Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Palladium-catalyzed dearomative 1,4-arylmethylenation of

naphthalenes

Enshen Zhang, Chen Chen, Xueling Wang, Jian Wang,* and Yongjia Shang*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China

Corresponding authors: *wang_jian989@163.com, *shyj@mail.ahnu.edu.cn

Contents

I. General information	2
II. Procedures for the synthesis of substrates	2
III. Optimization of the reaction conditions	5
IV. General procedure for product synthesis	6
V. Initial trial of asymmetric catalysis	6
VI. Characterization data	8
VII. References	22
VIII. NMR spectra	23
IX. Single crystal X-ray structure analysis	

I. General information

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. NMR data were obtained for ¹H at 500 MHz or 400MHz, and for ¹³C at 125 MHz or 100 MHz, and for ¹⁹F at 470 MHz. Chemical shifts of ¹H NMR are recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta = 0.00$ ppm) with the solvent resonance as the internal standard (CDCl₃: $\delta = 7.26$ ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz) and integration. Chemical shifts of ¹³C NMR are reported in ppm as the internal standard (CDCl₃: $\delta = 77.0$ ppm). High resolution mass measurement were performed on Agilent QTOF 6520 mass spectrometer with electron spray ionization (ESI). Melting point (mp) were measured on a microscopic melting point apparatus. Flash column chromatography was carried out using commercially available 200-300 mesh silica gel under pressure unless stated otherwise. Gradient flash chromatography was conducted with PE/EA. Their volume/volume ratios are provided in the parenthesis.

II. Procedures for the synthesis of substrates

Synthesis of substrate 1¹

(i) 1-Naphthoyl chloride **A** (1.0 equiv) was dissolved in DCM (0.2 M), then DIPEA (1.3 equiv) and substituted 2-iodoaniline **B** (1.2 equiv) were added at room temperature. After completion (monitored by TLC), the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with DCM (50 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄ and filtrated. The solvent was removed / evaporated under reduced pressure, and crude product **C** was used in the following transformations without purification.

(ii) To a solution of crude product **C** in THF (0.2 M), potassium tert-butoxide (1.2 equiv) was added carefully at room temperature. After 20 min, iodomethane (1.2 equiv) was added dropwise. Then the reaction mixture was stirred at room temperature. After completion (monitored by TLC), the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with EA (50 mL \times 3). The combined ethyl acetate extract was dried over anhydrous Na₂SO₄ and filtered. After the solvent was removed under reduced pressure, the crude product was purified by silica gel column chromatography (PE/EA = 20:1) to afford the desired product.

Synthesis of N-tosylhydrazones

N-Tosylhydrazones was prepared according to literature procedure.² A solution of pure 4-methylbenzenesylfonhydrazide (5 mmol) in methanol (5 mL) was stirred and heated to 60 $\,^{\circ}$ C until the 4-methylbenzenesylfonhydrazide was completely dissolved. Then the aldehydes were slowly added to the mixture. After approximately 5-30 min the crude products was obtained as precipitates. The precipitates were washed with petroleum ether and dried in vacuo to afford the pure products. The reaction provides the *N*-tosylhydrazones in 75-99% yields.

Synthesis of 9e

(i): A 100 mL round-bottom flask was charged with **9a** (3000 mg, 10 mmol), dry DCM (50 mL) and catalytic amount of DMF (3 drop). The reaction mixture was cooled to 0 °C and stirred for 5 minutes. Then, $(COCl)_2$ (1.12 mL, 1.3 equiv.) was added dropwise to the reaction mixture and stirred at room temperature for 4 h. The resulting mixture was concentrated under reduced pressure to afford acid chloride in quantitative yield which was used in the next step without further purification.^[3]

(ii): A 100 mL round-bottom flask was charged with 9c (1220 mg, 10 mmol), raw material 9b from the previous step dry DCM (50 mL). The reaction mixture was stirred at room temperature overnight. The resulting mixture was concentrated under reduced pressure and immediately used in the next step.^[4]

(iii): Typical procedure. A suspension of pure 4-methylbenzenesulfonyl hydrazide (11 mmol) in methanol (40 mL) was stirred and heated to 60 $^{\circ}$ C until it was completely dissolved. Then **9d** was slowly added to the reaction mixture. After approximately 5-30 min the crude products was obtained by filtration. The precipitates are washed with petroleum ether and dried in vacuo to afford spectroscopically pure products. The reaction provides **9e** in about 75% yields. ^[2]

Synthesis of 10e

(i): A 100 mL round-bottom flask was charged with **10a** (3000 mg, 10 mmol), dry DCM (50 mL) and catalytic amount of DMF (3 drop). The reaction mixture was cooled to 0 °C and stirred for 5 minutes. Then, $(COCl)_2$ (1.12 mL, 1.3 equiv.) was added dropwise to the reaction mixture and stirred at room temperature for 4 h. The resulting mixture was concentrated under reduced pressure to afford acid chloride in quantitative yield which was used in the next step without further purification.^[3]

(ii): A 100 mL round-bottom flask was charged with **10c** (1220 mg, 10 mmol), raw material **10b** from the previous step dry DCM (50 mL). The reaction mixture was stirred at room temperature overnight. The resulting mixture was concentrated under reduced pressure and immediately used in the next step.^[4]

(iii): Typical procedure. A suspension of pure 4-methylbenzenesulfonyl hydrazide (11 mmol) in methanol (40 mL) was stirred and heated to 60 $^{\circ}$ C until it was completely dissolved. Then **10d** was slowly added to the reaction mixture. After approximately 5-30 min the crude products was obtained by filtration. The precipitates are washed with petroleum ether and dried in vacuo to afford spectroscopically pure products. The reaction provides **10e** in about 75% yields.^[2]

III. Optimization of the reaction conditions

Table S1:

0 	N +	Ph NNF	[Pd] L (20 base solve	(10 mol%) mol%) nt. T. 12 h	N LO
2a Ph					
	1a			3a	
Entry	Catalyst	Ligand	Base	Solvent	Yield (%)
1	PdCl ₂	SPhos	KF	N,N-Dimethylacetamide	trace
2	PdCl ₂	SPhos	KF	<i>N</i> , <i>N</i> -Dimethylformamide	trace
3	PdCl ₂	SPhos	KF	1,2-Dimethoxyethane	trace
4	PdCl ₂	SPhos	KF	1,4-Dioxane	trace
5	PdCl ₂	SPhos	KF	Dichloroethane	trace
6	PdCl ₂	SPhos	KF	Tetrahydrofuran	trace
7	PdCl ₂	SPhos	KF	Toluene	45
8^{b}	PdCl ₂	SPhos	KF	Toluene	52
9°	PdCl ₂	SPhos	KF	Toluene	58
10 ^d	PdCl ₂	SPhos	KF	Toluene	73
11	PdCl ₂	PPh ₃	KF	Toluene	NR
12	$PdCl_2$	PCy ₃	KF	Toluene	NR
13	PdCl ₂	XPhos	KF	Toluene	NR
14	PdCl ₂	TFP	KF	Toluene	NR
15	[Pd(allyl)Cl] ₂	SPhos	KF	Toluene	18
16	$Pd(acac)_2$	SPhos	KF	Toluene	25
17	$Pd(TFA)_2$	SPhos	KF	Toluene	trace
18	$Pd(OAc)_2$	SPhos	KF	Toluene	12
19	$Pd(acac)_2$	SPhos	KF	N,N-Dimethylacetamide	trace
20	$Pd(acac)_2$	SPhos	KF	1,2-Dimethoxyethane	trace
21	$Pd(acac)_2$	SPhos	KF	1,4-Dioxane	trace
22	$Pd(acac)_2$	SPhos	KF	Dichloroethane	trace
23	$Pd(acac)_2$	PCy ₃	KF	Toluene	8
24	$Pd(acac)_2$	TFP	KF	Toluene	NR
25	$Pd(acac)_2$	XPhos	KF	Toluene	15
26	$Pd(dba)_2$	SPhos	KF	Toluene	20
27	PdCl ₂	SPhos	Cs_2CO_3	Toluene	NR
28	PdCl ₂	SPhos	K_2CO_3	Toluene	NR
29	PdCl ₂	SPhos	K_3PO_4	Toluene	NR
30	PdCl ₂	SPhos	Ag_3PO_4	toluene	NR
31	PdCl ₂	SPhos	Na ₂ CO ₃	Toluene	NR
32	PdCl ₂	SPhos	CsF	Toluene	NR
33	PdCl ₂	SPhos	Et ₃ N	Toluene	NR

Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), catalyst (0.01 mmol), ligand (0.02 mmol), base (0.25 mmol), 120 °C, 12 h, solvent (1.0 mL). ^{*b*}base (0.5 mmol). ^{*c*}base (0.8 mmol). ^{*d*}base (0.8 mmol), 130 °C.

IV. General procedure for product synthesis

N-(2-iodophenyl)-*N*-methyl-1-naphthamide **1a** (38.7 mg, 0.1 mmol), (*Z*)-*N*'-benzylidene-4-methylbenzenesulfonohydrazide **2a** (78.6 mg, 0.3 mmol), PdCl₂ (1.8 mg, 10 mol %), Sphos (8.2 mg, 20 mol %) and KF (46.4 mg, 8.0 equiv) were stirred in toluene (1.0 mL) under Ar atmosphere at 130 °C for 12 h, After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:20) to give the product **3a** as a white solid (25.5 mg, 73%).

V. Initial trial of asymmetric catalysis

N-(2-iodophenyl)-*N*-methyl-1-naphthamide **1a** (38.7 mg, 0.1 mmol), (*Z*)-*N*-benzylidene-4-methylbenzenesulfonohydrazide **2a** (78.6 mg, 0. 3 mmol), PdCl₂ (1.8 mg, 10 mol %), Xu-Phos (9.9 mg, 20 mol %) and KF (46.4 mg, 8.0 equiv) were stirred in toluene (1.0 mL) under Ar atmosphere at 130 °C for 12 h, After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:20) to give the product **3a** as a white solid.

VI. Characterization data

4-((Z)-(2-tosylhydrazono)methyl)phenyl

(1S)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-car boxylate (9e)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1); m.p. 129-130 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.25 – 7.99 (m, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.63 (q, *J* = 2.8, 2.4 Hz, 1H), 7.56 – 7.44 (m, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 1H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.91 (s, 1H), 2.96 (dd, *J* = 11.1, 5.4 Hz, 2H), 2.83 (p, *J* = 6.9 Hz, 1H), 2.41 (s, 3H), 2.36 (d, *J* = 13.0 Hz, 1H), 2.03 – 1.92 (m, 2H), 1.89 – 1.74 (m, 3H), 1.72 – 1.52 (m, 2H), 1.39 (s, 3H), 1.26 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.3, 152.6, 146.6, 145.9, 144.3, 135.1, 134.5, 130.7, 129.7, 128.5, 127.9, 126.9, 124.2, 124.1, 121.8, 48.0, 44.8, 37.9, 36.93, 36.4, 33.4, 30.1, 25.1, 23.9, 21.9, 21.6, 18.5, 16.5. HRMS (ESI) *m*/z: [M+H]⁺ calcd for C₃₄H₄₁N₂O₄S⁺ 573.2782; found 573.2787.

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13 -dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]ph enanthren-3-yl 2-(4-((Z)-(2-tosylhydrazono)methyl)phenoxy)acetate (10e)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1); m.p. 175-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.70 (s, 1H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 5.43 – 5.32 (m, 1H), 5.15 (dd, *J* = 15.1, 8.6 Hz, 1H), 5.01 (dd, *J* = 15.1, 8.6 Hz, 1H), 4.72 (ddd, *J* = 15.0, 9.4, 5.3 Hz, 1H), 4.61 (s, 2H), 2.40 (s, 3H), 2.34 (d, *J* = 8.2 Hz, 2H), 2.15 – 1.93 (m, 3H), 1.93 – 1.81 (m, 2H), 1.69 (ddd, *J* = 17.6, 9.0, 4.2 Hz, 2H), 1.64 – 1.46 (m, 7H), 1.46 – 1.35 (m, 2H), 1.33 – 1.24 (m, 1H), 1.24 – 1.10 (m, 4H), 1.01 (s, 3H), 0.87 – 0.82 (m, 4H), 0.79 (d, *J* = 6.9 Hz, 5H), 0.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 159.6, 147.8, 144.2, 139.1, 138.3, 135.3, 129.7, 129.3, 129.0, 127.9, 126.8, 123.1, 114.8, 75.4, 65.4, 56.7, 55.9, 51.2, 50.0, 42.2, 40.5, 39.6, 37.9, 36.8, 36.5, 31.9, 31.8, 28.9, 27.6, 25.4, 24.3, 21.6, 21.2, 21.1, 21.0, 19.3, 19.0, 12.2, 12.0. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₄₅H₆₃N₂O₅S⁺ 743.4452; found 743.4468.

(E)-4'-benzylidene-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3a)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 25.5 mg, yield: 73%. m.p. 249-250 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 8.1, 1.3 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.44 – 7.35 (m, 3H), 7.37 – 7.27 (m, 3H), 7.20 (dd, J = 9.9, 0.9 Hz, 1H), 7.17 – 7.10 (m, 1H), 7.09 – 7.00 (m, 2H), 6.99 – 6.90 (m, 1H), 6.66 (dd, J = 7.9, 1.4 Hz, 1H), 5.70 (dd, J = 10.0, 1.7 Hz, 1H), 3.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.0, 143.5, 137.2, 134.7, 134.5, 133.2, 130.1, 129.6, 128.6, 128.2, 127.9, 127.7, 127.3, 127.1, 126.6, 125.3, 124.8, 123.4, 123.1, 108.3, 56.1, 26.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₀NO⁺ 350.1539; found 350.1544.

(E)-1-methyl-4'-(2-methylbenzylidene)-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3b)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 21.6 mg, yield: 60%. m.p. 356-357 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 8.3 Hz, 3H), 7.39 – 7.18 (m, 5H), 7.20 –7.05 (m, 3H), 6.98 (d, *J* = 7.8 Hz, 1H), 6.68 (dd, *J* = 7.8, 1.4 Hz, 1H), 5.72 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.35 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 143.7, 137.3, 135.2, 134.8, 134.6, 133.6, 129.8, 129.3, 128.9, 128.2, 128.0, 127.6, 127.1, 127.0, 125.8, 125.1, 123.7, 123.4, 108.6, 56.5, 27.1, 21.5. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₆H₂₂NO⁺ 364.1696; found 364.1689.

(E)-1-methyl-4'-(3-methylbenzylidene)-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3c)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 30.2 mg, yield: 83%. m.p. 285-286 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 – 7.92 (m, 1H), 7.39 (s, 1H), 7.36 – 7.27 (m, 5H), 7.20 (d, *J* = 10.1 Hz, 1H), 7.16 – 7.09 (m, 2H), 7.08 – 7.01 (m, 2H), 6.95 (d, *J* = 7.8 Hz, 1H), 6.65 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.68 (dd, *J* = 9.9, 1.7 Hz, 1H), 3.31 (s, 2H), 2.39 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 177.1, 143.5, 137.8, 137.1, 134.8, 134.4, 130.2, 128.5, 128.1, 127.9, 127.6, 127.3, 126.8, 126.7, 125.5, 124.8, 123.4, 123.1, 108.2, 56.1, 26.8, 21.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₂NO⁺ 364.1696; found 364.1690.

(E)-1-methyl-4'-(4-methylbenzylidene)-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3d)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 29.8 mg, yield: 82%. m.p. 233-234 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.42 –7.28 (m, 5H), 7.24 – 7.12 (m, 3H), 7.11 – 7.09 (m, 1H), 7.08 – 6.99 (m, 2H), 6.95 (d, *J* = 7.8 Hz, 1H), 6.64 (dd, *J* = 7.8, 1.4 Hz, 1H), 5.68 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.31 (s, 3H), 2.38 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.1, 143.5, 137.0, 134.9, 134.4, 134.3, 133.4, 129.5, 129.0, 128.5, 127.8, 127.6, 127.3, 126.8, 126.7, 125.4, 124.8, 123.4, 123.0, 108.2, 56.1, 26.8, 21.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₂NO⁺ 364.1696; found 364.1693.

(E)-4'-(3-ethylbenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3e)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 29.6 mg, yield: 62%. m.p. 294-295 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.6 Hz, 1H), 7.42 (d, *J* = 7.8 Hz, 3H), 7.38 – 7.29 (m, 2H), 7.27 – 7.21 (m, 3H), 7.21 –7.01 (m, 3H), 6.96 (d, *J* = 7.8 Hz, 1H), 6.66 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.70 (dd, *J* = 10.0, 1.6 Hz, 1H), 3.33 (s, 3H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 143.6, 143.5, 135.1, 134.8, 134.5, 133.6, 133.0, 129.7, 128.8, 128.1, 127.9, 127.5, 127.0, 125.6, 125.1, 123.5, 123.3, 108.7, 56.4, 28.9, 27.1, 15.6. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₇H₂₄NO⁺ 378.1852; found 378.1855.

(E)-4'-(4-ethylbenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3f)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 26.8 mg, yield: 71%. m.p. 302-302 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (dd, J = 8.1, 1.2 Hz, 1H), 7.38 (d, J = 8.0 Hz, 3H), 7.35 –7.28 (m, 2H), 7.25 – 7.21 (m, 3H), 7.14 – 7.10 (m, 1H), 7.07 – 7.00 (m, 2H), 6.95 (dd, J = 7.8, 0.9 Hz, 1H), 6.64 (dd, J = 7.9, 1.3 Hz, 1H), 5.68 (dd, J = 10.0, 1.7 Hz, 1H), 3.31 (s, 3H), 2.68 (q, J = 7.7 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 143.2, 143.1, 134.9, 134.5, 129.6, 128.5, 127.7, 127.3, 126.7, 125.5, 124.8, 123.4, 123.1, 108.2, 56.0, 28.6, 26.7, 15.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₇H₂₄NO⁺ 378.1852; found 378.1855.

(E)-4'-(2-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (3g)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 21.3 mg, yield: 56%. m.p. 249-250 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.42 – 7.29 (m, 3H), 7.22 (d, *J* = 9.6 Hz, 1H), 7.18 –7.01 (m, 3H), 6.96 (dd, *J* = 8.2, 3.7 Hz, 3H), 6.66 (dd, *J* = 7.9, 1.3 Hz, 1H), 5.69 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.87 (s, 3H), 3.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 158.5, 143.2, 134.6, 133.9, 133.1, 130.1, 129.3, 128.6, 128.2, 127.5, 127.3, 126.9, 126.6, 126.2, 124.9, 124.5, 123.0, 122.7, 113.2, 107.8, 55.9, 55.0, 26.5. HRMS (ESI) *m*/z: [M+H]⁺ calcd for C₂₆H₂₂NO₂⁺ 380.1645; found 380.1641.

(E)-4'-(3-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (3h)

A White solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 29.6 mg, yield: 78%. m.p. 189-190 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 7.8 Hz, 1H), 7.38 (s, 1H), 7.36 – 7.29 (m, 3H), 7.22 (dd, *J* = 9.9, 0.8 Hz, 1H), 7.13 (td, *J* = 7.5, 1.2 Hz, 1H), 7.07 (d, *J* = 7.9 Hz, 1H), 7.05 – 6.98 (m, 3H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.91 – 6.82 (m, 1H), 6.65 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.69 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.84 (s, 3H), 3.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.0, 159.5, 143.4, 138.6, 134.7, 134.5, 133.1, 130.2, 129.2, 128.6, 128.0, 127.7, 127.3, 127.1, 126.6, 125.2, 124.8, 123.4, 123.1, 122.1, 114.9, 112.8, 108.2, 56.1, 55.3, 26.8. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₆H₂₂NO₂⁺ 380.1645; found 380.1640.

(E)-4'-(4-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (3i)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 30.4 mg, yield: 80%. m.p. 298-299 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dd, J = 8.1, 1.2 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.36 (s, 1H), 7.35 – 7.28 (m, 2H), 7.20 (dd, J = 9.9, 0.8 Hz, 1H), 7.16 – 7.09 (m, 1H), 7.09 – 6.99 (m, 2H), 6.98 – 6.87 (m, 3H), 6.64 (dd, J = 7.8, 1.3 Hz, 1H), 5.68 (dd, J = 9.9, 1.7 Hz, 1H), 3.85 (s, 3H), 3.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 158.8, 143.4, 134.9, 134.3, 133.5, 130.9, 129.7, 129.0, 128.5, 127.7, 127.2, 126.8, 126.5, 125.1, 124.8, 123.4, 122.9, 113.7, 108.2, 56.1, 55.3, 26.8. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₂NO₂⁺ 380.1645; found 380.1654.

(E)-4'-(4-fluorobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3j)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 21.3 mg, yield: 58%. m.p. 235-236 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.80 (m, 1H), 7.49 – 7.40 (m, 2H), 7.38 – 7.28 (m, 3H), 7.14 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.12 – 7.10 (m, 1H), 7.10 – 7.06 (m, 2H), 7.06 – 7.01 (m, 2H), 6.95 (d, *J* = 7.9 Hz, 1H), 6.64 (dd, *J* = 7.8, 1.3 Hz, 1H), 5.71 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 161.9 (d, *J* = 245.9 Hz), 143.6, 134.6, 134.5, 133.2 (d, *J* = 3.0 Hz), 133.10, 131.2 (d, *J* = 7.8 Hz), 130.2, 128.7, 128.1, 127.8, 127.4, 127.3, 126.4, 124.8, 124.2, 123.4, 123.1, 115.3 (d, *J* = 21.6 Hz), 108.3, 56.2, 26.7. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₁₉FNO⁺ 368.1445; found 368.1444.

(E)-4'-(3-chlorobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3k)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 22.3 mg, yield: 58%. m.p. 258-259 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.2, 1.3 Hz, 1H), 7.46 (d, J = 7.2 Hz, 2H), 7.43 – 7.37 (m, 3H), 7.36 – 7.28 (m, 2H), 7.20 (dd, J = 10.0, 0.9 Hz, 1H), 7.14 (td, J = 7.5, 1.3 Hz, 1H), 7.02 (dd, J = 7.8, 1.9 Hz, 1H), 6.98 – 6.86 (m, 2H), 6.63 (dd, J = 7.8, 1.4 Hz, 1H), 5.64 (dd, J = 10.0, 1.7 Hz, 1H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 144.6, 137.0, 134.4, 133.9, 133.1, 133.0, 129.8, 129.5, 128.3, 128.0, 127.9, 127.2, 127.1, 127.0, 126.4, 125.7, 123.2, 123.2, 109.0, 55.7, 26.9. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₅H₁₉ClNO⁺ 384.1150; found 384.1157.

(E)-4'-(4-chlorobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3l)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 28.8 mg, yield: 75%. m.p. 400-401 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dd, J = 8.2, 1.3 Hz, 1H), 7.40 (d, J = 8.6 Hz, 2H), 7.39 – 7.28 (m, 5H), 7.20 – 7.09 (m, 2H), 7.10 – 7.02 (m, 2H), 6.95 (d, J = 7.8 Hz, 1H), 6.65 (dd, J = 7.8, 1.4 Hz, 1H), 5.72 (dd, J = 9.9, 1.7 Hz, 1H), 3.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 143.5, 135.7, 134.5, 133.0, 132.9, 130.8, 130.7, 128.7, 128.5, 128.1, 127.7, 127.3, 126.3, 124.8, 123.9, 123.4, 123.1, 108.3, 56.2, 26.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉ClNO⁺ 384.1150; found 384.1141.

(E)-4'-(4-bromobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3m)

A White solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 33.8 mg, yield: 79%. m.p. 225-226 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dd, J = 8.1, 1.3 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.41 – 7.29 (m, 5H), 7.21 – 7.08 (m, 2H), 7.09 – 6.99 (m, 2H), 6.95 (dt, J = 7.8, 0.8 Hz, 1H), 6.64 (dd, J = 8.1, 1.3 Hz, 1H), 5.73 (dd, J = 10.0, 1.7 Hz, 1H), 3.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 143.5, 136.1, 134.5, 133.0, 131.4, 131.1, 130.7, 128.7, 128.1, 127.8, 127.7, 127.3, 126.3, 124.8, 123.9, 123.4, 123.1, 121.0, 108.3, 56.2, 26.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉BrNO⁺ 428.0645; found 428.0641.

4-((E)-(1-methyl-2-oxo-4'H-spiro[indoline-3,1'-naphthalen]-4'-ylidene)methyl)ph enyl

(1S)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-car boxylate (3n)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 45.3 mg, yield: 70%. m.p. 340-341 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.90 (m, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.65 – 7.51 (m, 1H), 7.47 (d, *J* = 8.5 Hz, 1H), 7.42 – 7.28 (m, 2H), 7.24 – 7.15 (m, 2H), 7.15 – 7.10 (m, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 7.04 – 7.01 (m, 2H), 6.98 (dd, *J* = 8.6, 3.9 Hz, 1H), 6.97 – 6.94 (m, 1H), 6.94 – 6.88 (m, 1H), 6.65 (dd, *J* = 7.8, 1.4 Hz, 1H), 5.70 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.31 (s, 3H), 3.11 – 2.88 (m, 2H), 2.90 – 2.68 (m, 2H), 2.65 – 2.37 (m, 2H), 2.35 (s, 2H), 1.97 (dd, *J* = 20.3, 12.2 Hz, 3H), 1.39 (d, *J* = 15.7 Hz, 3H), 1.27 (d, *J* = 8.1 Hz, 3H), 1.24 (s, 3H), 1.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 176.9, 150.2, 146.7, 145.8, 143.5, 134.6, 134.5, 133.1, 131.8, 130.5, 130.3, 129.5, 129.0, 128.6, 128.2, 128.0, 127.7, 127.3, 126.9, 126.5, 124.8, 124.3, 124.2, 124.0, 123.4, 123.0, 121.9, 121.7, 121.3, 108.2, 56.1, 47.9, 44.8, 37.9, 37.0, 36.4, 33.4, 26.3, 25.1, 23.9, 21.8, 18.5, 16.6, 11.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₄₅H₄₆NO₃⁺ 648.3472; found 648.3491.

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl

2-(4-((E)-(1-methyl-2-oxo-4'H-spiro[indoline-3,1'-naphthalen]-4'-ylidene)methyl) phenoxy)acetate (30)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), 40.9 mg, yield: 50%. m.p. 337-338 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.8 Hz, 1H), 7.45 (dd, *J* = 8.7, 4.1 Hz, 1H), 7.26 (d, *J* = 9.3 Hz, 1H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.06 (d, *J* = 8.1 Hz, 2H), 7.04 – 6.93 (m, 2H), 6.96 – 6.72 (m, 2H), 6.46 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.37 (dd, *J* = 10.2, 3.4 Hz, 1H), 5.96 – 5.80 (m, 1H), 5.49 – 5.36 (m, 2H), 5.18 (dd, *J* = 15.2, 8.6 Hz, 1H), 5.13 – 4.99 (m, 1H), 4.78 (d, *J* = 6.7 Hz, 1H), 4.70 – 4.64 (m, 1H), 4.62 (s, 2H), 3.28 (s, 3H), 2.38 (d, *J* = 9.2 Hz, 5H), 2.03 (ddd, *J* = 23.7, 16.4, 9.8 Hz, 3H), 1.91 (d, *J* = 12.1 Hz, 3H), 1.80 – 1.60 (m, 3H), 1.56 – 1.39 (m, 5H), 1.33 – 1.26 (m, 1H), 1.23 – 1.15 (m, 5H), 1.05 (s, 3H), 0.88 (d, *J* = 6.3 Hz, 3H), 0.87 – 0.78 (m, 6H), 0.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 168.4, 156.3, 139.2, 138.2, 136.4, 136.2, 135.5, 134.0, 130.9, 130.1, 129.6, 129.2, 128.6, 128.1, 126.9, 126.8, 125.0, 124.9, 123.1, 122.9, 114.9, 114.4, 107.8, 65.6, 56.7, 55.9, 54.6, 51.2, 49.9, 42.1, 40.4, 39.5, 37.9, 36.8, 36.5, 31.8, 28.9, 27.6, 26.6, 25.4, 24.3, 21.2, 21.0, 20.9, 19.2, 18.9, 12.2, 12.0. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₅₆H₆₈NO₄⁺ 818.5143; found 818.5145.

(E)-4'-benzylidene-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4a)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 26.6 mg, yield: 73%. m.p. 244-245 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.47 (d, *J* = 7.7 Hz, 2H), 7.43 – 7.36 (m, 3H), 7.36 – 7.28 (m, 2H), 7.23 – 7.18 (m, 1H), 7.17 – 7.08 (m, 2H), 6.99 – 6.80 (m, 2H), 6.66 (dd, *J* = 7.8, 1.4 Hz, 1H), 5.68 (dd, *J* = 9.9, 1.7 Hz, 1H), 3.29 (s, 3H), 2.26 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 177.0, 137.2, 134.8, 133.0, 130.1, 129.6, 128.8, 128.2, 128.0, 127.6, 127.4, 127.2, 127.1, 126.5, 125.5, 125.2, 123.0, 108.0, 56.2, 26.8, 21.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₂NO⁺ 364.1696; found 364.1701.

(E)-4'-(3-ethylbenzylidene)-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (4b)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 23.5 mg, yield: 60%. m.p. 225-226 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 3H), 7.42 – 7.31 (m, 1H), 7.26 (dd, *J* = 9.0, 5.2 Hz, 3H), 7.22 – 7.02 (m, 2H), 7.04 – 6.79 (m, 2H), 6.70 (dd, *J* = 7.8, 1.4 Hz, 1H), 5.71 (dd, *J* = 9.9, 1.6 Hz, 1H), 3.33 (s, 3H), 2.72 (q, *J* = 7.7 Hz, 2H), 2.30 (s, 3H), 1.31 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 143.7, 141.4, 135.3, 134.9, 133.7, 133.4, 129.9, 129.2, 128.2, 127.8, 127.2, 127.0, 125.8, 123.4, 108.4, 56.5, 29.0, 27.1, 21.4, 15.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₂₆NO⁺ 392.2009; found 392.2002.

(E)-4'-(4-ethylbenzylidene)-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (4c)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 32.1 mg, yield: 82%. m.p. 284-285 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, J = 8.2, 1.3 Hz, 1H), 7.46 – 7.37 (m, 3H), 7.31 (ddd, J = 8.2, 7.2, 1.4 Hz, 1H), 7.25 – 7.17 (m, 3H), 7.18 – 7.04 (m, 2H), 6.91 – 6.76 (m, 2H), 6.65 (dd, J = 7.8, 1.3 Hz, 1H), 5.67 (dd, J = 10.0, 1.6 Hz, 1H), 3.29 (s, 3H), 2.68 (q, J = 7.6 Hz, 2H), 2.26 (s, 4H), 1.27 (t, J = 7.6 Hz, 3H). ¹³C NMR (125MHz, CDCl₃) δ 177.1, 143.2, 141.0, 134.7, 133.2, 133.1, 129.6, 128.8, 127.9, 127.5, 126.9, 126.6, 125.4 123.0, 107.8, 56.0, 28.6, 26.7, 20.9, 15.3. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₂₆NO⁺ 392.2009; found 392.2012.

(E)-4'-(4-methoxybenzylidene)-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4d)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 27.9 mg, yield: 71%. m.p. 271-272 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.36 (s, 1H), 7.31 (d, *J* = 7.0 Hz, 1H), 7.23 – 7.15 (m, 1H), 7.16 – 7.05 (m, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.83 (d, *J* = 7.9 Hz, 2H), 6.71 – 6.51 (m, 1H), 5.66 (dd, *J* = 9.9, 1.7 Hz, 1H), 3.85 (s, 3H), 3.29 (s, 3H), 2.26 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 159.2, 141.4, 135.3, 134.8, 133.8, 133.4, 131.3, 130.1, 129.3, 129.2, 128.1, 128.0, 127.8, 127.1, 127.0, 125.9, 125.4, 123.3, 114.1, 108.3, 56.6, 55.7, 27.2, 21.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₇H₂₄NO₂⁺ 394.1802; found 394.1797.

(E)-5-methoxy-4'-(2-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naph thalen]-2-one (4e)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 28.7 mg, yield: 70%. m.p. 233-234 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 1H), 7.52 (s, 1H), 7.47 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.38 – 7.27 (m, 2H), 7.20 – 7.05 (m, 3H), 7.04 – 6.89 (m, 3H), 6.68 – 6.53 (m, 2H), 5.65 (dd, *J* = 9.9, 1.8 Hz, 1H), 3.89 (s, 3H), 3.70 (s, 3H), 3.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 157.7, 156.5, 136.8, 136.1, 134.2, 133.3, 131.2, 129.4, 129.0, 128.8, 128.7, 127.8, 127.6, 127.3, 127.0, 126.3, 126.0, 123.3, 121.5, 120.1, 113.3, 111.5, 110.3, 108.6, 56.5, 55.7, 55.4, 26.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₇H₂₄NO₃⁺ 410.1751; found 410.1744.

(E)-4'-benzylidene-6-fluoro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4f)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 29.4 mg, yield: 80%. m.p. 279-280 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (dt, *J* = 8.1, 0.8 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.43 – 7.35 (m, 3H), 7.36 – 7.27 (m, 2H), 7.20 (dd, *J* = 10.0, 0.9 Hz, 1H), 7.16 – 7.13 (m, 1H), 6.97 (dd, *J* = 8.1, 5.3 Hz, 1H), 6.76 – 6.67 (m, 2H), 6.63 (dd, *J* = 7.9, 1.0 Hz, 1H), 5.66 (dd, *J* = 9.9, 1.6 Hz, 1H), 3.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.3, 163.3 (d, *J* = 244.3 Hz), 145.0 (d, *J* = 11.4 Hz), 137.1, 134.2, 133.3, 130.0 (d, *J* = 3.1 Hz), 129.9, 129.6, 128.3, 128.0, 127.8, 127.2, 126.9, 126. 8, 126.0, 125.9, 125.7, 123.2, 109.5 (d, *J* = 22.3 Hz), 97.1 (d, *J* = 27.9 Hz), 55.7, 27.0. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₅H₁₉FNO⁺ 368.1445; found 368.1451.

(E)-4'-benzylidene-5-fluoro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4g)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 20.9 mg, yield: 57%. m.p. 217-218 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 – 7.85 (m, 1H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.37 – 7.29 (m, 1H), 7.24 – 7.19 (m, 1H), 7.15 (td, *J* = 7.5, 1.3 Hz, 1H), 7.06 – 6.99 (m, 2H), 6.87 (dt, *J* = 8.2, 3.2 Hz, 2H), 6.78 (dd, *J* = 7.7, 2.6 Hz, 1H), 6.64 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.67 (dd, *J* = 10.0, 1.8 Hz, 1H), 3.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 158.7 (d, *J* = 240.8 Hz), 139.4, 137.1, 133.5 (d, *J* = 82.9 Hz), 130.4 (d, *J* = 12.3 Hz), 129.6, 128.4, 128.3, 128.1, 127.9, 127. 2, 127.1, 126.3, 125.8, 123.2, 114.9 (d, *J* = 23.5 Hz), 112.9, 112.8, 108.8 (d, *J* = 7.5 Hz), 108.2, 56.4, 27.0. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₅H₁₉FNO⁺ 368.1445; found 368.1440.

(E)-4'-benzylidene-6-chloro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4h)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 29.9 mg, yield: 78%. m.p. 266-267 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 7.8 Hz, 1H), 7.55 – 7.44 (m, 2H), 7.44 – 7.37 (m, 3H), 7.38 – 7.28 (m, 2H), 7.20 (dd, *J* = 9.9, 0.9 Hz, 1H), 7.18 – 7.11 (m, 1H), 7.02 (dd, *J* = 7.9, 1.9 Hz, 1H), 6.99 – 6.87 (m, 2H), 6.63 (dd, *J* = 7.9, 1.3 Hz, 1H), 5.64 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 144.7, 137.1, 134.4, 133.9, 133.2, 133.0, 129.8, 129.6, 128.3, 128.0, 127.9, 127.2, 127.1, 127.0, 126.4, 125.7, 123.2, 123.3, 109.0, 77.0, 26.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₁₉CINO⁺ 384.1150; found 384.1143.

(E)-4'-benzylidene-5-chloro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4i)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 24.2 mg, yield: 63%. m.p. 240-241 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 8.3, 1.3 Hz, 1H), 7.50 – 7.43 (m, 3H), 7.40 (t, J = 7.7 Hz, 2H), 7.33 (dd, J = 8.2, 1.3 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.21 (dd, J = 10.0, 0.9 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 2.2 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.64 (dd, J = 7.8, 1.4 Hz, 1H), 5.65 (dd, J = 9.9, 1.7 Hz, 1H), 3.30 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 176.6, 142.0, 137.0, 136.2, 133.6, 133.1, 129.6, 128.6, 128.3, 128.1, 127.9, 127.2, 127.0, 126.1, 125.9, 125.2, 123.2, 109.2, 56.1, 26.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉CINO⁺ 384.1150; found 384.1155.

(E)-4'-benzylidene-1-methyl-2-oxo-4'H-spiro[indoline-3,1'-naphthalene]-5-carbo nitrile (4j)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 25.1 mg, yield: 67%. m.p. 250-251 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, J = 8.2, 1.2 Hz, 1H), 7.66 (dd, J = 8.2, 1.7 Hz, 1H), 7.46 (dt, J = 6.0, 1.3 Hz, 3H), 7.41 (dd, J = 8.4, 6.7 Hz, 2H), 7.36 (ddd, J = 8.3, 7.2, 1.4 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.28 (d, J = 1.6 Hz, 1H), 7.23 (dd, J = 9.9, 0.8 Hz, 1H), 7.16 (ddd, J = 8.3, 7.2, 1.2 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 6.58 (dd, J = 7.9, 1.3 Hz, 1H), 5.61 (dd, J = 9.9, 1.6 Hz, 1H), 3.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.7, 147.2, 136.8, 135.7, 133.8, 133.2, 132.9, 129.6, 129.4, 128.3, 128.2, 127.7, 127.4, 126.9, 126.5, 125.1, 123.4, 118.8, 108.7, 106.6, 55.6, 29.6, 27.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₁₉N₂O⁺ 375.1492; found 375.1501.

1-methyl-4'H-spiro[indoline-3,1'-naphthalene]-2,4'-dione (5)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), 21.5 mg, yield: 78%. m.p. 259-260 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (dd, J = 7.6, 1.8 Hz, 1H), 7.55 – 7.34 (m, 3H), 7.07 (td, J = 7.6, 1.1 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 6.92 (dd, J = 7.4, 1.2 Hz, 1H), 6.75 (dd, J = 7.6, 1.4 Hz, 1H), 6.71 (d, J = 9.9 Hz, 1H), 6.66 (d, J = 10.0 Hz, 1H), 3.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 184.4, 173.7, 143.5, 140.3, 133.0, 130.7, 129.6, 128.4, 127.0, 126.8, 124.8, 124.7, 123.8, 108.9, 108.8, 56.2, 27.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₄NO₂⁺ 276.1019; found 276.1020.

1-methyl-2',3'-dihydro-4'H-spiro[indoline-3,1'-naphthalene]-2,4'-dione (6)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), 25.2 mg, yield: 91%. m.p. 328-329 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.27 – 7.99 (m, 1H), 7.38 (td, *J* = 6.4, 3.3 Hz, 3H), 7.20 – 7.05 (m, 2H), 6.98 (d, *J* = 7.8 Hz, 1H), 6.77 – 6.54 (m, 1H), 3.44 (ddd, *J* = 17.7, 10.7, 5.9 Hz, 1H), 3.29 (s, 3H), 2.81 (ddd, *J* = 17.7, 5.9, 5.0 Hz, 1H), 2.59 – 2.32 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 196.9, 177.5, 143.4, 142.2, 133.8, 133.5, 133.0, 128.7, 128.1, 127.8, 127.2, 124.0, 123.1, 108.5, 51.6, 33.4, 32.6, 26.5. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₈H₁₆NO₂⁺ 278.1176; found 278.1174.

1-methyl-3''-phenyl-1a',7a'-dihydrodispiro[indoline-3,2'-naphtho[2,3-b]oxirene-7 ',2''-oxiran]-2-one (7)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 15/1), 17.2 mg, yield: 45%. m.p. 290-291 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 7.7, 1.5 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.59 – 7.54 (m, 1H), 7.50 (dt, J = 7.7, 1.4 Hz, 1H), 7.45 (dt, J = 8.0, 1.5 Hz, 1H), 7.42 – 7.33 (m, 3H), 7.35 – 7.30 (m, 1H), 7.07 (t, J = 7.6 Hz, 1H), 7.03 – 6.95 (m, 2H), 5.61 (s, 1H), 5.43 (d, J = 1.8 Hz, 1H), 3.40 (d, J = 1.8 Hz, 1H), 3.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 163.3, 143.1, 138.3, 137.1, 134.4, 133.2, 132.3, 131.0, 130.2, 129.9, 129.8, 129.6, 129.5, 129.2, 128.9, 128.7, 128.5, 127.8, 127.6, 124.4, 123.3, 108.2, 75.5, 74.2, 60.2, 57.7, 56.8, 26.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₀NO₃⁺ 382.1438; found 382.1437.

(E)-4'-benzylidene-1-methyl-6-phenyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (8)

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1), 38.7 mg, yield: 91%. m.p. 255-256 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.92 (m, 1H), 7.68 – 7.57 (m, 2H), 7.54 – 7.45 (m, 4H), 7.46 – 7.37 (m, 4H), 7.36 – 7.27 (m, 3H), 7.26 – 7.20 (m, 1H), 7.20 – 7.12 (m, 2H), 7.09 (d, *J* = 7.7 Hz, 1H), 6.73 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.73 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 144.0, 142.2, 140.9, 137.2, 134.4, 133.7, 133.2, 130.1, 129.6, 128.8, 128.3, 128.0, 127.7, 127.6, 127.3, 127.2, 127.1, 127.0, 126.7, 125.4, 124.9, 123.1, 122.4, 107.2, 56.0, 26.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₁H₂₄NO⁺ 426.1852; found 426.1845.

VII. References

(1) Yang, P.; Zheng, C.; Nie, Y.-H.; You, S.-L. Palladium-catalyzed dearomative 1,4-difunctionalization of naphthalenes. *Chem. Sci.*, **2020**, *11*, 6830.

(2) Xia, A.-J.; Kang, T.-R.; He, L.; Chen, L.-M.; Li, W.-T.; Yang, J.-L.; Liu, Q.-Z. Metal-Free Ring-Expansion Reaction of Six-membered Sulfonylimines with Diazomethanes: An Approach toward Seven-Membered Enesulfonamides. *Angew. Chem. Int. Ed.* **2016**, *55*, 1441.

(3) Hoque, M.; Hassan, M.; Chattopadhyay, B. Remarkably Efficient Iridium Catalysts for Directed $C(sp^2)$ –H and $C(sp^3)$ –H Borylation of Diverse Classes of Substrates. *J. Am. Chem. Soc.* **2021**, *143*, 5022.

(4) Nicholson, W.; Barreteau, F.; Leitch, J.; Payne, R.; Priestley, I.; Godineau, E.; Battilocchio, C.; Browne, D. Direct Amidation of Esters by Ball Milling. *Angew. Chem. Int. Ed.* **2021**, *60*, 21868.

VIII. NMR spectra

4-((Z)-(2-tosylhydrazono)methyl)phenyl (1S)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-car boxylate (9e)

	на на на на на на на на на на	
Í i A Ílá sAi	Х ±	
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 태 (pps) 영 명 방법 및 방법	3.5 3.0 2.5	2.0 1.5 1.0 0.5 0.0 第一章 28間線電磁 28萬原素 28 学者 時期時期時期間前前出当 デー
u_{i}		
	nijina utali niji na muju na muju na muju na	
220 210 200 190 180 170 160 150 140 130 120 110 100 9 f1 (ppm)	90 S0 70 60 5	0 40 30 20 10 0 -10

$(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13\\-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]ph enanthren-3-yl 2-(4-((Z)-(2-tosylhydrazono)methyl)phenoxy)acetate (10e)$

(E)-1-methyl-4'-(2-methylbenzylidene)-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3b)

(E)-1-methyl-4'-(3-methylbenzylidene)-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3c)

(E)-1-methyl-4'-(4-methylbenzylidene)-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3d)

(E)-4'-(3-ethylbenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3e)

(E)-4'-(4-ethylbenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3f)

(E)-4'-(2-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (3g)

(E)-4'-(3-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (3h)

(E)-4'-(4-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (3i)

(E)-4'-(4-fluorobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3j)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

(E)-4'-(3-chlorobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3k)

(E)-4'-(4-chlorobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3l)

(E)-4'-(4-bromobenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (3m)

 $\label{eq:constraint} \begin{array}{l} \mbox{4-((E)-(1-methyl-2-oxo-4'H-spiro[indoline-3,1'-naphthalen]-4'-ylidene)} methyl) phenyl \end{array}$

(1S)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-car boxylate (3n)

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl

2-(4-((E)-(1-methyl-2-oxo-4'H-spiro[indoline-3,1'-naphthalen]-4'-ylidene)methyl) phenoxy)acetate (30)

(E)-4'-benzylidene-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4a)

(E)-4'-(3-ethylbenzylidene)-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (4b)

42 / 57

(E)-4'-(4-ethylbenzylidene)-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-o ne (4c)

43 / 57

(E)-4'-(4-methoxybenzylidene)-1,5-dimethyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4d)

(E)-5-methoxy-4'-(2-methoxybenzylidene)-1-methyl-4'H-spiro[indoline-3,1'-naph thalen]-2-one (4e)

(E)-4'-benzylidene-6-fluoro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (**4f**)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

(E)-4'-benzylidene-5-fluoro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4g)

(E)-4'-benzylidene-6-chloro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4h)

49 / 57

(E)-4'-benzylidene-5-chloro-1-methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (4i)

50 / 57

(E)-4'-benzylidene-1-methyl-2-oxo-4'H-spiro[indoline-3,1'-naphthalene]-5-carbo nitrile (4j)

110 100 90 f1 (ppm) -1

1-methyl-2',3'-dihydro-4'H-spiro[indoline-3,1'-naphthalene]-2,4'-dione (6)

Annual
Annual< $<^{0.001}_{-0.001}$ --1.571 hundad 211155 11 882888 11 882888 11 1.12-0.96 8.0 7.5 7.0 6.5 6.0 5.5 5. 0 4.5 4.0 f1 (ppm) 3. 5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 77.255 77.001 76.749 74.249 -176, 632 / ^{51, 758} 53, 758 56, 888 ----0.017 0 190 180 170 160 150 130 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 140 120

1-methyl-3''-phenyl-1a',7a'-dihydrodispiro[indoline-3,2'-naphtho[2,3-b]oxirene-7 ',2''-oxiran]-2-one (7)

(E)-4'-benzylidene-1-methyl-6-phenyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (8)

55 / 57

IX. Single crystal X-ray structure analysis

Table 1 Summary of X-ray crystallographic data for 3L.			
CCDC Number	2132508		
Empirical formula	C ₂₅ H ₁₈ ClNO		
Formula weight	383.85		
Temperature/K	293.15		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.006(19)		
b/Å	9.36(2)		
c/Å	14.18(3)		
α/°	90.17(3)		
β/°	93.99(3)		
γ/°	104.70(3)		
Volume/Å ³	1025(4)		
Z	2		
$\rho_{calc}g/cm^3$	1.244		
µ/mm ⁻¹	0.201		
F(000)	400.0		

Crystal size/mm ³	0.22 imes 0.21 imes 0.2
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	2.88 to 49.99
Index ranges	$-9 \le h \le 9, -11 \le k \le 11, -16 \le l \le 16$
Reflections collected	10075
Independent reflections	3607 [$R_{int} = 0.1840, R_{sigma} = 0.1155$]
Data/restraints/parameters	3607/0/254
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0526, wR_2 = 0.1272$
Final R indexes [all data]	$R_1 = 0.0703, wR_2 = 0.1403$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.48