Supporting Information

Asperflavipines C–E and Aspermichalasine A: Three Cytochalasan Heterotetramers and an Unusual Cytochalasan Monomer from *Aspergillus micronesiensis*

Xiaotian Zhang,^{a,‡} Zhaodi Wu,^{b,‡} Alan Bao,^a Ziming Zhao,^a Yu Chen,^a Huimin Zhao,^a Jianping Wang,^a Chunmei Chen,^a Qingyi Tong,^{*,a} Hucheng Zhu,^{*,a} Yonghui Zhang^{*,a}

^aHubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

^bThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.

* Corresponding Authors

E-mails: zhangyh@mails.tjmu.edu.cn (Y. Z.), zhuhucheng@hust.edu.cn (H. Z.), qytong@hust.edu.cn (Q.T.)

Contents of Supporting Information

Table S1. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data of 1 and 2.	5
Table S2. ¹ H (800 MHz) and ¹³ C (200 MHz) NMR data of 3	6
Table S3. ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data of 4–8	7
Table S4. IC ₅₀ (µM, 48h) values of 1–8 against leukemia cell lines	8
Figure S1. Key ¹ H ⁻¹ H COSY, HMBC and NOESY correlations of 5-8	9
Figure S2. Experimental ECD spectra of 5–8	10
Figure S3. ¹ H NMR spectrum of compound 1 (Recorded in DMSO- <i>d</i> ₆)	11
Figure S4. Enlarged ¹ H NMR spectrum ($6.0 \sim 3.6$ ppm) of compound 1	12
Figure S5. Enlarged ¹ H NMR spectrum $(3.2 \sim 0.8 \text{ ppm})$ of compound 1	13
Figure S6. ¹³ C NMR spectrum of compound 1 (Recorded in DMSO- <i>d</i> ₆)	14
Figure S7. Enlarged ¹³ C NMR spectrum of compound 1	15
Figure S8. HSQC spectrum of compound 1 (Recorded in DMSO- <i>d</i> ₆)	16
Figure S9. HMBC spectrum of compound 1 (Recorded in DMSO-d ₆)	17
Figure S10. ¹ H– ¹ H COSY spectrum of compound 1 (Recorded in DMSO- <i>d</i> ₆)	18
Figure S11. NOESY spectrum of compound 1 (Recorded in DMSO- <i>d</i> ₆)	19
Figure S12. HRESIMS spectrum of compound 1	20
Figure S13. UV spectrum of compound 1	21
Figure S14. IR spectrum of compound 1	22
Figure S15. ¹ H NMR spectrum of compound 2 (Recorded in DMSO- <i>d</i> ₆)	23
Figure S16. Enlarged ¹ H NMR spectrum ($6.1 \sim 3.6$ ppm) of compound 2	24
Figure S17. Enlarged ¹ H NMR spectrum ($3.9 \sim 0.7$ ppm) of compound 2	25
Figure S18. ¹³ C NMR spectrum of compound 2 (Recorded in DMSO- d_6)	26
Figure S19. Enlarged ¹³ C NMR spectrum of compound 2	27
Figure S20. HSQC spectrum of compound 2 (Recorded in DMSO- <i>d</i> ₆)	
Figure S21. HMBC spectrum of compound 2 (Recorded in DMSO-d ₆)	29
Figure S22. ¹ H– ¹ H COSY spectrum of compound 2 (Recorded in DMSO- <i>d</i> ₆)	
Figure S23. NOESY spectrum of compound 2 (Recorded in DMSO- <i>d</i> ₆)	
Figure S24. HRESIMS spectrum of compound 2	
Figure S25. UV spectrum of compound 2	
Figure S26. IR spectrum of compound 2	
Figure S27. ¹ H NMR spectrum of compound 3 (Recorded in CD ₃ OD)	35
Figure S28. Enlarged ¹ H NMR spectrum ($6.2 \sim 3.0$ ppm) of compound 3	
Figure S29. Enlarged ¹ H NMR spectrum ($3.0 \sim 0.8$ ppm) of compound 3	
Figure S30. ¹³ C NMR spectrum of compound 3 (Recorded in CD ₃ OD)	
Figure S31. Enlarged ¹³ C NMR spectrum of compound 3	
Figure S32. HSQC spectrum of compound 3 (Recorded in CD ₃ OD)	40
Figure S33. HMBC spectrum of compound 3 (Recorded in CD ₃ OD)	41
Figure S34. ¹ H– ¹ H COSY spectrum of compound 3 (Recorded in CD ₃ OD)	42
Figure S35. NOESY spectrum of compound 3 (Recorded in CD ₃ OD)	43
Figure S36. HRESIMS spectrum of compound 3	44
Figure S37. UV spectrum of compound 3	45
Figure S38. IR spectrum of compound 3	

Figure S39. ¹ H NMR spectrum of compound 4 (Recorded in CD ₃ OD)	
Figure S40. ¹³ C NMR spectrum of compound 4 (Recorded in CD ₃ OD)	48
Figure S41. HSQC spectrum of compound 4 (Recorded in CD ₃ OD)	49
Figure S42. HMBC spectrum of compound 4 (Recorded in CD ₃ OD)	
Figure S43. ¹ H– ¹ H COSY spectrum of compound 4 (Recorded in CD ₃ OD)	51
Figure S44. NOESY spectrum of compound 4 (Recorded in CD ₃ OD)	
Figure S45. HRESIMS spectrum of compound 4	
Figure S46. UV spectrum of compound 4	
Figure S47. IR spectrum of compound 4	
Figure S48. ¹ H NMR spectrum of compound 5 (Recorded in CD ₃ OD)	
Figure S49. ¹³ C NMR spectrum of compound 5 (Recorded in CD ₃ OD)	
Figure S50. HSQC spectrum of compound 5 (Recorded in CD ₃ OD)	
Figure S51. HMBC spectrum of compound 5 (Recorded in CD ₃ OD)	59
Figure S52. ¹ H– ¹ H COSY spectrum of compound 5 (Recorded in CD ₃ OD)	60
Figure S53. NOESY spectrum of compound 5 (Recorded in CD ₃ OD)	61
Figure S54. HRESIMS spectrum of compound 5	
Figure S55. UV spectrum of compound 5	63
Figure S56. IR spectrum of compound 5	64
Figure S57. ¹ H NMR spectrum of compound 6 (Recorded in CDCl ₃)	65
Figure S58. ¹³ C NMR spectrum of compound 6 (Recorded in CDCl ₃)	
Figure S59. HSQC spectrum of compound 6 (Recorded in CDCl ₃)	67
Figure S60. HMBC spectrum of compound 6 (Recorded in CDCl ₃)	
Figure S61. ¹ H– ¹ H COSY spectrum of compound 6 (Recorded in CDCl ₃)	69
Figure S62. NOESY spectrum of compound 6 (Recorded in CDCl ₃)	70
Figure S63. HRESIMS spectrum of compound 6	71
Figure S64. UV spectrum of compound 6	72
Figure S65. IR spectrum of compound 6	73
Figure S66. ¹ H NMR spectrum of compound 7 (Recorded in DMSO- <i>d</i> ₆)	74
Figure S67. ¹³ C NMR spectrum of compound 7 (Recorded in DMSO- <i>d</i> ₆)	75
Figure S68. HSQC spectrum of compound 7 (Recorded in DMSO- <i>d</i> ₆)	76
Figure S69. HMBC spectrum of compound 7 (Recorded in DMSO-d ₆)	77
Figure S70. ¹ H– ¹ H COSY spectrum of compound 7 (Recorded in DMSO- <i>d</i> ₆)	78
Figure S71. NOESY spectrum of compound 7 (Recorded in DMSO- <i>d</i> ₆)	79
Figure S72. HRESIMS spectrum of compound 7	
Figure S73. UV spectrum of compound 7	
Figure S74. IR spectrum of compound 7	
Figure S75. ¹ H NMR spectrum of compound 8 (Recorded in CD ₃ OD)	
Figure S76. ¹³ C NMR spectrum of compound 8 (Recorded in CD ₃ OD)	
Figure S77. HSQC spectrum of compound 8 (Recorded in CD ₃ OD)	85
Figure S78. HMBC spectrum of compound 8 (Recorded in CD ₃ OD)	
Figure S79. ¹ H– ¹ H COSY spectrum of compound 8 (Recorded in CD ₃ OD)	
Figure S80. NOESY spectrum of compound 8 (Recorded in CD ₃ OD)	
Figure S81. HRESIMS spectrum of compound 8	
Figure S82. UV spectrum of compound 8	

Figure S83.	IR spectrum of compound 8	91
Figure S84.	Complete western blotting pictures	92

			1						2		
no.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	no.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	no.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	no.	$\delta_{\rm H}(J \text{ in Hz})$	δ_{C}
1		174.6	1'		174.0	1		174.6	1'		172.7
3	3.08 m	50.0	3'	2.89 m	51.4	3	3.08 m	49.8	3'	3.12 m	49.3
4	2.35 m	53.5	4'	2.12 m	54.8	4	2.29 m	53.6	4'	2.41 m	53.1
5	2.45 m	35.0	5'	2.47 m	35.8	5	2.45 m	34.9	5'	2.44 m	34.5
6		139.2	6'		138.7	6		139.3	6'		138.6
7	5.23 brs	125.2	7'	5.40 brs	125.8	7	5.24 brs	125.1	7'	5.15 brs	125.6
8	3.06 m	44.1	8'	3.37 m	42.7	8	3.06 m	44.1	8'	2.90 brd (10.8)	43.4
9		68.7	9'		67.4	9		68.7	9'		68.6
10a	1.06 m	50.2	10'a	1.20 m	49.2	10a	1.04 m	50.4	10'a	1.12 m	49.7
10b	1.06 m		10Ъ	1.07 m		10b	1.04 m		10'b	0.94 m	
11	1.14 d (7.0)	13.1	11'	1.14 d (7.0)	13.6	11	1.14 d (7.0)	13.1	11'	1.14 d (7.0)	13.2
12	1.69 s	19.5	12'	1.72 s	20.0	12	1.69 s	19.5	12'	1.66 s	19.4
13	6.00 d (10.7)	124.7	13'	5.88 d (10.9)	124.2	13	6.03 d (10.7)	124.6	13'	5.84 d (10.8)	123.6
14		135.2	14'		135.4	14		135.2	14'		135.8
15a	2.06 m	34.3	15'a	1.92 m	36.0	15a	2.05 m	34.3	15'a	2.08 m	31.5
15b	1.84 m		15′b	1.81 m		15b	1.84 m		15′Ъ	1.78 m	
16a	1.84 m	28.4	16'a	1.13 m	29.6	16a	1.84 m	28.4	16′a	1.95 m	30.9
16b	1.31 m		16'b	1.13 m		16b	1.32 m		16′b	1.73 m	
17	3.69 m	73.4	17'	3.72 m	69.9	17	3.68 m	73.3	17'	3.79 m	76.5
18	5.21 m	74.8	18'	2.60 dd (11.7, 4.3)	76.2	18	4.48 s	75.9	18'		205.5
19	1.90 m	41.8	19'	2.12 m	53.1	19	1.90 t (5.4)	41.6	19'	3.35 dd (6.4, 5.0)	58.7
20	3.78 d (4.8)	50.2	20'	4.07 d (5.6)	47.2	20	3.79 d (5.4)	50.1	20'	4.63 d (6.4)	46.7
21		214.0	21'		213.6	21		214.6	21'		215.2
22	1.62 m	23.9	22'	1.70 m	24.6	22	1.60 m	23.8	22'	1.57 m	24.0
23	0.83 d (6.5)	23.6	23'	0.97 d (6.5)	23.8	23	0.84 d (6.5)	23.6	23'	0.88 d (6.5)	23.6
24	0.85 d (6.5)	21.3	24'	0.88 d (6.5)	21.9	24	0.85 d (6.5)	21.3	24'	0.85 d (6.5)	21.9
25	1.38 s	15.0	25'	1.38 s	16.0	25	1.39 s	15.0	25'	1.39 s	16.5
1‴	4.55 m	75.9	1‴	4.54 m	81.8	1″	5.23 d (5.4)	74.7	1′″	4.59 s	81.9
2"		51.1	2'''		72.0	2"		51.4	2′′′		71.8
3″		91.9	3‴		192.8	3"		92.0	3′″		191.8
4''		186.2	4‴		91.2	4″		186.6	4′′′		91.1
5"		147.6	5‴		194.1	5"		147.4	5′′′		193.9
6"		121.6	6‴		131.7	6″		121.7	6'''		130.9
7″		66.3	7‴		160.7	7″		65.2	7′″		159.0
8″	4.53 s	83.4	8‴	5.09 d (5.0)	80.1	8″	4.50 s	83.1	8′″	5.34 d (5.0)	79.6
9″	1.60 s	16.8	9‴	1.66 s	12.5	9″	1.60 s	16.9	9‴	1.39 s	11.6

Table S1 ¹H (600 MHz) and ¹³C (150 MHz) NMR data of **1** and **2** (δ in ppm, DMSO- d_6)

		3			
no.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$	no.	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{ m C}$
1		177.1	1'		176.2
3	3.10 m	52.8	3'	3.17 m	52.8
4	2.47 dd (5.2, 3.5)	56.3.	4'	2.51 dd (5.3, 3.3)	55.5
5	2.61 m	36.9	5'	2.63 m	37.3
6		141.6	6'		141.1
7	5.30 brs	126.7	7'	5.40 brs	126.9
8	3.23 m	45.6	8'	3.25 m	45.9
9		71.3	9'		68.4
10a	1.20 m	51.5	10'a	1.35 m	50.7
10b	1.20 m		10′Ъ	1.35 m	
11	1.23 d (7.2)	14.0	11'	1.28 d (7.3)	14.2
12	1.77 s	20.1	12'	1.79 s	20.1
13	6.14 d (10.9)	126.5	13'	6.05 d (11.1)	125.5
14		138.0	14'		138.4
15a	2.17 dd (13.9, 8.9)	40.0	15'a	2.55 m	33.2
15b	2.10 dd (13.9, 11.0)		15′b	1.99 m	
16a	1.68 m	22.3	16'a	1.33 m	30.8
16b	1.61 m		16′b	1.29 m	
17a	2.23 m	36.8	17'		212.4
17b	1.88 m				
18	5.18 m	73.4	18′	3.04 d (10.9)	78.3
19	2.33 t (5.8)	46.2	19'	2.84 dt (10.9, 5.0)	50.0
20	3.79 d (5.8)	51.8	20'	4.66 d (5.0)	49.0
21		216.7	21'		212.0
22	1.65 m	26.0	22'	1.76 m	26.4
23	0.90 d (6.6)	24.6	23'	1.09 d (6.6)	24.0
24	0.92 d (6.6)	21.3	24'	0.99 d (6.6)	23.5
25	1.52 s	15.4	25'	1.51 s	17.2
1″	5.17 d (5.8)	75.5	1‴	4.86 s	82.54
2"		52.7	2′′′		72.9
3″		92.8	3‴		194.4
4″		188.7	4‴		94.4
5″		149.5	5′′′		195.6
6″		122.4	6‴		134.1
7"		68.1	7'''		162.0
8″	4.82 s	85.8	8′′′	5.37 d (5.0)	82.47
9″	1.66 s	16.9	9‴	1.73 s	12.9

Table S2 ¹H (800 MHz) and ¹³C (200 MHz) NMR data of 3 (δ in ppm, CD₃OD).

	4 ^a			5 ^a		6 ^b			7 °		8 ^a	
no.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{\rm C}$	no.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{ m C}$	no.	$\delta_{\rm H}(J \text{ in Hz})$	δ_{C}	$\delta_{\rm H}(J \text{ in Hz})$	δ_{C}
1		175.9	1		177.7		176.5	1		174.5		177.3
3	3.41 m	52.0	3	3.25 m	52.3	3.14 m	51.3	3	3.06 m	49.9	3.26 ddd (8.7, 6.1, 2.0)	52.0
4	2.43 m	49.3	4	2.51 dd (6.0, 1.6)	54.5	2.35 dd (5.9, 2.7)	54.9	4	2.40 dd (6.2, 1.9)	51.9	2.65 dd (6.1, 1.8)	53.1
5	2.42 m	37.2	5	2.59 m	36.6	2.62 m	35.5	5	2.45 m	35.0	2.56 m	36.5
6		142.6	6		140.9		139.3	6		139.2		141.1
7	5.79 s	123.5	7	5.41 brs	126.7	5.39 brs	126.2	7	5.33 brs	125.4	5.39 brs	126.7
8	2.26 m	46.2	8	3.29 m	44.6	3.35 m	43.4	8	3.08 m	43.2	3.18 m	44.8
9		67.6	9		69.3		68.3	9		66.9		69.1
10a	1.54 m	49.4	10a	1.19m	50.0	1.20 m	49.2	10a	1.07 m	48.7	1.18 m	49.8
10b	1.43 m		10b	1.13m		1.13 m		10b	1.01 m		1.13 m	
11	1.24 d (6.5)	14.0	11	1.25 d (7.2)	13.8	1.17 d (7.1)	13.6	11	1.16 d (7.0)	13.1	1.26 d (7.2)	13.8
12	1.79 s	20.0	12	1.78 s	19.8	1.73 s	20.0	12	1.70 s	19.6	1.78 d (1.2)	19.8
13	4.59 d	48.6	13	6.03 d (11.1)	125.5	6.12 d (11.0)	125.7	13	6.04 d (10.8)	124.4	6.13 d (10.8)	125.7
14		152.6	14		138.0		137.6	14		135.2		137.8
15a	2.29 m	27.2	15a	2.09 m	38.9	2.54 t (12.6)	33.4	15a	1.99 dd (11.9, 4.8)	39.5	2.12 dd (12.2, 3.8)	41.1
15b	1.82 m		15b	2.09 m		1.94 dd (12.6, 7.5)		15b	1.78 d (12.3)		1.95 m	
16a	2.20 m	40.4	16a	1.56 m	30.2	1.83 m	27.8	16a	1.46 m	19.0	1.61 m	19.9
16b	1.64 m		16b	1.31 m		1.66 m		16b	1.27 m		1.52 m	
17	3.63 m	71.1	17	3.86 m	71.3	3.74 m	71.5	17a	1.69 m	29.1	1.87 m	30.8
18a	2.75 m	36.1	18	3.55 m	80.1	4.51 m	73.3	17b	1.35 m		1.47 m	
18b	2.34 m		19	3.18 d (9.2)	77.9	3.19 d (9.0)	78.4	18	3.40 m	72.3	3.48 m	74.3
19	6.81 ddd (10.6, 7.8, 3.0)	135.1	20a	3.95 d (18.0)	44.3	3.61dd (12.7, 9.0)	41.8	19	3.00 ddd (8.6, 4.1, 3.2)	78.5	3.56 m	69.9
20		143.5	20b	2.00 d (18.0, 4.0)		2.17 d (12.7)		20a	3.82 dd (18.2, 3.2)	43.2	4.00 dd (18.1, 2.8)	46.0
21		202.1	21		212.9		213.6	20b	1.90 dd (18.2, 4.5)		1.96 m	
22	1.67 m	25.5	22	1.60 m	25.8	1.59 m	25.0	21		211.4		212.5
23	0.96 d (6.5)	23.6	23	0.92 d (6.6)	23.8	0.90 d (6.6)	23.7	22	1.57 m	24.0	1.60 m	25.7
24	0.97 d (6.5)	22.7	24	0.91 d (6.6)	22.2	0.90 d (6.6)	21.6	23	0.83 d (6.5)	23.5	0.91 d (6.6)	23.8
25a	5.19 s	115.1	25	1.50 s	16.1	1.52 s	15.6	24	0.83 d (6.5)	21.7	0.91 d (6.6)	22.2
25b	5.08 s		1′a	3.75 dq (9.2, 7.0)	66.6	3.36 s	57.2	25	1.42 s	15.6	1.50 d (0.9)	15.9
			1Ъ	3.64 m				1'	3.33 s	57.6		
			2'	1.19 t (7.0)	15.7							

Table S3 ¹H (400 MHz) and ¹³C (100 MHz) NMR data of **4–8** (δ in ppm).

^a in CD₃OD; ^b in CDCl₃; ^c in DMSO-*d*₆.

	e			
Compounds	HL60	A549	Hep3B	SW480
1	16.51	34.72	33.35	26.65
2	9.39	20.14	17.33	23.62
3	5.67	16.29	7.99	12.39
4	>40	>40	>40	>40
5	14.93	39.77	5.60	>40
6	18.75	>40	>40	24.03
7	13.95	>40	>40	15.56
8	17.50	>40	10.29	17.38
DDP ^a	2.15	7.24	17.58	14.34

Table S4. IC₅₀ (μ M, 48h) values of 1–8 against leukemia cell lines.

^aDDP was selected as the positive control.

Figure S1. Key ¹H⁻¹H COSY, HMBC, and NOESY correlations of **5–8**.

Figure S2. Experimental ECD spectra of 5–8.

Figure S3. ¹H NMR of compound 1 (in DMSO-*d*₆)

Figure S4. Enlarged ¹H NMR spectrum ($6.0 \sim 3.6$ ppm) of compound **1**

Figure S5. Enlarged ¹H NMR spectrum ($3.2 \sim 0.8$ ppm) of compound 1

Figure S7. Enlarged ¹³C NMR spectrum of compound 1

Figure S10. $^{1}\text{H}-^{1}\text{H}$ COSY of compound 1 (in DMSO- d_{6})

Figure S12. HRESIMS of compound 1

Figure S13. UV of compound 1

Figure S16. Enlarged ¹H NMR spectrum (6.1 \sim 3.6 ppm) of compound 2

Figure S17. Enlarged ¹H NMR spectrum ($3.9 \sim 0.7$ ppm) of compound 2

Figure S19. Enlarged ¹³C NMR spectrum of compound 2

- .

Figure S24. HRESIMS of compound 2

Figure S25. UV of compound 2

Figure S27. ¹H NMR of compound 3 (in CD₃OD)

Figure S28. Enlarged ¹H NMR spectrum ($6.2 \sim 3.0$ ppm) of compound 3

Figure S29. Enlarged ¹H NMR spectrum ($3.0 \sim 0.8$ ppm) of compound 3

Figure S31. Enlarged ¹³C NMR spectrum of compound 3

Figure S33. HMBC of compound 3 (in CD₃OD)

Figure S36. HRESIMS of compound 3

Figure S37. UV of compound 3

Figure S41. HSQC of compound 4 (in CD₃OD)

Figure S42. HMBC of compound 4 (in CD₃OD)

Figure S43. ¹H–¹H COSY of compound 4 (in CD₃OD)

Figure S45. HRESIMS of compound 4

Figure S52. ¹H–¹H COSY of compound 5 (in CD₃OD)

Figure S54. HRESIMS of compound 5

Figure S55. UV of compound 5

Figure S56. IR of compound 5

Figure S61. ¹H–¹H COSY of compound **6** (in CDCl₃)

Figure S62. NOESY of compound 6 (in CDCl₃)

Figure S64. UV of compound 6

Figure S65. IR of compound 6

Figure S71. NOESY of compound **7** (in DMSO-*d*₆)

Figure S72. HRESIMS of compound 7

Figure S73. UV of compound 7

Figure S74. IR of compound 7

Figure S75. ¹H NMR of compound **8** (in CD₃OD)

Figure S77. HSQC of compound 8 (in CD₃OD)

Figure S82. UV of compound 8

Figure S84. Complete western blotting pictures.