comparison of the¹H NMR (400 MHz, CD₃OD) spectra of 1 at variational temperature.

Figure S9. ¹³C NMR (100 MHz, CD₃OD) spectrum of 1.

Figure S10. The comparison of the ¹³C NMR spectra of 1 at 298 K (150 MHz, CD₃OD) and 253 K (100 MHz, CD₃OD).

Figure S11. ¹H-¹H COSY (400 MHz, CD₃OD) spectrum of 1.

Figure S12. HSQC (400/100 MHz, CD₃OD) spectrum of 1.

Figure S13. HMBC (400/100 MHz, CD₃OD) spectrum of 1.

HRESIMS, CD spectra, X-ray crystallographic and computational ECD data of 1

Figure S14. HRESIMS spectrum of 1.

Data Filenan Sample Type Instrument I Acq Method IRM Calibrat Comment	ne Name tion S	tatus	1	kgam43a.d Sample Instrument 1 s.m Success		Sample Name Position User Name Acquired Time DA Method	kgam43a P1-A3 6/17/2021 10:26:11 AM ZRR3.m	
Sample Grou Acquisition S Version	ip SW		6200 ser Q-TOF B	ies TOF/6500 series .05.01 (B5125.2)	Info.			
User Spec	tra							
Fragmen	tor Vo	ltage		Collision Energy	Ioni	zation Mode ESI		
x10 4 + Sca	n (0.09	min) k	kgam43a.d	Subtract				
3.5- 3- 2.5- 2-				([C3	651.1463 4 H28 O12]+	Na)+		
1.5-						652.1507 ([C34 H28 O12]+N	a)+	
0.5							653.1530 ([C34 H28 O12]+Na)+	
Peak List	648.5	64	19 649	.5 650 650.5 Cou	651 65 nts vs. Mass-	51.5 652 652 to-Charge (m/z)	2.5 653 653.5 654 65	4.5
m/z	Z	Abu	ind	Formula		Ion		
646.1911	1	1853	31.13					
647.1934	1	6485	5.79					
651.1463	1	309	19.12	C34 H28 O12		(M+Na)+		
652.150/	1	1003	0.06	C34 H28 012		(M+Na)+		
667.1234	1	646	6.17					
668.1259	1	255	8.74					
719.1366	1	244	3.64					
1279.3076 Formula Ca	1 culat	or El	ement L	imits				
Element	Mir	1	Max					
C		3	60	-				
0	-	0	30	-				
Formula Ca	Iculat	or R	esults	Anno Colevi	atodMa	Ma	Diff. (mDa) Diff	(ppm) DBE
C34 H28 O13	,	Cal	culated	628.1581	65	1.1473 651.	1463 1.00	1.54 21.0000
End Of Re	eport -			020.1301				
Ågilen	t Tech	nolog	ies			Page 1 of 1	Printed at:	10:28 AM on: 6/17/202

X-ray crystallographic data for 1

View of a molecule of 1 with the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of 1.

Hydrogen-bonds are shown as dashed lines.

Identification code	global
Empirical formula	C ₃₄ H ₃₄ O ₁₅
Formula weight	682.61
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P-1

Unit cell dimensions	a = 9.8432(6) Å, α = 66.313(3)°, b = 12.6520(8) Å, β = 88.319(3)°, c = 14.8226(9) Å, γ = 75.334(3)°			
Volume	1629.89(18) Å3			
Z	2			
Density (calculated)	1.391 mg/m ³			
Absorption coefficient	0.937 mm ⁻¹			
F(000)	716			
Crystal size	$0.500 \times 0.280 \times 0.120 \text{ mm}^3$			
Theta range for data collection	3.27 to 72.43°			
Index ranges	-10<=h<=11, -15<=k<=14, -18<=l<=18			
Reflections collected	33527			
Independent reflections	6395 [R(int) = 0.0809]			
Completeness to theta = 72.43°	98.8 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.90 and 0.59			
Refinement method	Full-matrix least-squares on F2			
Data / restraints / parameters	6395 / 6 / 446			
Goodness-of-fit on F2	1.371			
Final R indices [I>2sigma(I)]	R1 = 0.1125, WR2 = 0.3355			
R indices (all data)	R1 = 0.1407, WR2 = 0.3711			
Largest diff. peak and hole	1.011 and -0.590 e.Å ⁻³			

Figure S15. CD spectrum of (-)-1 and (+)-1.

Figure S16. Four optimized conformers of 1a.

Table S3. Conformational analysis of the four optimized conformers of 1a in the gas phase (T = 298.15 K)

Conformer	E (Hartree)	C (Hartree)	G (kcal/mol)	ΔG (kcal/mol)	Population
1 a	-2215.140587	0.493936	-1389711.591	0	22.16%
1b	-2215.140588	0.493938	-1389711.591	0.000564759	22.13%
1c	-2215.140588	0.493941	-1389711.589	0.00267319	22.06%

1d	-2215.139069	0.493989	-1389710.606	0.985610189	4.19%
1e	-2215.140357	0.495374	-1389710.544	1.046917858	3.78%
lf	-2215.139017	0.494252	-1389710.407	1.183771383	3.00%
1g	-2215.139107	0.494394	-1389710.375	1.215868488	2.84%
1h	-2215.136746	0.492095	-1389710.336	1.255037626	2.66%
1i	-2215.13903	0.494446	-1389710.294	1.297005454	2.48%
1j	-2215.138996	0.494425	-1389710.286	1.305489381	2.44%
1k	-2215.139004	0.494437	-1389710.283	1.307811166	2.43%
11	-2215.139	0.494434	-1389710.283	1.30808727	2.43%
1m	-2215.138998	0.494435	-1389710.281	1.310195702	2.42%
1n	-2215.139017	0.494535	-1389710.23	1.361067889	2.22%
10	-2215.13888	0.494795	-1389709.981	1.610283247	1.46%
1p	-2215.137094	0.493132	-1389709.904	1.687567305	1.28%

Electronic energy obtained at M062X/Def2TZVP SCRF=(IEFPCM, Solvent=Methanol) level of theory; Thermal correction to Gibbs free energy obtained at M062X/def2SVP SCRF=(SMD, Solvent=Methanol), Empirical Dispersion=GD3 level of theory; Gibbs free energy (E + C); The relative Gibbs free energy; The Boltzmann distribution of each conformer.

С	3.66564	-1.92466	-1.27996	Н	3.75617	1.52352	-0.62716
С	3.62777	-2.43337	0.01608	Η	1.57731	1.94764	1.45217
С	4.10508	-3.71291	0.32356	Н	1.26992	1.54304	-1.56161
С	4.618	-4.47372	-0.72011	Н	0.79818	-0.24535	0.88519
С	4.64529	-3.95075	-2.03358	Н	0.80645	-0.34893	-2.93329
С	4.17384	-2.68072	-2.33594	Н	-0.23668	-1.9014	-2.85947
С	3.04848	-1.3859	0.84889	Н	-0.86945	-2.93178	-0.9175
С	2.66867	-0.25957	-0.12607	Н	-2.37389	3.85404	-0.60099
С	3.18566	1.16121	0.24142	Н	0.06112	7.36974	-0.16764
С	1.93577	2.01465	0.40829	Н	2.08456	5.91725	0.1232
С	0.94131	1.3552	-0.52536	Н	-0.89724	1.50803	1.82787
С	1.11663	-0.11301	-0.1616	Н	-3.03939	-0.10674	2.17967
С	0.38703	-1.12861	-0.99333	Н	-4.32621	-0.90777	-0.51219
С	0.3213	-1.12182	-2.332	Н	-4.86232	-1.60627	2.49813
С	-0.32917	-2.20546	-0.27067	Н	-5.45303	-2.97958	-1.05057
С	4.10842	1.1814	1.43804	Н	-7.11441	-3.44854	-0.59943
С	0.9877	4.08581	-0.07689	Н	-6.53596	-3.004	3.02978
С	-0.2687	3.4975	-0.28323	Н	6.82674	-0.46	2.01186
С	-1.39487	4.31433	-0.43822	Н	6.48127	1.19231	2.63598
С	-1.28146	5.70068	-0.39533	Н	5.50127	-0.2023	3.203
С	-0.02087	6.28214	-0.19836	Н	-8.80804	-1.78383	-0.72904
С	1.09784	5.47997	-0.0372	Н	-7.9624	-0.73787	0.45564
С	-0.43766	1.98613	-0.36166	Н	-8.30945	-0.12404	-1.18755
С	-1.20795	1.3946	0.78814	Н	5.05312	-5.9888	0.37572
С	-2.25182	0.68437	0.32732	Н	-3.15742	6.01608	-0.6505
С	-3.18302	-0.12455	1.09475	0	3.92515	1.82511	2.4398
С	-4.16255	-0.88878	0.56685	0	2.84315	-1.34224	2.04176
С	-5.02734	-1.68204	1.41662	0	-0.34813	-2.3074	0.9363
С	-6.01553	-2.48969	0.9661	0	-2.34443	6.52965	-0.53638
С	-6.34829	-2.66089	-0.4982	0	5.10901	-5.72462	-0.55459
С	-6.84852	-3.16294	1.97289	0	3.18167	-0.65927	-1.39202
С	-2.2557	0.83292	-1.15734	0	-1.23376	1.64065	-1.50455
С	6.04482	0.22658	2.35002	0	-6.78749	-1.46717	-1.10901
С	-8.02434	-1.01422	-0.61208	0	2.1453	3.36769	0.08008
Η	4.07183	-4.09631	1.34566	0	-7.82157	-3.84107	1.71186
Η	5.05589	-4.58475	-2.82187	0	-2.99133	0.35772	-1.98023
Н	4.20161	-2.28657	-3.35186	0	5.15641	0.39221	1.24396

Table S4. Atomic coordinates (Å) of 1a obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

C	3.66517	-1.92496	-1.28005	Н	3.75628	1.5231	-0.62715
С	3.62733	-2.43368	0.01599	Н	1.57747	1.9477	1.4521
С	4.10447	-3.71329	0.32344	Н	1.2699	1.543	-1.56166
С	4.61724	-4.47414	-0.72027	Н	0.79802	-0.24523	0.88524
С	4.64454	-3.95116	-2.03372	Н	0.80567	-0.34864	-2.93318
С	4.17322	-2.68109	-2.33606	Н	-0.23746	-1.90111	-2.85929
С	3.04816	-1.38618	0.84882	Н	-0.86993	-2.9316	-0.91726
С	2.66844	-0.25978	-0.12608	Н	-2.37349	3.85463	-0.60089
С	3.18568	1.16091	0.24142	Н	0.06211	7.36991	-0.16758
С	1.93592	2.01457	0.40822	Н	2.08533	5.91711	0.12309
С	0.94134	1.35523	-0.52538	Н	-0.89715	1.50849	1.82792
С	1.11645	-0.11298	-0.16157	Н	-3.03939	-0.1062	2.17979
С	0.38666	-1.12851	-0.99321	Н	-4.32613	-0.90733	-0.51207
С	0.32066	-1.1216	-2.33186	Н	-4.86232	-1.6058	2.49822
С	-0.32946	-2.20538	-0.27049	Н	-5.45258	-2.97946	-1.05042
С	4.1084	1.18098	1.43806	Н	-7.11397	-3.44847	-0.59941
С	0.98817	4.08585	-0.077	Н	-6.53585	-3.00371	3.02982
С	-0.26833	3.49773	-0.28329	Н	6.48062	1.19186	2.63651
С	-1.39437	4.31473	-0.4382	Н	5.50134	-0.20354	3.2028
С	-1.28075	5.70107	-0.39527	Н	6.82704	-0.45997	2.01165
С	-0.02007	6.28233	-0.19835	Н	-8.80761	-1.784	-0.72908
С	1.09854	5.47999	-0.03729	Н	-7.96217	-0.73758	0.45534
С	-0.43754	1.98639	-0.36163	Н	-8.30928	-0.12427	-1.18804
С	-1.20786	1.39497	0.78819	Н	5.05242	-5.98925	0.37552
С	-2.25182	0.68484	0.32741	Н	-3.15678	6.01682	-0.64973
С	-3.18302	-0.12404	1.09487	0	3.92512	1.82466	2.43985
С	-4.1625	-0.88832	0.56697	0	2.84288	-1.3425	2.04171
С	-5.02725	-1.68165	1.41671	0	-0.34823	-2.30739	0.93648
С	-6.01528	-2.48947	0.96615	0	-2.34358	6.53022	-0.53627
С	-6.3479	-2.66078	-0.49816	0	5.10814	-5.72511	-0.55481
С	-6.84825	-3.16282	1.97291	0	3.18136	-0.65952	-1.39209
С	-2.25568	0.83331	-1.15726	0	-1.23372	1.64099	-1.50451
С	6.04473	0.22603	2.35006	0	-6.78711	-1.46711	-1.10908
С	-8.02404	-1.01423	-0.61231	0	2.14567	3.36755	0.07991
Η	4.07125	-4.09665	1.34555	0	-7.82116	-3.84113	1.71183
Н	5.05503	-4.5852	-2.82204	0	-2.99133	0.35806	-1.98011
Н	4.201	-2.28693	-3.35197	0	5.1563	0.39168	1.24402

Table S5. Atomic coordinates (Å) of 1b obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

С	3.66516	-1.92511	-1.27995	Н	3.75616	1.52307	-0.62746
С	3.62728	-2.43369	0.01615	Н	1.57751	1.94766	1.45198
С	4.10438	-3.71328	0.32375	Н	1.26981	1.54306	-1.56177
С	4.61717	-4.47426	-0.71985	Н	0.79797	-0.24528	0.88507
С	4.64449	-3.95143	-2.03337	Н	0.80574	-0.34851	-2.93335
С	4.17321	-2.68138	-2.33586	Н	-0.2374	-1.90098	-2.85957
С	3.0481	-1.38609	0.84885	Н	-0.86988	-2.9316	-0.91757
С	2.66843	-0.25979	-0.12619	Н	-2.37355	3.85465	-0.60058
С	3.18568	1.1609	0.2412	Н	0.06209	7.36992	-0.16733
С	1.93593	2.01455	0.40808	Н	2.08534	5.9171	0.12306
С	0.94131	1.35524	-0.52549	Н	-0.89709	1.50837	1.8279
С	1.11644	-0.11298	-0.16173	Н	-3.03914	-0.10656	2.17975
С	0.38667	-1.12848	-0.99343	Н	-4.32625	-0.90717	-0.5121
С	0.32069	-1.12149	-2.33208	Н	-4.86212	-1.60613	2.49815
С	-0.32945	-2.20538	-0.27075	Н	-5.45278	-2.97926	-1.05064
С	4.10853	1.18108	1.43773	Н	-7.11416	-3.44827	-0.59953
С	0.98816	4.08586	-0.077	Н	-6.53557	-3.00414	3.0297
С	-0.26835	3.49774	-0.28321	Н	6.82731	-0.45971	2.01114
С	-1.39441	4.31475	-0.43798	Н	6.48079	1.19212	2.63596
С	-1.28079	5.70108	-0.39497	Н	5.50172	-0.20336	3.20244
С	-0.02009	6.28234	-0.19815	Н	-8.30934	-0.12388	-1.18749
С	1.09854	5.47999	-0.03725	Н	-8.80777	-1.78371	-0.72895
С	-0.43757	1.98641	-0.36163	Н	-7.96221	-0.73766	0.45571
С	-1.20784	1.3949	0.78818	Н	5.0523	-5.98928	0.3761
С	-2.25179	0.68477	0.32739	Н	-3.15686	6.01683	-0.64908
С	-3.18291	-0.12421	1.09484	0	3.92537	1.82488	2.43946
С	-4.16249	-0.88837	0.56693	0	2.84281	-1.34227	2.04173
С	-5.02717	-1.68182	1.41664	0	-0.34826	-2.3074	0.93621
С	-6.01525	-2.48955	0.96606	0	-2.34364	6.53023	-0.53577
С	-6.34804	-2.66062	-0.49825	0	5.10805	-5.72521	-0.55425
С	-6.84811	-3.16306	1.9728	0	3.1814	-0.65967	-1.39215
С	-2.25574	0.83336	-1.15726	0	-1.2338	1.64108	-1.5045
С	6.04497	0.22623	2.34962	0	-6.78725	-1.46685	-1.10894
С	-8.02414	-1.01402	-0.612	0	2.14568	3.36753	0.07979
Η	4.07113	-4.0965	1.34592	0	-7.82104	-3.84133	1.71172
Η	5.05499	-4.58557	-2.8216	0	-2.99143	0.35817	-1.98011
Н	4.20103	-2.28734	-3.35182	0	5.15639	0.39173	1.24367

Table S6. Atomic coordinates (Å) of 1c obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

C	3.75825	0.89705	-1.17925	Н	1.70565	3.33586	0.32886
С	3.85995	-0.03235	-0.14684	Н	-0.52166	1.69257	1.59883
С	4.94389	-0.91225	-0.04705	Н	-0.15691	2.49499	-1.32763
С	5.9253	-0.8341	-1.02753	Н	0.2127	-0.10876	0.25372
С	5.81087	0.10952	-2.07413	Н	0.50711	1.32192	-3.25692
С	4.73622	0.983	-2.16978	Н	0.75794	-0.41273	-3.91259
С	2.68389	0.16096	0.69404	Н	0.91814	-2.28236	-2.58206
С	1.84242	1.22423	-0.03137	Н	-4.57395	1.96968	-0.98585
С	1.36783	2.42109	0.83935	Н	-4.78987	5.63985	1.24029
С	-0.15228	2.36445	0.8015	Н	-2.33647	5.46852	1.73625
С	-0.43929	1.75695	-0.55826	Н	-2.23755	-0.12557	0.89019
С	0.52285	0.57516	-0.55305	Н	-3.50779	-2.49783	-2.05137
С	0.66297	-0.23639	-1.80851	Н	-1.69887	-2.61124	0.45255
С	0.64326	0.25646	-3.05458	Н	-3.27946	-4.77193	-1.18212
С	0.84546	-1.69651	-1.63986	Н	-0.44306	-5.87605	1.78704
С	1.95112	2.43183	2.23302	Н	-0.12891	-4.32593	0.95742
С	-2.09071	3.63556	0.65139	Н	-3.02621	-6.94633	-0.64499
С	-2.71484	2.64328	-0.1179	Н	3.70429	3.17373	4.09039
С	-4.08638	2.74067	-0.38195	Н	3.66903	1.38396	3.94136
С	-4.83184	3.81182	0.10142	Н	5.02394	2.32019	3.21338
С	-4.19884	4.80288	0.86509	Н	-3.27861	-5.24287	2.6373
С	-2.84371	4.70905	1.13929	Н	-1.92926	-5.85691	3.64477
С	-1.93413	1.47858	-0.71267	Н	-2.72626	-4.30482	4.056
С	-2.30464	0.12092	-0.17069	Н	7.00556	-2.23267	-0.28298
С	-2.63641	-0.69404	-1.18443	Н	-6.47745	3.21724	-0.68371
C	-2.89535	-2.1272	-1.22313	0	1.30606	2.44013	3.2504
С	-2.34904	-2.98887	-0.34261	0	2.34979	-0.37419	1.72755
С	-2.56193	-4.42014	-0.43132	0	0.91311	-2.23917	-0.55756
С	-1.92469	-5.32982	0.34125	0	-6.15946	3.94818	-0.13412
С	-0.91314	-4.95545	1.40122	0	7.01829	-1.63296	-1.04377
С	-2.29386	-6.74305	0.16876	0	2.65047	1.68262	-1.1102
С	-2.61275	0.1193	-2.42939	0	-2.23809	1.37316	-2.11393
С	3.95465	2.32166	3.44521	0	-1.47282	-4.20909	2.45987
С	-2.39423	-4.94537	3.22875	0	-0.75348	3.62716	0.95333
Η	5.00873	-1.63401	0.77013	0	-1.86115	-7.64852	0.85183
Η	6.60591	0.13448	-2.822	0	-2.86077	-0.21556	-3.55653
Η	4.65784	1.70776	-2.98029	0	3.27683	2.43275	2.19289

Table S7. Atomic coordinates (Å) of 1d obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

С	0.3258	-3.57815	-1.29983	Н	3.32561	-1.90393	-0.49456
С	-0.2204	-3.76741	-0.03276	Н	2.46913	0.21406	1.51194
С	-1.13839	-4.79015	0.23254	Н	2.14384	0.24871	-1.52637
С	-1.50056	-5.61674	-0.8241	Н	0.18396	-0.23779	0.78406
С	-0.9425	-5.41464	-2.10745	Н	0.44121	-0.36996	-3.02687
С	-0.02946	-4.40182	-2.36759	Н	-1.42564	-0.2774	-3.1229
С	0.36606	-2.74166	0.82229	Н	-2.80661	-0.22847	-1.31948
С	1.21369	-1.87105	-0.11977	Н	2.22369	4.55325	-0.66057
С	2.67299	-1.58678	0.33303	Н	6.4657	4.24151	-0.03731
С	2.76451	-0.07454	0.48631	Н	6.21908	1.77212	0.32101
С	1.74779	0.43687	-0.51395	Н	0.89248	2.11078	1.81307
С	0.55039	-0.46139	-0.23094	Н	-1.641	3.25031	2.06671
С	-0.61712	-0.3754	-1.17369	Н	-3.0637	2.69787	-0.6186
С	-0.52127	-0.34179	-2.51033	Н	-4.05546	3.48732	2.24897
С	-1.97511	-0.31229	-0.58573	Н	-6.73852	1.93441	-0.66265
С	3.08655	-2.35928	1.56408	Н	-5.29344	2.7296	-1.34284
С	4.09514	1.78641	0.02792	Н	-6.24488	3.32169	2.73756
С	2.96392	2.56785	-0.25194	Н	2.97	-5.52475	2.18112
С	3.10737	3.94672	-0.44196	Н	4.20224	-4.39921	2.85474
С	4.35935	4.54991	-0.36582	Н	2.47787	-4.22647	3.3276
С	5.48711	3.76236	-0.09466	Н	-4.89766	-1.08004	-0.04802
С	5.35145	2.39705	0.10368	Н	-5.19021	0.10518	1.25757
С	1.58064	1.94627	-0.36257	Н	-6.50782	-0.30713	0.11203
С	0.65002	2.30033	0.76648	Н	-2.71392	-6.6842	0.21135
С	-0.50984	2.76246	0.27327	Н	3.69633	6.31583	-0.71423
С	-1.74009	3.04786	0.99585	0	3.50344	-1.86575	2.58105
С	-2.96435	2.95344	0.43926	0	0.23391	-2.52531	2.00661
С	-4.16948	3.09474	1.23147	0	-2.19555	-0.33526	0.60613
С	-5.40039	2.72479	0.80895	0	4.5445	5.88069	-0.5437
С	-5.65241	2.07859	-0.5332	0	-2.38562	-6.63356	-0.6987
С	-6.50818	2.8426	1.7676	0	1.20907	-2.547	-1.3724
С	-0.35223	2.84017	-1.20871	0	0.89775	2.44294	-1.52247
С	3.16364	-4.50073	2.51428	0	-4.97343	0.84877	-0.68212
С	-5.41878	-0.14807	0.2074	0	4.05328	0.42895	0.22099
Η	-1.5578	-4.92561	1.23183	0	-7.6378	2.44945	1.55843
Η	-1.25678	-6.08774	-2.90748	0	-1.13737	3.18752	-2.04907
Η	0.39393	-4.25425	-3.3612	0	2.92948	-3.66332	1.38113

Table S8. Atomic coordinates (Å) of 1e obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

С	3.75666	-0.97162	1.1467	Н	1.60098	-3.32981	-0.39211
С	3.82304	0.01152	0.16203	Н	-0.56291	-1.55528	-1.59217
С	4.89956	0.90154	0.07554	Н	-0.26061	-2.54738	1.28404
С	5.91106	0.7777	1.02005	Н	0.20709	0.15749	-0.0878
С	5.83321	-0.22086	2.01795	Н	0.4273	-1.59407	3.27535
С	4.76559	-1.10441	2.1003	Н	0.76848	0.0593	4.08264
С	2.61976	-0.14002	-0.64739	Н	1.04251	2.02354	2.93297
С	1.80279	-1.24069	0.0505	Н	-4.62315	-1.88861	1.02453
С	1.29461	-2.38529	-0.86765	Н	-4.93613	-5.45236	-1.35837
С	-0.22278	-2.28349	-0.83236	Н	-2.4906	-5.29437	-1.89338
С	-0.49862	-1.74983	0.56037	Н	-2.21072	0.17609	-0.92182
С	0.50454	-0.60776	0.64723	Н	-3.20283	2.66418	2.07188
С	0.68021	0.07676	1.97235	Н	-2.0359	2.59899	-0.79376
С	0.6235	-0.52429	3.1685	Н	-3.10564	4.849	1.09516
С	0.94469	1.53235	1.94029	Н	-2.59394	5.04371	-2.89504
С	1.8842	-2.35765	-2.25799	Н	-1.18369	6.01439	-2.44184
С	-2.19603	-3.51546	-0.73337	Н	-3.17008	6.94214	0.51349
С	-2.79206	-2.55027	0.09166	Н	3.64454	-3.05361	-4.12467
С	-4.15914	-2.63955	0.37845	Н	3.61216	-1.26787	-3.93278
С	-4.92932	-3.67779	-0.13741	Н	4.96178	-2.22408	-3.22125
С	-4.3259	-4.64142	-0.95764	Н	0.77266	3.09448	-1.79153
С	-2.97456	-4.5548	-1.25362	Н	0.85384	4.86619	-2.05886
С	-1.98237	-1.41524	0.70209	Н	0.14016	4.21446	-0.54912
С	-2.29416	-0.05207	0.14194	Н	6.95595	2.22562	0.32247
С	-2.58864	0.79319	1.14293	Н	-6.54935	-3.09339	0.70469
С	-2.79661	2.23417	1.151	0	1.24331	-2.33735	-3.27782
С	-2.46703	3.02951	0.11273	0	2.24992	0.44725	-1.64052
С	-2.66602	4.4648	0.16664	0	1.05173	2.16742	0.91333
С	-2.37001	5.37257	-0.79357	0	-6.25394	-3.80559	0.11904
С	-1.77574	5.12471	-2.16077	0	6.99982	1.5818	1.04512
С	-2.71822	6.77096	-0.48941	0	2.64916	-1.75731	1.07098
С	-2.60212	-0.00571	2.39783	0	-2.29872	-1.28415	2.0965
С	3.89362	-2.21783	-3.4581	0	-1.00092	3.96086	-2.28171
С	0.2484	4.04616	-1.6341	0	-0.86371	-3.51585	-1.05863
Η	4.9357	1.66634	-0.70339	0	-2.54694	7.69423	-1.25892
Η	6.65085	-0.28033	2.739	0	-2.82954	0.35371	3.52153
Η	4.7151	-1.87102	2.87368	0	3.20978	-2.35792	-2.21193

Table S9. Atomic coordinates (Å) of 1f obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

	•						
C	3.63054	1.27274	-1.18636	Н	1.31296	3.5159	0.27001
С	3.81962	0.37351	-0.13948	Η	-0.69977	1.64441	1.58522
С	4.98229	-0.39771	-0.02653	Н	-0.44952	2.46111	-1.3493
С	5.9527	-0.24066	-1.00856	Н	0.21236	-0.07672	0.24354
С	5.75061	0.67259	-2.06862	Н	0.29152	1.35158	-3.27493
С	4.59741	1.43753	-2.17768	Н	0.75655	-0.34144	-3.92201
С	2.62805	0.4645	0.69702	Н	1.18686	-2.15903	-2.58302
С	1.68766	1.42641	-0.04809	Н	-4.77747	1.43492	-0.95823
С	1.08754	2.57934	0.80283	Н	-5.39723	5.06773	1.25422
С	-0.41626	2.34932	0.78095	Н	-2.9357	5.18615	1.72341
С	-0.64299	1.70269	-0.5722	Н	-2.20094	-0.36499	0.89685
С	0.44457	0.63535	-0.5652	Н	-3.20878	-2.8794	-2.02965
С	0.6717	-0.15985	-1.81808	Н	-1.38738	-2.77154	0.46532
С	0.56917	0.31513	-3.06705	Н	-2.71273	-5.1084	-1.15355
С	1.04313	-1.58244	-1.64343	Н	0.27134	-5.85932	1.78044
С	1.67673	2.68857	2.1894	Н	0.37767	-4.27894	0.95512
С	-2.48926	3.38821	0.64387	Н	-2.19914	-7.23481	-0.61555
С	-3.00199	2.32606	-0.11395	Н	3.36582	3.65841	4.00317
С	-4.37802	2.26131	-0.36301	Н	3.49406	1.86889	3.91688
С	-5.23826	3.24069	0.12387	Н	4.75257	2.89857	3.14374
С	-4.71692	4.30302	0.87611	Н	-1.17361	-6.03009	3.66263
С	-3.35715	4.36928	1.13562	Н	-2.15492	-4.59239	4.09071
С	-2.09809	1.25699	-0.71293	Н	-2.6057	-5.59162	2.67817
С	-2.30554	-0.13165	-0.16395	Н	7.15536	-1.52432	-0.2488
С	-2.54954	-0.98332	-1.1724	H	-6.81206	2.44864	-0.63393
C	-2.64009	-2.43697	-1.20552	0	1.04045	2.66677	3.2121
С	-1.9922	-3.22557	-0.32563	0	2.34636	-0.08194	1.74016
С	-2.03489	-4.67225	-0.41008	0	1.1853	-2.10527	-0.55854
C	-1.28709	-5.49769	0.35785	0	-6.57497	3.22005	-0.09887
С	-0.31546	-5.00338	1.40574	0	7.11618	-0.93252	-1.01449
С	-1.48895	-6.94495	0.19137	0	2.45179	1.9489	-1.12946
С	-2.63072	-0.17754	-2.41981	0	-2.39975	1.11244	-2.11117
С	3.68915	2.81044	3.38556	0	-0.94888	-4.33645	2.47584
С	-1.75708	-5.18471	3.25663	0	-1.15665	3.5361	0.93013
Η	5.11461	-1.09808	0.80095	0	-0.947	-7.79175	0.87178
Η	6.5407	0.76208	-2.81671	0	-2.84764	-0.54316	-3.54372
Η	4.4515	2.13949	-2.99873	0	2.99593	2.81474	2.13677

Table S10. Atomic coordinates (Å) of 1g obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

C	-3.69811	-1.44666	-1.09884	Н	-1.10682	-3.53879	0.17762
С	-3.83916	-0.51177	-0.07611	Н	0.72924	-1.49199	1.48965
С	-5.01482	0.22864	0.09266	Н	0.56459	-2.44322	-1.41044
С	-6.04948	0.00239	-0.80686	Н	-0.30563	0.12799	0.01539
С	-5.89528	-0.94576	-1.84408	Н	-0.4822	-1.66324	-3.34058
С	-4.72853	-1.67948	-2.00928	Н	-0.99262	-0.04931	-4.13892
С	-2.58448	-0.52672	0.66792	Н	-1.36877	1.89523	-2.98351
С	-1.67303	-1.49711	-0.10316	Н	4.76103	-1.09575	-1.17309
С	-0.97809	-2.59646	0.73532	Н	5.67322	-4.62742	1.10092
С	0.50457	-2.24478	0.71129	Н	3.24087	-4.88117	1.65833
С	0.67557	-1.63578	-0.66734	Н	2.08267	0.49453	0.86037
С	-0.49821	-0.66806	-0.721	Н	2.66478	3.19478	-2.05767
С	-0.79928	-0.0065	-2.03487	Н	1.55785	2.8722	0.81426
С	-0.75534	-0.6107	-3.23011	Н	2.27298	5.31222	-1.00514
С	-1.17257	1.42527	-1.99502	Н	1.76724	5.28142	2.98898
С	-1.61248	-2.82319	2.08703	Н	0.23641	6.07235	2.57949
С	2.64975	-3.14017	0.55554	Н	2.0386	7.37324	-0.35037
С	3.07259	-2.0694	-0.24546	Н	-1.86827	-4.21885	4.32144
С	4.43225	-1.92957	-0.54598	Н	-0.35759	-3.49282	4.97872
С	5.3664	-2.84287	-0.06589	Н	-1.81053	-2.46561	4.70218
С	4.93569	-3.91456	0.72881	Н	-1.3132	2.94201	1.80841
С	3.59166	-4.05535	1.03739	Н	-1.63315	4.67409	2.14775
С	2.08305	-1.06162	-0.81244	Н	-0.84334	4.18673	0.6137
С	2.1856	0.31546	-0.21115	Н	-7.23926	1.27518	-0.00608
С	2.33981	1.2266	-1.18559	Н	6.86594	-1.97684	-0.89404
C	2.3384	2.68195	-1.14737	0	-2.80637	-2.82295	2.26735
С	1.91265	3.38855	-0.08047	0	-2.23291	0.09919	1.64324
С	1.90124	4.8383	-0.08836	0	-1.25893	2.06524	-0.96925
С	1.48354	5.66081	0.90295	0	6.69178	-2.74702	-0.33339
С	0.93953	5.28167	2.26094	0	-7.23333	0.65708	-0.75182
С	1.62149	7.1044	0.64613	0	-2.49669	-2.08327	-1.10462
С	2.45389	0.47891	-2.46686	0	2.35163	-0.83978	-2.2054
С	-1.23089	-3.32529	4.3416	0	0.3283	4.02055	2.33635
С	-0.92375	3.96182	1.69076	0	1.33964	-3.36294	0.89386
Н	-5.10937	0.95794	0.90025	0	1.32243	7.96668	1.44674
Η	-6.73433	-1.08855	-2.52784	0	2.60537	0.90448	-3.58013
Н	-4.61948	-2.40858	-2.81233	0	-0.72043	-3.05671	3.03332

Table S11. Atomic coordinates (Å) of 1h obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

	-						
C	3.7628	0.95313	-1.14579	Н	1.61759	3.3226	0.39082
С	3.82406	-0.02986	-0.16064	Н	-0.55482	1.55883	1.59153
С	4.89578	-0.92557	-0.0738	Н	-0.24678	2.54787	-1.28508
С	5.90789	-0.80763	-1.01843	Н	0.20767	-0.15838	0.08849
С	5.83552	0.19116	-2.01651	Н	0.43664	1.58946	-3.27603
С	4.77257	1.08032	-2.09925	Н	0.77075	-0.06605	-4.08183
С	2.6215	0.1282	0.64861	Н	1.03575	-2.03049	-2.93066
С	1.80996	1.23225	-0.05019	Н	-4.61298	1.90839	-1.02512
С	1.30682	2.37985	0.86701	Н	-4.91053	5.47391	1.35717
С	-0.211	2.28499	0.83142	Н	-2.4654	5.3063	1.89104
С	-0.48886	1.75183	-0.56111	Н	-2.21093	-0.16625	0.91992
С	0.50898	0.60498	-0.64699	Н	-3.21245	-2.64901	-2.07542
С	0.6819	-0.0814	-1.97155	Н	-2.05185	-2.58889	0.79284
С	0.62812	0.51892	-3.16822	Н	-3.12845	-4.8345	-1.09743
С	0.94038	-1.53808	-1.93834	Н	-2.62587	-5.03328	2.8946
С	1.89605	2.35054	2.25747	Н	-1.21734	-6.00694	2.44263
С	-2.17859	3.5258	0.73151	Н	-3.20554	-6.92693	-0.51425
С	-2.77887	2.5629	-0.09309	Н	3.61896	1.25391	3.93322
С	-4.14571	2.65762	-0.37939	Н	4.97281	2.20391	3.22144
С	-4.9115	3.69895	0.13679	Н	3.65889	3.0396	4.12406
С	-4.30372	4.66046	0.95631	Н	0.11376	-4.21016	0.55388
С	-2.95262	4.56853	1.25168	Н	0.74674	-3.09083	1.79671
С	-1.97413	1.42431	-0.70345	Н	0.82416	-4.86259	2.06482
С	-2.2927	0.06251	-0.14385	Н	6.94339	-2.26289	-0.32209
С	-2.59082	-0.78105	-1.14521	Н	-6.53538	3.11978	-0.70195
C	-2.80601	-2.22096	-1.15373	0	1.25493	2.33393	3.27721
С	-2.4828	-3.01768	-0.11454	0	2.24872	-0.45658	1.64211
С	-2.68893	-4.45197	-0.16816	0	1.04544	-2.17277	-0.91093
С	-2.39961	-5.36068	0.79321	0	-6.23583	3.83202	-0.11848
С	-1.80675	-5.1155	2.16149	0	6.99197	-1.61801	-1.0435
С	-2.7546	-6.75741	0.48934	0	2.65914	1.74431	-1.07068
С	-2.59965	0.01822	-2.39991	0	-2.29043	1.29512	-2.09808
С	3.90458	2.20237	3.45804	0	-1.02923	-3.95372	2.28474
С	0.22086	-4.04158	1.63893	0	-0.84626	3.52048	1.05666
Η	4.92778	-1.69036	0.70533	0	-2.58967	-7.68094	1.25991
Η	6.65347	0.24604	-2.73757	0	-2.82813	-0.33981	-3.52385
Η	4.72622	1.8469	-2.87293	0	3.22164	2.34462	2.21163

Table S12. Atomic coordinates (Å) of 1i obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

	-						
C	-3.7486	-0.99635	-1.14777	H	-1.58164	-3.33674	0.39942
С	-3.82241	-0.01147	-0.16535	Н	0.57396	-1.54903	1.59419
С	-4.9058	0.87048	-0.0809	Н	0.27664	-2.54708	-1.2805
С	-5.91634	0.73646	-1.02501	Н	-0.20601	0.15722	0.08737
С	-5.83042	-0.26316	-2.02118	Н	-0.41852	-1.60152	-3.2728
С	-4.75606	-1.13861	-2.10155	Н	-0.76712	0.04882	-4.08308
С	-2.61852	-0.1528	0.64497	Н	-1.04929	2.01409	-2.93666
С	-1.79384	-1.24994	-0.04949	Н	4.6345	-1.8675	-1.02515
С	-1.27953	-2.3893	0.87184	Н	4.96526	-5.42838	1.35955
С	0.23737	-2.28011	0.83559	Н	2.51996	-5.2796	1.89819
С	0.51027	-1.74719	-0.55798	Н	2.21144	0.18765	0.92453
С	-0.49899	-0.61073	-0.64657	Н	3.19405	2.68104	-2.06714
С	-0.6781	0.0706	-1.97282	Н	2.01501	2.61128	0.79355
С	-0.61929	-0.5324	-3.16789	Н	3.07986	4.86528	-1.09335
С	-0.94799	1.52518	-1.94321	Н	2.55532	5.05309	2.89363
С	-1.86836	-2.3603	2.26253	Н	1.14542	6.0243	2.44001
С	2.21649	-3.50286	0.73721	Н	3.12887	6.95943	-0.51438
С	2.80747	-2.53579	-0.08928	Н	-3.62413	-3.05964	4.13273
С	4.17446	-2.61982	-0.37786	Н	-3.60096	-1.27443	3.93462
С	4.9495	-3.65474	0.13727	Н	-4.94606	-2.24002	3.22715
С	4.35129	-4.62004	0.95929	Н	-0.80888	3.10518	1.782
С	3.00004	-4.53851	1.25727	Н	-0.88969	4.87729	2.04699
С	1.99223	-1.40474	-0.69971	Н	-0.17313	4.22311	0.53955
С	2.29643	-0.03999	-0.1392	Н	-6.97635	2.17287	-0.32645
С	2.58668	0.807	-1.13993	Н	6.56419	-3.06638	-0.71174
C	2.78659	2.24911	-1.14769	0	-1.22695	-2.33273	3.28185
С	2.44817	3.04325	-0.11132	0	-2.25304	0.43966	1.63664
С	2.6393	4.47959	-0.16592	0	-1.05559	2.16178	-0.91727
C	2.33498	5.38656	0.79242	0	6.27411	-3.77734	-0.12192
С	1.73843	5.13557	2.1581	0	-7.01204	1.53106	-1.05132
С	2.67534	6.78675	0.48754	0	-2.63581	-1.7742	-1.06971
С	2.60514	0.00838	-2.39495	0	2.30825	-1.27172	-2.09395
С	-3.87783	-2.22745	3.46341	0	0.96397	3.97101	2.2751
С	-0.2838	4.0564	1.62453	0	0.88453	-3.50885	1.06383
Η	-4.94808	1.63639	0.69663	0	2.49604	7.71005	1.25515
Н	-6.64752	-0.33041	-2.74214	0	2.83128	0.36914	-3.51846
Η	-4.6995	-1.90645	-2.87328	0	-3.19395	-2.36839	2.21735

Table S13. Atomic coordinates (Å) of 1j obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

	-						
C	3.75077	0.98899	-1.14772	Н	1.5863	3.33566	0.39521
С	3.82242	0.00537	-0.16388	Н	-0.57055	1.55142	1.59319
С	4.90362	-0.8791	-0.07835	Н	-0.2727	2.54693	-1.28234
С	5.91431	-0.74906	-1.02289	Н	0.20638	-0.15696	0.08743
С	5.83076	0.2495	-2.02031	Н	0.4198	1.59878	-3.27404
С	4.75854	1.12752	-2.10171	Н	0.76695	-0.05246	-4.08314
С	2.61869	0.15028	0.64607	Н	1.04795	-2.01701	-2.93541
С	1.79627	1.24793	-0.05022	Н	-4.63177	1.87208	-1.02472
С	1.28353	2.38931	0.8694	Н	-4.95845	5.43371	1.35939
С	-0.23344	2.28158	0.83394	Н	-2.51283	5.28333	1.8965
С	-0.50729	1.74789	-0.55919	Н	-2.21055	-0.18469	0.92386
С	0.50051	0.61003	-0.64705	Н	-3.19469	-2.67732	-2.06841
С	0.67872	-0.07249	-1.97285	Н	-2.02193	-2.60808	0.79485
С	0.6199	0.52962	-3.16836	Н	-3.08591	-4.86146	-1.09326
С	0.94784	-1.52722	-1.94228	Н	-2.56481	-5.05415	2.89499
С	1.87306	2.36204	2.2598	Н	-1.15317	-6.02197	2.43983
С	-2.21143	3.50609	0.73571	Н	-3.13842	-6.9554	-0.514
С	-2.80365	2.53923	-0.09009	Н	3.63046	3.06229	4.12783
С	-4.17077	2.62422	-0.3779	Н	3.60534	1.27675	3.93298
С	-4.94469	3.65986	0.13746	Н	4.95111	2.23964	3.22314
С	-4.34524	4.6249	0.95891	Н	0.16391	-4.21842	0.5442
С	-2.99387	4.54247	1.25604	Н	0.79608	-3.09821	1.78647
С	-1.98971	1.40724	-0.70055	Н	0.88095	-4.86992	2.0525
С	-2.29555	0.04292	-0.13989	Н	6.96899	-2.18939	-0.32438
С	-2.58701	-0.8038	-1.14049	Н	-6.56076	3.07154	-0.70895
C	-2.78866	-2.24567	-1.14821	0	1.23215	2.33716	3.27951
С	-2.45338	-3.03991	-0.1109	0	2.2521	-0.43968	1.63881
С	-2.64591	-4.47606	-0.16543	0	1.05621	-2.16303	-0.91591
C	-2.34354	-5.38332	0.79325	0	-6.26931	3.78356	-0.12108
С	-1.74762	-5.1337	2.15943	0	7.00781	-1.54669	-1.04831
С	-2.68554	-6.78309	0.48828	0	2.63964	1.76938	-1.07073
C	-2.60458	-0.00526	-2.39557	0	-2.30615	1.27449	-2.09477
С	3.88297	2.22862	3.45991	0	-0.97513	-3.96813	2.27874
С	0.27337	-4.05075	1.62915	0	-0.87923	3.5112	1.0614
Η	4.94409	-1.64407	0.7002	0	-2.50822	-7.70641	1.25634
Η	6.64788	0.31378	-2.74152	0	-2.83149	-0.36584	-3.51901
Η	4.70383	1.89442	-2.87451	0	3.19864	2.36801	2.21391

Table S14. Atomic coordinates (Å) of 1k obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

С	-3.74848	-0.99574	-1.14778	Н	-1.58024	-3.33833	0.39568
С	-3.82184	-0.012	-0.1642	Н	0.57382	-1.5504	1.59325
С	-4.90461	0.8706	-0.07894	Н	0.2777	-2.54665	-1.28218
С	-5.91514	0.73837	-1.02334	Н	-0.20616	0.15656	0.08744
С	-5.82985	-0.26031	-2.02048	Н	-0.41523	-1.59951	-3.27405
С	-4.756	-1.13633	-2.10174	Н	-0.7658	0.051	-4.08316
С	-2.61795	-0.15471	0.64591	Н	-1.05184	2.01479	-2.93543
С	-1.79358	-1.25102	-0.05016	Н	4.63543	-1.86389	-1.02442
С	-1.2789	-2.39142	0.86965	Н	4.96817	-5.42543	1.35908
С	0.2379	-2.2812	0.83406	Н	2.52231	-5.2794	1.89608
С	0.51081	-1.74715	-0.55907	Н	2.2103	0.18849	0.9241
С	-0.49893	-0.61102	-0.64701	Н	3.19113	2.68296	-2.06754
С	-0.67827	0.07113	-1.97284	Н	2.0149	2.61163	0.79423
С	-0.61771	-0.53079	-3.16837	Н	3.07709	4.8669	-1.09264
С	-0.95077	1.52523	-1.94228	Н	2.55322	5.0567	2.89516
С	-1.86829	-2.36482	2.26012	Н	1.14114	6.02391	2.44001
С	2.21791	-3.50238	0.73573	Н	3.12624	6.96081	-0.51281
С	2.80849	-2.53441	-0.08997	Н	-3.624	-3.06811	4.12857
С	4.17575	-2.61695	-0.37773	Н	-3.60252	-1.28257	3.93321
С	4.95148	-3.65126	0.13762	Н	-4.94643	-2.24839	3.22382
С	4.35361	-4.61757	0.95873	Н	-0.89161	4.8712	2.05015
С	3.00209	-4.53756	1.25581	Н	-0.17357	4.22016	0.54211
С	1.99258	-1.40384	-0.70038	Н	-0.80597	3.09953	1.78389
С	2.29572	-0.03895	-0.13965	Н	-6.97353	2.1755	-0.32385
С	2.58567	0.80834	-1.14023	Н	6.56674	-3.06052	-0.70886
С	2.78474	2.25058	-1.14783	0	-1.22729	-2.33882	3.27975
C	2.44679	3.04422	-0.11094	0	-2.25224	0.43635	1.63831
С	2.6371	4.48068	-0.16515	0	-1.06089	2.16077	-0.91594
С	2.33276	5.38729	0.79354	0	6.27645	-3.77247	-0.12035
С	1.73636	5.13627	2.15925	0	-7.01007	1.53405	-1.049
С	2.67294	6.78762	0.48913	0	-2.63597	-1.77412	-1.07067
С	2.60491	0.00987	-2.39532	0	2.3088	-1.27044	-2.09456
С	-3.87829	-2.23515	3.46044	0	0.96464	3.97003	2.27722
С	-0.28354	4.0523	1.62699	0	0.88577	-3.50968	1.06159
Н	-4.9464	1.63573	0.69939	0	2.49357	7.71054	1.2572
Н	-6.64693	-0.3263	-2.74159	0	2.83095	0.37093	-3.51877
Н	-4.69987	-1.90334	-2.87434	0	-3.19385	-2.37346	2.2144

Table S15. Atomic coordinates (Å) of 11 obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

	-						
C	3.74785	0.99766	-1.14793	H	1.57832	3.33936	0.39531
С	3.82176	0.01411	-0.16418	Н	-0.57452	1.55029	1.59333
С	4.905	-0.8679	-0.07881	Н	-0.27922	2.54639	-1.28226
С	5.91532	-0.73539	-1.02338	Н	0.20631	-0.15644	0.0875
С	5.82942	0.26301	-2.02076	Н	0.41482	1.59991	-3.27382
С	4.75518	1.13855	-2.10204	Н	0.76604	-0.05039	-4.08309
С	2.61777	0.15627	0.64588	Н	1.05261	-2.01429	-2.93527
С	1.79287	1.25213	-0.05028	Н	-4.63665	1.86138	-1.02418
С	1.27762	2.39233	0.86946	Н	-4.97109	5.42297	1.35898
С	-0.23913	2.28121	0.83402	Н	-2.52519	5.27814	1.89602
С	-0.51186	1.74686	-0.55903	Н	-2.2104	-0.18961	0.92435
С	0.49854	0.61132	-0.64695	Н	-3.18918	-2.68485	-2.06739
С	0.67825	-0.07072	-1.97277	Н	-2.014	-2.6129	0.79481
С	0.61765	0.53125	-3.16826	Н	-3.07381	-4.86877	-1.0927
С	0.95109	-1.52474	-1.94216	Н	-2.55109	-5.05684	2.895
С	1.86713	2.36632	2.25988	Н	-1.13863	-6.02418	2.44118
С	-2.21987	3.50125	0.73572	Н	-3.12052	-6.9629	-0.51324
С	-2.80997	2.53289	-0.08987	Н	3.6015	1.28469	3.93323
С	-4.17728	2.61473	-0.37761	Н	4.94538	2.2502	3.22332
С	-4.9535	3.64876	0.13756	Н	3.62307	3.0703	4.1279
С	-4.35615	4.61538	0.95867	Н	0.89395	-4.87137	2.0502
С	-3.00459	4.53603	1.25576	Н	0.17599	-4.21997	0.54226
С	-1.99349	1.4027	-0.70022	Н	0.80814	-3.09963	1.78439
С	-2.29597	0.0377	-0.13942	Н	6.97439	-2.17199	-0.32388
C	-2.58535	-0.80984	-1.13994	H	-6.5682	3.05721	-0.70931
C	-2.78345	-2.2522	-1.14752	0	1.2262	2.34041	3.27956
С	-2.44533	-3.04568	-0.11055	0	2.25243	-0.43477	1.63843
С	-2.63442	-4.48228	-0.16503	0	1.06083	-2.16027	-0.91577
C	-2.32944	-5.38867	0.79365	0	-6.27847	3.76932	-0.12071
С	-1.73384	-5.13681	2.15958	0	7.01062	-1.53055	-1.04904
С	-2.6678	-6.78937	0.4889	0	2.63497	1.77552	-1.07085
С	-2.60502	-0.01146	-2.39509	0	-2.30967	1.26905	-2.0944
С	3.87726	2.23707	3.46007	0	-0.96238	-3.97036	2.27733
С	0.28583	-4.05241	1.62719	0	-0.8877	3.50933	1.06147
Η	4.94727	-1.63286	0.69966	0	-2.48766	-7.71224	1.25685
Η	6.64634	0.32916	-2.74204	0	-2.83095	-0.37271	-3.5185
Η	4.69857	1.90534	-2.87481	0	3.1927	2.37495	2.21404

Table S16. Atomic coordinates (Å) of 1m obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

	•						
C	3.77455	0.92109	-1.14388	Н	1.65046	3.3107	0.39397
С	3.82511	-0.06427	-0.16049	Н	-0.5403	1.56742	1.59078
С	4.88725	-0.9716	-0.07492	Н	-0.21902	2.55095	-1.28607
C	5.90106	-0.86238	-1.01892	Н	0.21024	-0.15724	0.09107
С	5.83968	0.13933	-2.01493	Н	0.47112	1.58457	-3.27466
С	4.78603	1.03948	-2.09668	Н	0.78199	-0.07626	-4.07883
С	2.62523	0.10649	0.65012	Н	1.01223	-2.04456	-2.92362
С	1.82465	1.21883	-0.04789	Н	-4.59135	1.94412	-1.02654
С	1.33042	2.37049	0.869	Н	-4.86318	5.51463	1.35162
С	-0.18845	2.28982	0.83078	Н	-2.41894	5.33167	1.88348
С	-0.46902	1.75781	-0.56167	Н	-2.20821	-0.14675	0.91594
С	0.51911	0.60216	-0.64544	Н	-3.23042	-2.6179	-2.08284
С	0.68625	-0.08877	-1.96849	Н	-2.07641	-2.56954	0.78804
С	0.64568	0.51124	-3.16588	Н	-3.16684	-4.80538	-1.10604
С	0.922	-1.54931	-1.93218	Н	-2.69039	-5.00841	2.88895
С	1.91658	2.33401	2.26063	Н	-1.28761	-5.99419	2.44555
С	-2.14524	3.5467	0.72745	Н	-3.26707	-6.89708	-0.52207
С	-2.75283	2.58718	-0.09575	Н	3.62063	1.21464	3.93932
С	-4.11915	2.69067	-0.38135	Н	4.98868	2.14744	3.232
С	-4.8778	3.73716	0.13499	Н	3.68359	2.99934	4.13239
С	-4.26235	4.69633	0.95164	Н	0.07111	-4.20193	0.56424
С	-2.9116	4.59592	1.24593	Н	0.70819	-3.09707	1.81754
С	-1.95635	1.44271	-0.70613	Н	0.76419	-4.87114	2.07581
С	-2.28734	0.08344	-0.14774	Н	6.9236	-2.32923	-0.32573
С	-2.59224	-0.75669	-1.15006	Н	-6.5091	3.16408	-0.69466
С	-2.82179	-2.19433	-1.16002	0	1.27298	2.32591	3.27895
С	-2.50883	-2.99453	-0.12039	0	2.24658	-0.47591	1.64281
С	-2.72867	-4.42666	-0.17453	0	1.01461	-2.18404	-0.90369
С	-2.45432	-5.33755	0.78916	0	-6.20188	3.8781	-0.11738
С	-1.86744	-5.09757	2.16089	0	6.97683	-1.68376	-1.0462
С	-2.82195	-6.73081	0.48467	0	2.67913	1.72364	-1.06744
С	-2.59237	0.04334	-2.40427	0	-2.27172	1.31714	-2.1013
С	3.91992	2.15976	3.46593	0	-1.08022	-3.94291	2.2896
C	0.17283	-4.04099	1.6509	0	-0.81317	3.53103	1.0535
Η	4.9114	-1.73829	0.70267	0	-2.6727	-7.65479	1.25787
Η	6.65883	0.18725	-2.73513	0	-2.82336	-0.31179	-3.52861
Η	4.74814	1.80816	-2.86876	0	3.24203	2.31224	2.21797

Table S17. Atomic coordinates (Å) of 1n obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

	•						
C	-3.68738	-1.16572	-1.15088	Н	-1.37613	-3.43583	0.3087
С	-3.79555	-0.20763	-0.1454	Н	0.65148	-1.5463	1.57216
С	-4.91748	0.62097	-0.02965	Н	0.44639	-2.51833	-1.31955
С	-5.93179	0.45998	-0.9659	Н	-0.20344	0.14048	0.06775
С	-5.8106	-0.5116	-1.98567	Н	-0.26612	-1.60177	-3.30172
С	-4.69763	-1.33364	-2.09733	Н	-0.72835	0.02328	-4.10539
С	-2.57711	-0.31147	0.64887	Н	-1.17205	1.9534	-2.94881
С	-1.71062	-1.35323	-0.07912	Н	4.76188	-1.56618	-0.98349
С	-1.13783	-2.48664	0.81345	Н	5.27613	-5.12456	1.37242
C	0.3693	-2.28431	0.79811	Н	2.82389	-5.14508	1.85825
С	0.62362	-1.71518	-0.58475	Н	2.1862	0.30946	0.9281
С	-0.45085	-0.63965	-0.66997	Н	3.04168	2.87849	-2.03899
С	-0.66604	0.03606	-1.99375	Н	1.83698	2.71992	0.80748
С	-0.5477	-0.55155	-3.19208	Н	2.78235	5.0446	-1.05698
C	-1.04737	1.46528	-1.95771	Н	2.20099	5.18502	2.92343
С	-1.74068	-2.53785	2.19694	Н	0.73694	6.06556	2.45645
С	2.42168	-3.37894	0.71269	Н	2.69046	7.13628	-0.47123
C	2.96178	-2.3638	-0.09371	Н	-3.53224	-1.59801	3.8948
С	4.33394	-2.35121	-0.35542	Н	-4.83073	-2.58372	3.1298
С	5.17039	-3.33541	0.16654	Н	-3.48679	-3.38976	4.01489
С	4.62403	-4.34992	0.96289	Н	-1.21396	4.79426	2.02809
С	3.26266	-4.36454	1.23481	Н	-0.43715	4.18169	0.53313
C	2.08403	-1.28236	-0.70747	H	-1.0196	3.02979	1.77103
С	2.29693	0.09476	-0.13603	Н	-7.05438	1.82569	-0.22286
C	2.5433	0.96476	-1.12865	H	6.96445	-4.00105	0.2985
C	2.65163	2.41661	-1.12651	0	-1.11043	-2.52505	3.22351
C	2.25246	3.18253	-0.09049	0	-2.22836	0.27332	1.65108
C	2.3549	4.6282	-0.13673	0	-1.21819	2.08318	-0.92883
С	1.98313	5.51041	0.82095	0	6.49294	-3.26762	-0.12273
C	1.38854	5.21736	2.17908	0	-7.06457	1.20137	-0.96344
C	2.23716	6.93063	0.5246	0	-2.53871	-1.89249	-1.10237
С	2.62637	0.17667	-2.38772	0	2.40665	-1.1213	-2.09721
С	-3.76635	-2.53953	3.37933	0	0.6889	4.00549	2.28499
С	-0.55247	4.01134	1.61707	0	1.0873	-3.47504	1.01499
Η	-4.98668	1.36625	0.76579	0	1.98951	7.83768	1.29265
Н	-6.63191	-0.60078	-2.69942	0	2.84227	0.55787	-3.50645
Η	-4.61406	-2.08043	-2.88703	0	-3.06441	-2.59872	2.13661

Table S18. Atomic coordinates (Å) of 10 obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

С	3.02786	-2.39154	-1.20944	Н	3.78789	0.96676	-0.4796
С	2.7672	-2.88826	0.06524	Н	1.62914	1.79267	1.49653
С	2.91893	-4.24444	0.37669	Н	1.43503	1.56988	-1.54572
С	3.3346	-5.09344	-0.6419	Н	0.40176	-0.18601	0.7482
С	3.58968	-4.58047	-1.93459	Н	0.86898	-0.18592	-3.04778
С	3.4419	-3.23448	-2.24032	Н	-0.51531	-1.43829	-3.18754
С	2.36523	-1.74367	0.87463	Н	-1.60918	-2.33738	-1.42183
С	2.32446	-0.55474	-0.10004	Н	-1.65805	4.56825	-0.7844
С	3.10633	0.71246	0.34642	Н	1.45829	7.45785	-0.13957
С	2.06088	1.8099	0.47885	Н	3.07991	5.5941	0.28983
С	1.01185	1.41136	-0.53914	Н	-0.79972	1.96639	1.77503
С	0.84497	-0.07635	-0.25497	Н	-3.24579	0.8466	2.08822
С	0.01035	-0.87129	-1.21999	Н	-4.40464	-0.01949	-0.63725
С	0.13449	-0.82673	-2.55416	Н	-5.20467	-0.48487	2.362
С	-1.04336	-1.75135	-0.6643	Н	-7.51066	-2.07593	-0.76533
С	3.94642	0.50394	1.58468	Н	-6.07554	-1.16518	-1.28988
С	1.62207	4.05059	-0.00876	Н	-7.75609	-2.96872	1.44234
С	0.28462	3.75618	-0.31316	Н	6.17159	-1.73817	2.24624
С	-0.61673	4.80108	-0.54418	Н	6.19662	-0.05599	2.88613
С	-0.20077	6.12783	-0.48378	Н	4.8901	-1.18401	3.38308
С	1.13833	6.4157	-0.18482	Н	-4.0567	-4.10253	-1.24723
С	2.03538	5.38574	0.05307	Н	-4.1344	-2.39204	-1.77668
С	-0.20597	2.31906	-0.40573	Н	-3.93664	-2.79254	-0.03742
С	-1.10392	1.90845	0.72901	Н	3.31844	-6.67431	0.44568
С	-2.25468	1.40926	0.2481	Н	-1.9295	6.84567	-0.90488
С	-3.32644	0.77847	0.999	0	3.86928	1.163	2.59021
С	-4.33219	0.06739	0.44818	0	2.07661	-1.6635	2.04807
С	-5.28112	-0.64353	1.28017	0	-1.30125	-1.84026	0.51655
С	-6.21881	-1.51635	0.84531	0	-1.03928	7.1699	-0.70387
С	-6.43458	-1.93473	-0.5864	0	3.51468	-6.42416	-0.46931
С	-7.03831	-2.22413	1.85552	0	2.8488	-1.04885	-1.327
С	-2.19328	1.53613	-1.23733	0	-1.03337	2.14207	-1.56368
С	5.55883	-0.88884	2.56295	0	-5.82367	-3.17991	-0.86068
С	-4.42223	-3.10204	-0.98029	0	2.57822	3.09448	0.22036
Η	2.71367	-4.61806	1.38225	0	-6.97113	-2.04149	3.05273
Η	3.91285	-5.28482	-2.70354	0	-2.9793	1.18503	-2.07627
Н	3.64299	-2.8492	-3.24003	0	4.78761	-0.50851	1.42241

Table S19. Atomic coordinates (Å) of 1p obtained at the Cam-B3LYP/6-311+G(d,p) level of theory in the MeOH.

Figure S17. Uncropped images of western blot

Note: B–D and F–H are corresponding to the B–D and F–H in Figure 4 of paper.

Figure S18. The molecular docking mode of (+)-1 and (-)-1 with BACE1.

Molecular docking method: The crystal structures of BACE1 (PDB code: 1YM2)was used for preparing the new docking templates through Swiss-model server.²⁶ After removed the peptide and inhibitors, hydrogens were added for new models. The best confirmation was refined with energy minimization and molecular docking was performed by Autodock Vina with center box: x = 33.469, y = 0.459, z = 20.935 and the dimensions: $58 \times 56 \times 50$ Å for BACE1. The docking results were analyzed and shown with Discovery Studio® Visualizer (BIOVIA, San Diego, USA) and PyMOL software (Schrödinger, LLC: NY, USA).

Results: The further molecular docking experiment displayed that (+)-1 can form eight hydrogen bonds with residue PHE108, LYS107, GLN32, LYS9, ARG307, and THR232, as well as one hydrophobic bond with TYR71. Meanwhile, (–)-1 had six hydrogen bonds with THR329, THR72, GLN73, LYS107, AGR128, and ASP32, as well as one hydrophobic bond with TYR71. Moreover, the binding energy of (–)-1 was -8.6 kcal/mol, while that of (+)-1 was -7.8 kcal/mol, which suggested that the binding effect of (–)-1 was stronger than that of (+)-1.

Scheme S1. The proposal biosynthetic pathway for (±)-1.