Supporting Information for

BF₃-Promoted Reactions of α-Amino Acetals with

Alkynes to 2,5-Disubstituted Pyrroles

Zhi-Yuan Gao,^a Yu He,^a Lan-Yang Li,^a Jie-Sheng Tian,^{b*} and Teck-Peng Loh^{a,c*}

^{a.} School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China.

^{b.} School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.

^{c.} School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Email: tjs@nwpu.edu.cn; teckpeng@ntu.edu.sg

Table of contents

1. General Information	2
2. General Procedure for the Synthesis of α-Amino Acetals	3
3. Optimization Study	12
4. Procedure for BF ₃ -Promoted Cyclization for Pyrrole Synthesis	13
5. Synthesis of 2,5-Diphenylpyrrole 3a on 1 mmol Scale	32
6. References	33
7. ¹ H, ¹³ C and ¹⁹ F NMR data	34

1. General Information

All reactions were carried out without exclusion of air or moisture. Boron trifluoride etherate were purchased from commercial suppliers, and used directly as received. Commercial solvents and reagents were used without further purification. α -Amino acetal were prepared according to the reported procedures. Reactions were monitored through thin layer chromatography [Merck 60 F254 precoated silica gel plate (0.2 mm thickness)]. Subsequent to elution, spots were visualized using UV radiation (254 nm) on Spectroline Model ENf-24061/F 254 nm. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. HRMS spectra were recorded on a Waters Q-Tof Permier Spectrometer. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance or Joel 400 MHz spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform (δ 7.260, singlet). Multiplicities were given as: s (singlet); brs (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); m (multiplets); and etc. Coupling constants are reported as a Jvalue in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.00, triplet).

2. General Procedure for the Synthesis of α-Amino Acetals^[1]

Iodine (0.51 g, 2 mmol, 0.2 equiv) was added to a mixture of sodium percarbonate (1.57 g, 10 mmol, 1.0 equiv), dibenzylamine (1.92 mL, 10 mmol), and phenylacetaldehyde (1.34 mL, 12 mmol, 1.2 equiv) in methanol (10 mL)/dichloroethane (40 mL) at room temperature. The mixture was stirred at 40 °C until dibenzylamine was completely converted by TLC detection. The resulting reaction mixture was mixed with a small amount of silica gel and concentrated. The crude product was purified by flash column chromatography (silica gel; ethyl acetate or diethyl ether/hexane = 1:100, v/v) to afford the desired product **A** as the yellow solid (2.89 g, 80%).

A mixture of product A (2.89 g, 8 mmol) and 20%wt Pd(OH)₂/C (578 mg) in methanol (40 mL) was stirred 24 h under H₂. The reaction mixture was filtered over Celite with EtOAc.The solvent was removed under a reduced pressure and the residue was used for further reaction without purification^[2].

Et₃N (2.43g, 24 mmol, 3.0 equiv) and 4-nitrobenzenesulfonyl chloride

(1.77g, 8 mmol, 1.0 equiv) was sequentially added to a stirred solution of above residue in anhydrous dichloromethane (30 mL) at 0 °C. Then the resulting mixture was stirred overnight at room temperature until the completion of reaction. The resulting mixture was poured into an aqueous saturated solution of Na₂CO₃ (25 mL), extracted with dichloromethane (2 \times 30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel using petroleum ether/ethyl acetate to obtain the pure product **1a**.

N-(2,2-dimethoxy-1-phenylethyl)-4-nitrobenzenesulfonamide (1a)

White solid; mp 123.8–125.4 °C; Prepared following the general procedure outlined above using phenylacetaldehyde. ¹H NMR (400 MHz, CDCl₃): δ

8.08 (m, 2H), 7.73 (m, 2H), 7.21–6.97 (m, 5H), 5.69 (d, *J* = 6.4 Hz, 1H), 4.55 (dd, *J* = 6.3, 4.4 Hz, 1H), 4.37 (d, *J* = 3.8 Hz, 1H), 3.33 (s, 3H), 3.27 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 146.4, 135.8, 128.3, 128.3, 128.1, 127.9, 123.6, 105.8, 59.5, 55.8, 55.6 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₈N₂O₆S 367.0964; Found 367.0965.

N-(2,2-dimethoxy-1-phenylethyl)-4-methylbenzenesulfonamide (1b)

White solid; mp 76.9–77.6 °C; Prepared following the general procedure outlined above using

phenylacetaldehyde and tosyl chloride. ¹H NMR (400 MHz, CDCl₃): δ 7.57–7.44 (m, 2H), 7.18–7.12 (m, 5H), 7.11–7.07 (m, 2H), 5.40 (d, J =5.8 Hz, 1H), 4.42–4.36 (m, 1H), 4.33 (d, J = 4.7 Hz, 1H), 3.29 (s, 3H), 3.23 (s, 3H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 137.1, 136.4, 129.1, 128.0, 127.9, 127.6, 127.1, 106.1, 59.0, 55.9, 55.0, 21.4 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₁NO₄S 336.1270; Found 336.1267. The spectroscopic data for this product match the literature data.^[3]

(9H-fluoren-9-yl)methyl 3,3-dimethoxy-2-phenylpropanoate (1c)

White solid; mp 75.4–76.6 °C; Prepared following the general procedure outlined above using phenylacetaldehyde and 9-fluorenylmethyl

chloroformate. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 7.3 Hz, 2H), 7.60 (d, J = 5.6 Hz, 2H), 7.45–7.27 (m, 9H), 5.66 (d, J = 7.8 Hz, 1H), 4.91 (d, J = 8.1 Hz, 1H), 4.55–4.31 (m, 3H), 4.22 (s, 1H), 3.43 (s, 3H), 3.38 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 143.9, 141.2, 128.4, 127.6, 127.6, 127.3, 127.0, 127.0, 125.0, 119.9, 106.1, 66.7, 56.5, 55.7, 55.7, 47.2 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₅NO₄ 404.1862; Found 404.1865.

N-(2,2-dimethoxy-1-(o-tolyl)ethyl)-4-nitrobenzenesulfonamide (1d)

White solid; mp 138.6–139.6 °C; Prepared following the general procedure outlined above using (2-methylphenyl)acetaldehyde. ¹H NMR (400 MHz,

CDCl₃): δ 8.12 – 7.99 (m, 2H), 7.76–7.60 (m, 2H), 7.11–6.96 (m, 2H), 6.93 (d, J = 7.6 Hz, 1H), 6.86–6.74 (m, 1H), 5.65 (d, J = 5.8 Hz, 1H), 4.90 (dd, J = 5.8, 4.8 Hz, 1H), 4.35 (d, J = 4.7 Hz, 1H), 3.35 (s, 3H) , 3.26 (s, 3H), 2.36 (s, 3H) ppm; ¹³C **NMR (100 MHz, CDCl₃):** δ 149.4, 146.4, 136.4, 134.1, 130.2, 128.1, 127.8, 127.5, 125.8, 123.5, 105.8, 56.1, 55.2, 55.1, 19.4 ppm; **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₁₇H₂₀N₂O₆S 381.1120; Found 381.1126.

N-(2,2-dimethoxy-1-(m-tolyl)ethyl)-4-nitrobenzenesulfonamide (1e)

White solid; mp 134.3–135.1 °C; Prepared following the general procedure outlined above using (3-methylphenyl)acetaldehyde. ¹H NMR (400

MHz, CDCl₃): δ 8.17–7.90 (m, 2H), 7.81–7.59 (m, 2H), 7.11–6.85 (m, 3H), 6.81 (s, 1H), 5.58 (d, J = 5.9 Hz, 1H), 4.51 (m, 1H), 4.36 (d, J = 4.3 Hz, 1H), 3.34 (s, 3H), 3.28 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (100 **MHz, CDCl₃):** δ 149.4, 146.4, 137.9, 135.5, 128.8, 128.5, 128.3, 128.2, 125.2, 123.4, 105.7, 59.4, 55.7, 55.5, 21.2 ppm; **HRMS (ESI) m/z:** [M+H]⁺ Calcd for C₁₇H₂₀N₂O₆S 381.1120; Found 381.1125.

N-(2,2-dimethoxy-1-(p-tolyl)ethyl)-4-nitrobenzenesulfonamide (1f)

White solid; mp 105.2–106.4 °C; Prepared following the general procedure outlined above using (4-methylphenyl)acetaldehyde. ¹H NMR (400 MHz,

CDCl₃): δ 8.20–7.97 (m, 2H), 7.72 (m, 2H), 7.11– 6.80 (m, 4H), 5.66 (d, J = 6.4 Hz, 1H), 4.50 (dd, J = 6.4, 4.4 Hz, 1H), 4.36 (d, J = 4.4 Hz, 1H), 3.33 (s, 3H), 3.27 (s, 3H), 2.24 (s, 3H) ppm; ¹³C **NMR (100 MHz, CDCl₃):** δ 149.3, 146.4, 138.0, 132.6, 128.9, 128.3, 127.9, 123.5, 105.7, 59.2, 55.7, 55.5, 20.9 ppm; **HRMS (ESI) m/z:** [M+H]⁺ Calcd for C₁₇H₂₀N₂O₆S 381.1120; Found 381.1114.

N-(2,2-dimethoxy-1-(4-methoxyphenyl)ethyl)-4-nitrobenzenesulfona mide (1g)

White solid; mp 136.9–137.5 °C; Prepared following the general procedure outlined above using (4-methoxyphenyl)acetaldehyde. ¹H NMR

(400 MHz, CDCl₃): δ 8.27–7.96 (m, 2H), 7.83–7.53 (m, 2H), 7.08–6.90 (m, 2H), 6.75–6.53 (m, 2H), 5.57 (d, J = 5.9 Hz, 1H), 4.49 (m, 1H), 4.34 (d, J = 4.4 Hz, 1H), 3.71 (s, 3H), 3.34 (s, 3H), 3.28 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 149.5, 146.5, 129.2, 128.3, 127.7, 123.5, 113.6, 105.8, 58.9, 55.8, 55.6, 55.2 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀N₂O₇S 397.1069; Found 397.1061.

N-(1-(4-fluorophenyl)-2,2-dimethoxyethyl)-4-nitrobenzenesulfonamid e (1h)

White solid; mp 116.4–117.1 °C; Prepared following the general procedure outlined above using (4-fluoro-phenyl)acetaldehyde. ¹H NMR

(400 MHz, CDCl₃): δ 8.26–7.95 (m, 2H), 7.82–7.52 (m, 2H), 7.18–7.02 (m, 2H), 6.86–6.70 (m, 2H), 5.63 (d, J = 6.1 Hz, 1H), 4.51 (dd, J = 6.1, 4.2 Hz, 1H), 4.32 (d, J = 4.2 Hz, 1H), 3.33 (s, 3H), 3.26 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 162.4 (d, J = 247.8 Hz), 149.6, 146.3, 131.8 (d, J = 3.4 Hz), 129.6 (d, J = 8.2 Hz), 128.3, 123.7, 115.2 (d, J = 21.6 Hz), 105.8, 58.8, 56.0, 55.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -113.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇N₂O₆SF 385.0869; Found 385.0872.

N-(2,2-dimethoxy-1-(4-(trifluoromethyl)phenyl)ethyl)-4-nitrobenzene sulfonamide (1i)

White solid; mp 126.3–126.9 °C; Prepared following the general procedure outlined above using (4-trifluoromethyl-phenyl)acetaldehyde. ¹H

NMR (400 MHz, CDCl₃): δ 8.27–8.02 (m, 2H), 7.91–7.61 (m, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 5.63 (d, *J* = 6.2 Hz, 1H), 4.57 (dd, *J* = 6.2, 4.2 Hz, 1H), 4.37 (d, *J* = 4.1 Hz, 1H), 3.34 (s, 3H), 3.28

(s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 146.0, 140.0, 130.5, 130.2, 128.4, 128.3, 125.2 (q, J = 4.0 Hz), 123.8, 105.5, 59.0, 56.1, 55.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₇N₂O₆SF₃ 435.0837; Found 435.0837.

N-(1-(benzo[d][1,3]dioxol-5-yl)-2,2-dimethoxyethyl)-4-nitrobenzenesu Ifonamide (1j)

Light yellow solid; mp 166.8–167.7 °C; Prepared following the general procedure outlined above using 2-(benzo[d][1,3]dioxol-5-yl)acetaldehyde.

¹H NMR (400 MHz, CDCl₃): δ 8.26–7.98 (m, 2H), 7.85–7.61 (m, 2H),
6.62 (s, 2H), 6.43 (s, 1H), 5.83 (d, J = 20.0 Hz, 2H), 5.50 (d, J = 5.9 Hz,
1H), 4.51–4.36 (m, 1H), 4.32 (d, J = 4.4 Hz, 1H), 3.36 (s, 3H), 3.30 (s,
3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 147.5, 147.4, 146.4,
129.5, 128.4, 123.5, 122.2, 107.9, 107.8, 105.7, 101.2, 59.2, 55.8, 55.6
ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₈N₂O₈S 411.0862;
Found 411.0866.

N-(2,2-dimethoxy-1-(naphthalen-2-yl)ethyl)-4-nitrobenzenesulfonami de (1k)

Light yellow solid; mp 142.6–143.7 °C; Prepared following the general procedure outlined above

using 2-naphthaleneacetaldehyde. ¹H NMR (400 MHz, CDCl₃): δ 7.86– 7.80 (m, 2H), 7.74–7.69 (m, 1H), 7.67–7.62 (m, 2H), 7.65–7.54 (m, 1H), 7.51–7.48 (m, 1H), 7.47–7.40 (m, 2H), 7.21 (dd, J = 8.5, 1.8 Hz, 1H), 5.79 (d, J = 6.3 Hz, 1H), 4.71 (dd, J = 6.2, 4.5 Hz, 1H), 4.49 (d, J = 4.5Hz, 1H), 3.36 (s, 3H), 3.30 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.1, 146.2, 132.8, 132.7, 132.5, 128.1, 128.1, 127.7, 127.5, 127.4, 126.5, 126.4, 125.3, 123.3, 105.6, 59.6, 55.8, 55.4 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀N₂O₆S 417.1120; Found 417.1113.

N-(1,1-dimethoxybutan-2-yl)-4-nitrobenzenesulfonamide (11)

White solid; mp 105.4–106.1 °C; Prepared following the general procedure outlined above using butyraldehyde. ¹H NMR (400 MHz, CDCl₃): δ 8.49–

8.21 (m, 2H), 8.08–8.03 (m, 2H), 4.94 (d, J = 8.8 Hz, 1H), 4.09 (d, J = 2.9 Hz, 1H), 3.33 (s, 3H), 3.32–3.28 (m, 1H), 3.17 (s, 3H), 1.70–1.52 (m, 1H), 1.49–1.38 (m, 1H), 0.85 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 147.3, 128.3, 123.9, 105.8, 57.8, 56.7, 55.9, 23.4, 10.2 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₈N₂O₆S 319.0964; Found 319.0971.

N-(1,1-dimethoxy-3-phenylpropan-2-yl)-4-nitrobenzenesulfonamide (1m)

White solid; mp 113.2–114.7 °C; Prepared following the general procedure outlined above using phenylpropyl aldehyde. ¹H NMR (400 MHz,

CDCl₃): δ 8.11–8.06 (m, 2H), 7.68–7.64 (m, 2H), 7.16–7.02 (m, 3H), 6.98 (dd, J = 7.7, 1.7 Hz, 2H), 4.93 (d, J = 8.8 Hz, 1H), 4.30 (d, J = 2.7Hz, 1H), 3.65–3.53 (m, 1H), 3.46 (s, 3H), 3.38 (s, 3H), 2.96 (dd, J = 14.1, 5.1 Hz, 1H), 2.63 (dd, J = 14.1, 9.4 Hz, 1H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** δ 149.4, 146.2, 137.2, 129.2, 128.5, 127.8, 126.5, 123.8, 105.8, 58.0, 57.0, 56.7, 35.3 ppm; **HRMS (ESI) m/z:** [M+H]⁺ Calcd for C₁₇H₂₀N₂O₆S 381.1120; Found 381.1126.

3. Optimization Study^a

	INs OMe + INS	// _	Lewis acid	Ns I No Dh
	OMe		Solvent, 16 h	PI
1a	2a			3a
Entry	Mediator	Solvent	Temperature	Yield ^b
1	FeCl ₃ (2.0 equiv)	DCM	RT	44%
2	TiCl ₄ (2.0 equiv)	DCM	RT	52%
3	In(OTf) ₃ (2.0 equiv)	DCM	RT	N.R.
4	TMSOTf (2.0 equiv)	DCM	RT	29%
5	B(C ₆ F ₅) ₃ (0.2 equiv)	DCM	RT	30%
6	B(C ₆ F ₅) ₃ (2.0 equiv)	DCM	RT	45%
7	B(C ₆ F ₅) ₃ (2.0 equiv)	DCM	50 °C	61%
8	BF ₃ •OEt ₂ (2.0 equiv)	DCM	RT	65%
9	BF ₃ •OEt ₂ (1.0 equiv)	DCM	RT	45%
10	BF ₃ •OEt ₂ (4.0 equiv)	DCM	RT	59%
11	BF ₃ •OEt ₂ (2.0 equiv)	DCM	0 °C	65%
12	BF ₃ •OEt ₂ (2.0 equiv)	DCM	50 °C	34%
13	BF ₃ •OEt ₂ (2.0 equiv)	DCM	0 ℃ to RT	78%
14	BF ₃ •OEt ₂ (2.0 equiv)	CH_3CN	0 ℃ to RT	N.R.
15	BF ₃ •OEt ₂ (2.0 equiv)	THF	0 ℃ to RT	Trace
16	BF ₃ •OEt ₂ (2.0 equiv)	DCE	0 $^\circ \!\!\! \mathbb{C}$ to RT	47%

^aConditions: *N*-Ns- α -amino acetal **1a** (0.2 mmol, 73 mg), phenyl acetylene **2a** (0.4 mmol, 41 mg), boron trifluoride etherate (0.4 mmol, 57 mg) in solvent (2.0 mL) under air atmosphere at 0 °C to rt for 16 h. ^bIsolated yields. DCM = Dichloromethane. THF = Tetrahydrofuran. DCE = Dichloroethane.

4. Procedure for BF₃-Promoted Cyclization for Pyrrole Synthesis

 α -Amino acetal **1a-m** (0.2 mmol, 1.0 equiv), alkynes **2n-z** (0.4 mmol, 2.0 equiv) and boron trifluoride etherate (0.4 mmol, 2.0 equiv) was sequentially added to anhydrous dichloromethane (2 mL) at 0 °C. Then the resulting mixture was stirred overnight at room temperature until the completion of reaction. The resulting mixture was poured into an aqueous saturated solution of Na₂CO₃ (10 mL), extracted with dichloromethane (2 × 10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel using petroleum ether/ethyl acetate to obtain the pure product **3a-z**.

1-((4-Nitrophenyl)sulfonyl)-2,5-diphenyl-1H-pyrrole (3a)

This compound was prepared by the general procedure described above, affording the desired product **3a** as yellow solid (63 mg, 78% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 183.1–185.4 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.16–8.12 (m, 2H), 7.54–7.50 (m, 4H), 7.48–7.42 (m, 6H), 7.38–7.33 (m, 2H), 6.32 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 141.9, 141.3, 132.6, 129.4, 128.4, 128.2, 127.8, 123.4, 118.2 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₆N₂O₄S 405.0909; Found 405.0907.

2,5-Diphenyl-1-tosyl-1H-pyrrole (3b)

This compound was prepared by the general procedure described above, affording the desired product **3b** as

yellow solid (49 mg, 65% yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 138.2–139.1 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 7.54 (m, 4H), 7.50–7.33 (m, 6H), 7.08 (s, 4H) , 6.27 (s, 2H) , 2.36 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 144.3, 141.2, 134.5, 133.3, 129.6, 128.7, 127.9, 127.5, 126.9, 117.4, 21.5 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₉NO₂S 374.1215; Found 374.1218.

(9H-fluoren-9-yl)methyl 2,5-diphenyl-1H-pyrrole-1-carboxylate (3c)

This compound was prepared by the general procedure described above, affording the desired product **3b** as yellow solid (60 mg, 68% yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 136.2–137.7 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 7.6 Hz, 2H), 7.48 (m, 4H), 7.44–7.37 (m, 6H), 7.36–7.32 (m, 2H), 7.28–7.23 (m, 4H), 6.41 (s, 2H), 4.35 (d, J = 7.1 Hz, 2H), 3.70 (t, J = 7.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 151.8, 143.0, 141.0, 136.6, 133.5, 128.4, 128.0, 127.7, 127.5, 127.0, 125.0, 119.8, 112.9, 69.3, 46.1 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₃NO₂ 442.1807; Found 442.1802.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(o-tolyl)-1H-pyrrole (3d)

This compound was prepared by the general procedure described above, affording the desired product **3d** as yellow solid (57 mg, 68% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 168.1–168.9 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.24–8.07 (m, 2H), 7.52–7.47 (m, 2H), 7.46–7.42 (m, 3H), 7.41–7.37 (m, 2H), 7.35 (dd, J = 7.3, 1.3 Hz, 1H), 7.30 (d, J = 6.9 Hz, 1H), 7.28–7.22 (m, 1H), 7.16 (dd, J = 7.5, 1.2 Hz, 1H), 6.34 (d, J = 3.3 Hz, 1H), 6.23 (d, J = 3.3 Hz, 1H), 2.41 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.9, 139.8, 139.1, 138.5, 132.5, 132.4, 130.3, 130.0, 129.9, 128.8, 128.3, 128.3, 127.7, 125.1, 123.6, 117.7, 117.5, 20.6 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₄S 419.1066; Found 419.1069.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(m-tolyl)-1H-pyrrole (3e)

This compound was prepared by the general procedure described above, affording the desired product **3e** as yellow solid (51 mg, 61% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 160.1–161.2 °C. R_f = 0.5 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.16–8.12 (m, 2H), 7.50 (dd, J = 7.8, 2.0 Hz, 2H), 7.44 (ddd, J = 7.2, 4.2, 1.6 Hz, 3H), 7.38–7.34 (m, 2H), 7.34–7.29 (m, 3H), 7.26–7.22 (m, 1H), 6.30 (s, 1H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.1, 141.6, 141.2, 137.4, 132.6, 132.5, 130.1, 129.4, 129.2, 128.3, 128.3, 127.8, 127.7, 126.5, 123.3, 118.1, 118.0, 21.4 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₄S 419.1066; Found 419.1064.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(p-tolyl)-1H-pyrrole (3f)

This compound was prepared by the general procedure described above, affording the desired product **3f** as yellow solid (58 mg, 69% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 170.2–171.3 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.20–8.14 (m, 2H), 7.50 (dd, J = 6.6, 3.2 Hz, 2H), 7.44 (dt, J = 5.6, 2.8 Hz, 3H), 7.40 (dt, J = 9.1, 2.3 Hz, 2H), 7.35 (dd, J = 7.3, 1.4 Hz, 1H), 7.31 (d, J = 6.8 Hz, 1H), 7.28–7.23 (m, 1H), 7.17 (dd, J = 7.5, 1.2 Hz, 1H), 6.34 (d, J = 3.3 Hz, 1H), 6.23 (d, J = 3.2 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.9, 139.8, 139.1, 138.5, 132.5, 132.4, 130.3, 130.0, 129.9, 128.8, 128.3, 128.3, 127.7, 125.1, 123.6, 117.7, 117.5, 20.7 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₄S 419.1066; Found 419.1059.

2-(4-Methoxyphenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrol

e (3g)

This compound was prepared by the general procedure described above, affording the desired product **3g** as yellow solid (30 mg, 34% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 152.3–153.4 °C. R_f = 0.3 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.16–8.10 (m, 2H), 7.51 (dd, J = 7.4, 2.3 Hz, 2H), 7.44 (dq, J = 7.2, 2.7, 2.1 Hz, 3H), 7.39–7.35 (m, 2H), 7.33 (d, J = 7.8 Hz, 1H), 7.07 (dd, J = 8.6, 1.8 Hz, 2H), 6.96 (ddd, J = 8.3, 2.5, 0.8 Hz, 1H), 6.32 (d, J = 3.3 Hz, 1H), 6.30 (d, J = 3.3 Hz, 1H), 3.89 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 150.3, 141.9, 141.4, 141.1, 133.8, 132.5, 129.4, 128.8, 128.4, 128.3, 127.8, 123.4, 121.8, 118.3, 118.1, 115.1, 113.9, 55.3 ppm; **HRMS (ESI) m/z:** [M+H]⁺ Calcd for C₂₃H₁₈N₂O₅S 435.1015; Found 435.1021.

2-(4-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3h)

This compound was prepared by the general procedure described above, affording the desired product **3h** as yellow solid (57 mg, 59% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 170.3–171.6 °C. R_f = 0.4 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.18–8.13 (m, 2H), 7.50–7.39 (m, 6H), 7.38–7.33 (m, 2H), 7.31 (dt, *J* = 7.7, 1.2 Hz, 1H), 7.27–7.22 (m, 1H), 7.12 (tdd, *J* = 8.4, 2.6, 1.0 Hz, 1H), 6.35 (d, *J* = 3.3 Hz, 1H), 6.30 (d, *J* = 3.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 160.9, 150.4, 141.8 (d, *J* = 2.9 Hz), 140.0 (d, *J* = 2.8 Hz), 134.7 (d, *J* = 8.4 Hz), 132.2, 129.5, 129.4 (d, *J* = 8.5 Hz), 128.6, 128.2, 127.9, 125.0 (d, *J* = 3.1 Hz), 123.5, 119.0, 118.1, 116.2 (d, *J* = 22.7 Hz), 115.2 (d, *J* = 21.2 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -112.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₅FN₂O₄S 423.0815; Found 423.0821.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(4-(trifluoromethyl)phenyl)-1 H-pyrrole (3i)

This compound was prepared by the general procedure described above, affording the desired

product **3i** as yellow solid (67 mg, 71% yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 178.3–179.1 °C. $R_f = 0.4$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.2–8.1 (m, 2H), 7.7 (q, J = 8.4 Hz, 4H), 7.5 (m, 5H), 7.4–7.3 (m, 2H), 6.4 (d, J = 3.3 Hz, 1H), 6.3 (d, J = 3.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.4, 142.3, 141.6, 139.8, 136.2, 132.0, 129.6, 129.3, 128.7, 128.2, 127.9, 125.4, 124.8 (q, J = 4.1 Hz), 123.5, 122.7, 119.7, 118.3 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.3; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₅N₂O₄SF₃ 473.0783; Found 473.0787.

2-(Benzo[d][1,3]dioxol-5-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1Hpyrrole (3j)

This compound was prepared by the general procedure described above, affording the desired product **3i** as yellow solid (33 mg, 37% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 125.6–127.1 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.18–8.13 (m, 2H), 7.50–7.41 (m, 5H), 7.40–7.36 (m, 2H), 7.00 (d, J = 1.7 Hz, 1H), 6.93 (dd, J = 8.0, 1.7 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.27 (d, J = 3.3 Hz, 1H), 6.23 (d, J = 3.3 Hz, 1H), 6.05(s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 148.0, 147.2, 142.0, 141.1, 141.0, 132.7, 129.3, 128.3, 128.3, 127.8, 126.6, 123.4, 123.1, 118.2, 117.7, 110.1, 107.8, 101.4 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₆S 451.0964; Found 451.0962.

2-(Naphthalen-2-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3k)

This compound was prepared by the general procedure described above, affording the desired product **3k** as yellow solid (63 mg, 69% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 142.7–144.2 °C. R_f = 0.4 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.12–8.08 (m, 2H), 7.94–7.88 (m, 4H), 7.71 (dd, J = 8.5, 1.7 Hz, 1H), 7.59–7.53 (m, 4H), 7.52–7.41 (m, 3H), 7.37–7.33 (m, 2H), 6.42 (d, J = 3.3 Hz, 1H), 6.35 (d, J = 3.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 141.7, 141.5, 141.4, 132.9, 132.7, 132.5, 130.2, 129.4, 128.4, 128.2, 128.1, 127.8, 127.7, 127.7, 127.6, 127.2, 126.5, 126.5, 123.4, 118.9, 118.4 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₁₈N₂O₄S 455.1066; Found 455.1060.

2-Ethyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3l)

This compound was prepared by the general procedure described above, affording the desired product **31** as yellow solid (39 mg, 55% yield) through the purification

by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 148.7–149.3 °C. *R_f* = 0.5 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.22–8.17 (m, 2H), 7.55–7.51 (m, 2H), 7.38–7.27 (m, 5H), 6.15–6.10 (m, 2H), 2.97 (qd, *J* = 7.4, 1.0 Hz, 2H), 1.33 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 144.1, 141.5, 138.2, 132.4, 130.4, 128.2, 127.7, 127.4, 124.0, 116.5, 113.0, 23.0, 13.5 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₆N₂O₄S 357.0909; Found 357.0904.

2-Benzyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3m)

This compound was prepared by the general procedure described above, affording the desired product **3m** as yellow solid (38 mg, 46% yield) through the purification

by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 161.1–162.9 °C. *R_f* = 0.5 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.18–7.98 (m, 2H), 7.51–7.18 (m, 12H), 6.13 (d, *J* = 3.3 Hz, 1H), 6.00 (d, *J* = 3.3 Hz, 1H), 4.33 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.1, 144.0, 138.5, 138.2, 138.0, 132.1, 130.8, 129.1, 128.5, 128.4, 127.9, 127.4, 126.6, 123.8, 116.1, 115.9, 35.6 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₄S 419.1066; Found 419.1069.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(o-tolyl)-1H-pyrrole (3n)

This compound was prepared by the general procedure described above, affording the desired

product **3n** as yellow solid (52 mg, 62% yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 168.9–169.8 °C. R_f = 0.5 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.19–8.15 (m, 2H), 7.52–7.49 (m, 2H), 7.44 (dd, J = 5.2, 2.1 Hz, 3H), 7.42–7.38 (m, 2H), 7.36 (dd, J = 7.3, 1.4 Hz, 1H), 7.33–7.23 (m, 2H), 7.17 (dd, J = 7.5, 1.2 Hz, 1H), 6.35 (d, J= 3.2 Hz, 1H), 6.24 (d, J = 3.3 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.9, 139.8, 139.1, 138.5, 132.5, 132.4, 130.3, 130.0, 129.9, 128.8, 128.3, 128.3, 127.7, 125.1, 123.6, 117.7, 117.5, 20.6 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₄S 419.1066; Found 419.1061.

2-(2-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

(30)

This compound was prepared by the general procedure described above, affording the desired product **30** as yellow solid (59 mg, 70% yield)

through the purification by flash column chromatography (silica gel;

ethyl acetate /hexane = 1/50, v/v). mp 180.4–181.5 °C. R_f = 0.4 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.18–8.10 (m, 2H), 7.50–7.40 (m, 7H), 7.36 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 7.2 Hz, 1H), 7.20 (d, J = 9.2 Hz, 1H), 6.42 (d, J = 3.3 Hz, 1H), 6.31 (dd, J = 3.3, 0.5 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 158.8, 150.3, 142.5, 133.8, 132.0, 131.6 (d, J = 2.6 Hz), 130.3, 130.2, 129.9, 128.6, 128.2, 127.7, 123.6, 121.1 (d, J = 14.1 Hz), 119.1 (d, J = 2.0 Hz), 117.6, 115.5 (d, J = 21.9 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -113.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₅FN₂O₄S 423.0815; Found 423.0818.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(m-tolyl)-1H-pyrrole (3p)

This compound was prepared by the general procedure described above, affording the desired product **3p** as yellow solid (45 mg, 54% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 160.4–161.5 °C. R_f = 0.5 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.16–8.12 (m, 2H), 7.50 (dd, J = 7.7, 2.0 Hz, 2H), 7.47–7.41 (m, 3H), 7.38–7.31 (m, 5H), 7.26–7.22 (m, 1H), 6.30 (s, 2H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.0, 141.6, 141.2, 137.4, 132.6, 132.5, 130.1, 129.4, 129.2, 128.3, 128.3, 127.8, 127.7, 126.5, 123.3, 118.2, 118.0, 21.4 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₄S 419.1066; Found 419.1070.

2-(3-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

(3q)

This compound was prepared by the general procedure described above, affording the desired product 3q as yellow solid (61 mg, 72% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 179.5–181.1 °C. R_f = 0.4 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.17–8.13 (m, 2H), 7.50–7.39 (m, 6H), 7.38–7.34 (m, 2H), 7.31 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.27–7.23 (m, 1H), 7.12 (tdd, *J* = 8.4, 2.6, 1.0 Hz, 1H), 6.35 (d, *J* = 3.3 Hz, 1H), 6.30 (d, *J* = 3.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 160.9, 150.4, 141.9, 140.0, 134.7 (d, *J* = 8.5 Hz), 132.2, 129.5, 129.4 (d, *J* = 8.5 Hz), 128.6, 128.3, 127.9, 125.0 (d, *J* = 3.1 Hz), 123.5, 119.0, 118.1, 116.2 (d, *J* = 22.8 Hz), 115.2 (d, *J* = 21.1 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -113.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₅FN₂O₄S 423.0815; Found 423.0809.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(p-tolyl)-1H-pyrrole (3r)

This compound was prepared by the general procedure described above, affording the desired product 3r as yellow solid (55 mg, 66%)

yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 170.5–171.9 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.17–8.12 (m, 2H), 7.53 (dd, J = 7.7, 1.7 Hz, 2H), 7.47–7.40 (m, 5H), 7.39–7.35 (m, 2H), 7.27 (d, J = 7.8 Hz, 2H), 6.31 (d, J = 3.3 Hz, 1H), 6.28 (d, J = 3.3 Hz, 1H), 2.46 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 141.9, 141.5, 141.0, 138.4, 132.7, 129.7, 129.3, 129.3, 128.5, 128.2, 128.2, 127.8, 123.3, 118.3, 117.8, 21.3 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₂O₄S 419.1066; Found 419.1065.

2-(4-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3s)

This compound was prepared by the general procedure described above, affording the desired product **3s** as yellow solid (71 mg, 84% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 169.7–170.4 °C. R_f = 0.4 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.18–8.12 (m, 2H), 7.54–7.46 (m, 4H), 7.46–7.41 (m, 3H), 7.37–7.32 (m, 2H), 7.17–7.10 (m, 2H), 6.31 (d, J = 3.3 Hz, 1H), 6.29 (d, J = 3.3 Hz, 1H). ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 161.6, 150.4, 142.0, 141.3, 140.1, 132.5, 131.1 (d, J = 8.3 Hz), 129.4, 128.8 (d, J = 3.5 Hz), 128.5, 128.2, 127.9, 123.5, 118.1 (d, *J* = 1.9 Hz), 114.9 (d, *J* = 21.8 Hz) ppm; ¹⁹**F NMR (376 MHz, CDCl₃):** δ -112.5; **HRMS (ESI) m/z:** [M+H]⁺ Calcd for C₂₂H₁₅FN₂O₄S 423.0815; Found 423.0819.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(4-(trifluoromethyl)phenyl)-1 H-pyrrole (3t)

This compound was prepared by the general procedure described above, affording the desired product 3t as yellow solid (40 mg, 42%)

yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 179.7–180.6 °C. $R_f = 0.4$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.17–8.13 (m, 2H), 7.73–7.64 (m, 4H), 7.49–7.42 (m, 5H), 7.36–7.31 (m, 2H), 6.41 (d, J = 3.3 Hz, 1H), 6.32 (d, J = 3.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 142.3, 141.8, 139.8, 136.2, 132.0, 130.2, 129.9, 129.6, 129.3, 128.8, 128.2, 127.9, 124.9 (q, J = 4.1 Hz), 123.6, 119.7, 118.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4 ; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₅F₃N₂O₄S 473.0783; Found 473.0786.

2-([1,1'-Biphenyl]-4-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrr ole (3u)

This compound was prepared by the general

procedure described above, affording the desired product **3u** as yellow solid (67 mg, 70% yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 168.5– 169.4 °C. $R_f = 0.4$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.2– 8.1 (m, 2H), 7.7 (m, 4H), 7.6–7.6 (m, 2H), 7.6–7.4 (m, 7H), 7.4–7.4 (m, 3H), 6.4 (d, J = 3.3 Hz, 1H), 6.3 (d, J = 3.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 142.1, 141.7, 141.3, 141.2, 140.4, 132.8, 131.7, 129.9, 129.6, 129.0, 128.6, 128.5, 128.0, 127.8, 127.2, 126.6, 123.6, 118.6, 118.5 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₀N₂O₄S 480.1222; Found 480.1215.

2-(Naphthalen-2-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3v)

This compound was prepared by the general procedure described above, affording the desired product 3v as yellow solid (51 mg, 56% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 142.7–143.9 °C. R_f = 0.4 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.14–8.07 (m, 2H), 7.95–7.88 (m, 4H), 7.71 (dd, J = 8.5, 1.7 Hz, 1H), 7.59–7.53 (m, 4H), 7.51–7.43 (m, 3H), 7.38–7.32 (m, 2H), 6.42 (d, J = 3.2 Hz, 1H), 6.35 (d, J = 3.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 141.7, 141.5, 141.4, 132.9, 132.7, 132.5, 130.2, 129.4, 128.4, 128.2, 128.1, 127.8, 127.7, 127.7, 127.6, 127.2, 126.5, 126.5, 123.4, 118.9, 118.4 ppm; **HRMS (ESI) m/z:** [M+H]⁺ Calcd for C₂₆H₁₈N₂O₄S 455.1066; Found 455.1058.

1-((4-nitrophenyl)sulfonyl)-2-phenyl-5-(thiophen-3-yl)-1H-pyrrole (3w)

This compound was prepared by the general procedure described above, affording the desired product **3w** as yellow solid (30 mg, 37% yield)

through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 195.8–196.7 °C. $R_f = 0.5$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.17–8.11 (m, 2H), 7.54–7.46 (m, 2H), 7.47–7.39 (m, 3H), 7.38–7.34 (m, 3H), 7.31 (dd, J = 3.0, 1.3 Hz, 1H), 7.24 (dd, J = 5.0, 1.3 Hz, 1H), 6.33–6.26 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.4, 140.7, 135.6, 132.9, 132.8, 129.5, 129.4, 128.4, 128.2, 127.8, 124.8, 124.5, 123.5, 117.8, 117.4 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₄N₂O₄S₂ 411.0474; Found 411.0470.

2-Butyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3x)

This compound was prepared by the general procedure described above, affording the desired product 3x as

yellow solid (26 mg, 34% yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 122.9– 123.9 °C. R_f = 0.5 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.22– 8.16 (m, 2H), 7.55–7.49 (m, 2H), 7.37–7.31 (m, 3H), 7.28 (dd, J = 7.9, 1.7 Hz, 2H), 6.11 (q, J = 3.3 Hz, 2H), 2.97–2.89 (m, 2H), 1.73 (p, J = 7.5 Hz, 2H), 1.44 (dq, J = 14.6, 7.4 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 144.0, 140.4, 138.3, 132.4, 130.4, 128.2, 127.7, 127.5, 123.9, 116.6, 114.0, 31.6, 29.5, 22.4, 13.9 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀N₂O₄S 385.1222; Found 385.1226.

2-Cyclopropyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3y)

This compound was prepared by the general procedure described above, affording the desired product 3y as yellow solid (22 mg, 30% yield) through the

purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 134.8–135.9 °C. $R_f = 0.4$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.25–8.19 (m, 2H), 7.67–7.61 (m, 2H), 7.39–7.30 (m, 5H), 6.09 (d, J = 3.4 Hz, 1H), 5.91 (d, J = 3.4 Hz, 1H), 2.35 (ddd, J = 14.1, 8.5, 5.8 Hz, 1H), 1.03–0.89 (m, 2H), 0.66–0.49 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 144.3, 141.6, 138.0, 132.5, 130.3, 128.2, 128.0, 127.5, 123.9, 116.0, 111.1, 9.9, 8.5 ppm; **HRMS (ESI) m/z:** $[M+H]^+$ Calcd for $C_{19}H_{16}N_2O_4S$ 369.0909; Found 369.0905.

1-((4-Nitrophenyl)sulfonyl)-2,3,5-triphenyl-1H-pyrrole (3z)

This compound was prepared by the general procedure described above, affording the desired product 3z as yellow solid (30 mg, 31% yield) through the

purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 236.2–237.9 °C. R_f = 0.5 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.19–8.11 (m, 2H), 7.62–7.55 (m, 2H), 7.49–7.43 (m, 3H), 7.42–7.33 (m, 5H), 7.30–7.26 (m, 2H), 7.20–7.11 (m, 3H), 7.03–6.89 (m, 2H), 6.46 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.4, 143.0, 140.0, 134.7, 133.6, 132.8, 131.8, 131.3, 130.0, 129.7, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 128.0, 127.2, 123.7, 119.6 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₀N₂O₄S 481.1222 ; Found 481.1226.

3-Ethyl-1-((4-nitrophenyl)sulfonyl)-2,5-diphenyl-1H-pyrrole (4a-1)

This compound was prepared by the general procedure described above, affording the desired product **4a-1** as yellow solid (43 mg, 50% yield) through the purification by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 230.6–231.9 °C. Rf = 0.4 (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.19–8.14 (m, 2H), 7.55–7.51 (m, 2H), 7.50–7.38 (m, 6H), 7.39–7.36 (m, 4H), 6.28 (s, 1H) , 2.30 (q, J = 7.6 Hz, 2H), 0.99 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 142.3, 140.1, 134.8, 132.9, 132.7, 131.8, 130.6, 129.4, 128.2, 128.2, 128.1, 127.7, 127.6, 123.3, 119.6, 19.1, 14.5 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₀N₂O₄S 433.1222; Found 433.1229.

2-Ethyl-1-((4-nitrophenyl)sulfonyl)-3,5-diphenyl-1H-pyrrole (4a-2)

This compound was prepared by the general procedure described above, affording the desired product **4a-2** as yellow solid (17 mg, 20% yield) through the purification

by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v). mp 225.3–226.7 °C. $R_f = 0.1$ (PE:EA = 10:1); ¹H NMR (400 MHz, CDCl₃): δ 8.28–8.23 (m, 2H), 8.01–7.97 (m, 2H), 7.78–7.72 (m, 1H), 7.52–7.44 (m, 3H), 7.37–7.29 (m, 4H), 7.24–7.21 (m, 2H), 7.03 (s, 1H) , 2.46 (q, *J* = 7.6 Hz, 2H), 1.03 (t, *J* = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.1, 145.2, 139.4, 138.4, 138.1, 134.0, 130.1, 129.5, 128.7, 128.4, 127.4, 126.4, 125.9, 125.3, 124.2, 120.8, 26.8, 15.8 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₀N₂O₄S 433.1222; Found 433.1224.

5. Synthesis of 2,5-Diphenylpyrrole 3a on 1 mmol Scale

N-Ns- α -Amino acetal **1a** (366 mg, 1.0 mmol, 1.0 equiv), alkynes **2a** (204 mg, 2.0 mmol, 2.0 equiv) and boron trifluoride etherate (142 mg, 2.0 mmol, 2.0 equiv) was sequentially added to anhydrous dichloromethane (5 mL) at 0 °C. Then the resulting mixture was stirred overnight at room temperature until the completion of reaction. The resulting mixture was poured into an aqueous saturated solution of Na₂CO₃ (20 mL), extracted with dichloromethane (2 × 20 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (silica gel; ethyl acetate /hexane = 1/50, v/v) to afford the desired product **3a** (246.4 mg, 61% yield).

6. References

- [1] J.-S. Tian, T.-P. Loh, Copper-catalyzed α-amination of Aliphatic Aldehydes. *Chem. Commun.*, 2011, 47, 5458-5460.
- [2] J.-S. Tian, K. W. J. Ng, J.-R. Wong, T.-P. Loh, α-Amination of Aldehydes Catalyzed by In Situ Generated Hypoiodite. *Angew. Chem. Int. Ed.*, 2012, **51**, 9105-9109.
- [3] P. W. Davies, N. Martin, Counterion Effects in a Gold-Catalyzed Synthesis of Pyrroles from Alkynyl Aziridines. Org. Lett. 2009, 11, 2293–2296.

7. ¹H, ¹³C and ¹⁹F NMR data

N-(2,2-dimethoxy-1-phenylethyl)-4-nitrobenzenesulfonamide (1a)

Figure S1. ¹H NMR of 1a (400 MHz, CDCl₃) and ¹³C NMR of 1a (100 MHz, CDCl₃)

N-(2,2-dimethoxy-1-phenylethyl)-4-methylbenzenesulfonamide (1b)

Figure S3. ¹H NMR of 1c (400 MHz, CDCl₃) and ¹³C NMR of 1c (100 MHz, CDCl₃)

N-(2,2-dimethoxy-1-(p-tolyl)ethyl)-4-nitrobenzenesulfonamide (1f)

Figure S6. ¹H NMR of 1f (400 MHz, CDCl₃) and ¹³C NMR of 1f (100 MHz, CDCl₃)

N-(2,2-dimethoxy-1-(4-methoxyphenyl)ethyl)-4-nitrobenzenesulfona

Figure S7. 1 H NMR of 1g (400 MHz, CDCl₃) and 13 C NMR of 1g (100 MHz, CDCl₃)

N-(1-(4-fluorophenyl)-2, 2-dimethoxyethyl)-4-nitrobenzenesulfonamid

N-(2,2-dimethoxy-1-(4-(trifluoromethyl)phenyl)ethyl)-4-nitrobenzene

sulfonamide (1i)

N-(1-(benzo[d][1,3]dioxol-5-yl)-2,2-dimethoxyethyl)-4-nitrobenzenesu

Figure S10. ¹H NMR of 1j (400 MHz, CDCl₃) and ¹³C NMR of 1j (100 MHz, CDCl₃)

N-(2,2-dimethoxy-1-(naphthalen-2-yl)ethyl)-4-nitrobenzenesulfonami

Figure S11. ¹H NMR of 1k (400 MHz, CDCl₃) and ¹³C NMR of 1k (100 MHz, CDCl₃)

N-(1,1-dimethoxybutan-2-yl)-4-nitrobenzenesulfonamide (11)

Figure S13. $^1\mathrm{H}$ NMR of 1m (400 MHz, CDCl₃) and $^{13}\mathrm{C}$ NMR of 1m (100 MHz, CDCl₃)

1-((4-Nitrophenyl)sulfonyl)-2,5-diphenyl-1H-pyrrole (3a)

2,5-Diphenyl-1-tosyl-1H-pyrrole (3b)

(9H-fluoren-9-yl)methyl 2,5-diphenyl-1H-pyrrole-1-carboxylate (3c)

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(o-tolyl)-1H-pyrrole (3d)

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(m-tolyl)-1H-pyrrole (3e)

53

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(p-tolyl)-1H-pyrrole (3f)

2-(4-Methoxyphenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrol

e (3g)

Figure S20. $^1\mathrm{H}$ NMR of 3g (400 MHz, CDCl₃) and $^{13}\mathrm{C}$ NMR of 3g (100 MHz, CDCl₃)

2-(4-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

(3h)

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(4-(trifluoromethyl)phenyl)-1

2-(Benzo[d][1,3]dioxol-5-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-

Figure S23. ¹H NMR of 3j (400 MHz, CDCl₃) and ¹³C NMR of 3j (100 MHz, CDCl₃)

2-(Naphthalen-2-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

2-Ethyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3l)

2-Benzyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3m)

Figure S26. ¹H NMR of 3m (400 MHz, CDCl₃) and ¹³C NMR of 3m (100 MHz, CDCl₃)

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(o-tolyl)-1H-pyrrole (3n)

2-(2-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(m-tolyl)-1H-pyrrole (3p)

1-(3-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(p-tolyl)-1H-pyrrole (3r)

Figure S31. ¹H NMR of 3r (400 MHz, CDCl₃) and ¹³C NMR of 3r (100 MHz, CDCl₃)

2-(4-Fluorophenyl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-5-(4-(trifluoromethyl)phenyl)-1

H-pyrrole (3t)

2-([1,1'-Biphenyl]-4-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrr

Figure S34. ¹H NMR of 3u (400 MHz, CDCl₃) and ¹³C NMR of 3u (100 MHz, CDCl₃)

2-(Naphthalen-2-yl)-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole

1-((4-nitrophenyl)sulfonyl)-2-phenyl-5-(thiophen-3-yl)-1H-pyrrole

2-Butyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3x)

Figure S37. ¹H NMR of 3x (400 MHz, CDCl₃) and ¹³C NMR of 3x (100 MHz, CDCl₃)

2-Cyclopropyl-1-((4-nitrophenyl)sulfonyl)-5-phenyl-1H-pyrrole (3y)

Figure S38. ¹H NMR of 3y (400 MHz, CDCl₃) and ¹³C NMR of 3y (100 MHz, CDCl₃)

1-((4-Nitrophenyl)sulfonyl)-2,3,5-triphenyl-1H-pyrrole (3z)

Figure S39. ¹H NMR of 3z (400 MHz, CDCl₃) and ¹³C NMR of 3z (100 MHz, CDCl₃)

3-Ethyl-1-((4-nitrophenyl)sulfonyl)-2,5-diphenyl-1H-pyrrole (4a-1)

Figure S40. ¹H NMR of 4a-1 (400 MHz, CDCl₃) and ¹³C NMR of 4a-1 (100 MHz, CDCl₃)

2-Ethyl-1-((4-nitrophenyl)sulfonyl)-3,5-diphenyl-1H-pyrrole (3z-2)