Triazolated calix[4]semitubes: assembling strategies towards long multicalixarene architectures

Maria Malakhova, Alexander Gorbunov, Nikolay Ozerov, Ilia Korniltsev, Kirill Ermolov, Stanislav Bezzubov, Vladimir Kovalev and Ivan Vatsouro

Supplementary Information

Contents

Synthesis and characterization of novel compounds	2
Tuning the conditions for the preparation of calix[4]semitubes	11
NMR spectra of novel compounds	14
Details of X-ray diffraction measurements	29
References	

Synthesis and characterization of novel compounds

General experimental methods: NMR spectra were acquired on Bruker Avance 400 instrument at 20 °C if not stated otherwise, and chemical shifts are reported as ppm referenced to solvent signals. ESI mass spectra were obtained from Sciex TripleTOF 5600+ spectrometers. Chemicals received from commercial sources were used without further purification. Calixarenes 1,^[S1] 2– 4,^[S2] 5,^[S3] 6,^[S4] 7,^[S5] 8,^[S2] 9,^[S6] and 10^[S7] were prepared according to the published procedures.

Tetrakis(azide) **11**. Diisopropyl azodicarboxylate (2.73 ml, 13.87 mmol) was added dropwise at stirring to a cooled (0–5 °C) solution of Ph₃P (2.73 g, 10.4 mmol) in dry THF (30 ml). After a solid formed, the mixture was stirred at cooling for 1 h. A solution of calix[4]arene **10** (1.04 g, 1.73 mmol) and diphenyl phosphoryl azide

(2.99 ml, 13.87 mmol) in THF (90 ml) was added dropwise. The reaction mixture was stirred at cooling for 1 h and then allowed to stay at room temperature for 48 h. The solution was concentrated under reduced pressure and the resultant oil was treated with cold methanol. The solid formed was collected, washed with methanol and dried. Yield 0.627 g (52%), white solid. M.p. 97–99 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (d, 8H, ³*J*_{HH} = 7.6 Hz; ArH), 6.89 (t, 4H, ³*J*_{HH} = 7.6 Hz; ArH), 3.82 (s, 8H; ArCH₂Ar), 3.54–3.48 (m, 8H; OCH₂), 2.97–2.91 (m, 8H; CH₂N₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.77, 133.70 (C_{Ar}), 129.48, 123.10 (CH_{Ar}), 68.02 (OCH₂), 50.13 (CH₂N₃), 37.42 (ArCH₂Ar) ppm. ESI-MS *m/z*: 718.3314 [M+NH₄]⁺ for C₃₆H₄₀N₁₃O₄ (718.3321).

Bis(azide)/bis(alkyne) **12**. A mixture of bis(azide) **2** (2.81 g, 5.00 mmol) and anhydrous Cs_2CO_3 (6.52 g, 20.0 mmol) in dry DMF (80 ml) was stirred at room temperature for 2 h. Propargyl bromide (80% in toluene, 2.23 ml, 20.0 mmol) was

added and stirring was continued for 48 h at room temperature. The solvent was removed under reduced pressure without heating, and the residue was parted between dichloromethane and 2 M HCl. The organic layer was separated, washed with water, dried with MgSO₄ and concentrated to dryness. The residue was purified by column chromatography (gradient from hexane to hexane/dichloromethane (1:2)). Yield 1.091 g (34%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.15 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 7.08 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.85 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.83 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 4.01 (d, 4H, ⁴*J*_{HH} = 2.4 Hz; OCH₂CCH), 3.88 (d, 4H, ²*J*_{HH} = 15.1 Hz; ArCH₂Ar), 3.70 (d, 4H, ²*J*_{HH} = 15.1 Hz; ArCH₂Ar), 3.52–3.47 (m, 4H; OCH₂), 3.19–3.13 (m, 4H; CH₂N₃), 2.39 (t, 2H, ⁴*J*_{HH} = 2.4 Hz; CH) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.49, 155.35, 134.52, 133.61

(C_{Ar}), 130.41, 129.75, 123.14, 123.08 (CH_{Ar}), 80.29 (OCH₂<u>C</u>), 74.56 (CH), 68.87 (OCH₂), 58.62 (O<u>C</u>H₂CCH), 50.62 (CH₂N₃), 37.16 (ArCH₂Ar) ppm. ESI-MS m/z: 656.2980 [M+NH₄]⁺ for C₃₈H₃₈N₇O₄ (656.2980).

Bis(azide) **13**. Under argon, *n*BuLi (2.5 M in hexane, 0.442 ml, 1.10 mmol) was added dropwise to a solution of bis(trimethylsilyl)amine (0.308 ml, 1.47 mmol) in dry THF (10 ml) at cooling (-78 °C). The mixture was slowly heated to room temperature, stirred for 1 h, and cooled again (-78 °C). A solution of calixarene **12**

(0.235 g, 0.37 mmol) in dry THF (10 ml) was added dropwise with stirring, and the mixture was stirred at cooling for 30 min. A solution of tert-butyldimethylsilyl chloride (0.167 g, 1.10 mmol) in dry THF (10 ml) was added, the mixture was heated to room temperature and stirred overnight. Saturated solution of NH₄Cl (30 ml) was added to the reaction mixture, the organic phase was separated, the aqueous phase was washed with dichloromethane (2×20 ml). The combined organic extracts were washed with water, dried with MgSO₄ and evaporated to dryness. The residue was purified by flash chromatography on SiO₂ (dichloromethane). Yield 0.220 g (69%), white solid. M.p. 103-105 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.14$ (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 7.04 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.79 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}), 6.74 (t, 2H, {}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}), 4.21 (s, 4H; OCH₂CCH), 3.82 (d, 4H, 4H)$ $^{2}J_{\text{HH}} = 14.5 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.62 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 14.5 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.54-3.48 \text{ (m, 4H; OCH}_{2}),$ 3.31-3.25 (m, 4H; CH₂N₃), 0.93 (s, 18H; C(CH₃)₃), 0.12 (s, 12H; SiCH₃) ppm; ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 155.60, 155.26, 134.47, 133.39 (C_{Ar}), 130.50, 129.66, 122.93, 122.60$ (CH_{Ar}), 102.82 (OCH₂C), 89.83 (OCH₂CC), 69.23 (OCH₂), 59.48 (OCH₂CC), 51.00 (CH₂N₃), 36.78 (ArCH₂Ar), 26.03 (C(<u>C</u>H₃)₃), 16.47 (<u>C</u>(CH₃)₃), -4.75 (SiCH₃) ppm. ESI-MS *m/z*: $884.4705 [M+NH_4]^+$ for C₅₀H₆₆N₇O₄Si₂ (884.4709).

General procedure for the preparation of calix[4]semitubes. To a stirred mixture of calixarene (bis)alkyne and (bis)azide in toluene or THF, Cu(I)-catalyst was added (CuI dissolved in a small portion of toluene by addition of Et_3N , or $CuSO_4 \cdot 5H_2O$ /sodium ascorbate mixture dissolved in water). The mixture was stirred at room temperature or at heating, and then concentrated under reduced pressure. The residue was parted between dichloromethane and 2 M HCl at vigorous stirring for at least 2 h. The organic layer was separated, washed with aqueous Na₂SO₃ (5%, for CuI-catalyzed reactions only), water and dried with MgSO₄. The solvent was removed and the residue was subjected to column chromatography. The two-step column separation was applied in several cases: from the first column, a polymeric material was first eluted followed by a

semitube-containing fraction, which was then evaporated to dryness and subjected to the second column (with the same or different eluent) for the final purification.

Tris(calix[4]arene) **14** was prepared according to *General procedure* from calixarene **1** (0.524 g, 0.68 mmol), calixarene **9** (0.195 g, 0.34 mmol), CuI (0.038 g, 0.20 mmol) and Et₃N (0.56 ml, 4.0 mmol)

in toluene (40 ml). The reaction mixture was stirred at room temperature for 48 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.270 g (38%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.09 (s, 8H; ArH), 7.05 (s, 4H; OH), 6.77 (s, 8H; ArH), 6.74 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.45 (s, 4H; ArH_{Trz}), 6.37 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 4.98–4.93 (m, 8H; NCH₂), 4.87 (s, 8H; OCH₂Trz), 4.40–4.34 (m, 8H; NCH₂C<u>H₂</u>), 4.00 (d, 8H, ²*J*_{HH} = 13.2 Hz; ArCH₂Ar), 3.60 (s, 8H; ArCH₂Ar), 3.38 (d, 8H, ²*J*_{HH} = 13.2 Hz; ArCH₂Ar), 1.31 (s, 36H; C(CH₃)₃), 0.91 (s, 36H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.63, 149.99, 148.63, 147.80 (C_{Ar}), 144.73 (C_{Ar Trz}), 142.12, 134.18, 131.92 (C_{Ar}), 129.04 (CH_{Ar}), 127.23 (C_{Ar}), 125.83 (CH_{Ar}), 125.38 (CH_{Ar Trz})*, 125.17, 122.67 (CH_{Ar}), 73.57, 63.42 (OCH₂), 49.18 (NCH₂), 37.94 (ArCH₂Ar), 33.90, 33.87 (<u>C</u>(CH₃)₃), 31.66 (C(<u>C</u>H₃)₃), 31.50 (ArCH₂Ar), 30.83 (C(<u>C</u>H₃)₃) ppm. ESI-MS *m/z*: 1098.0888 [M+2Na]²⁺ for C₁₃₆H₁₅₆Na₂N₁₂O₁₂ (1098.0892); 2151.2055 [M+H]⁺ for C₁₃₆H₁₅₇N₁₂O₁₂ (2151.2072).

Tris(calix[4]arene) **15** was prepared according to *General procedure* from calixarene **2** (0.101 g, 0.18 mmol), calixarene **9** (0.052 g, 0.09 mmol), CuI (0.011 g, 0.06 mmol) and Et₃N (1.0 ml) in toluene

(10 ml). The reaction mixture was stirred at room temperature for 24 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.045 g (29%), white solid. M.p. 264–266 °C (decomp.). ¹H NMR (400 MHz, CDCl₃): δ = 7.11 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 7.10 (s, 4H; OH), 6.98 (s, 4H; ArH_{Trz}), 6.84 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.77–6.70 (m, 12H; ArH), 6.65 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.39 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 5.07–5.01 (m, 8H; NCH₂), 4.87 (s, 8H; OCH₂Trz), 4.42–4.36 (m, 8H; NCH₂C<u>H</u>₂), 4.05 (d, 8H, ²*J*_{HH} = 13.2 Hz; ArCH₂Ar), 3.61 (s, 8H; ArCH₂Ar), 3.45 (d, 8H, ²*J*_{HH} = 13.2 Hz; ArCH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.83, 152.60, 150.75 (C_{Ar}), 144.80 (C_{Ar Trz}), 134.12, 132.25 (C_{Ar}), 129.36, 129.03, 128.80 (CH_{Ar}), 127.32 (C_{Ar}), 126.08 (CH_{Ar}), 125.07 (CH_{Ar Trz}), 122.67, 119.58 (CH_{Ar}), 74.00, 63.57 (OCH₂),

49.12 (NCH₂), 37.93, 31.16 (ArCH₂Ar) ppm. ESI-MS m/z: 1702.7060 [M+H]⁺ for C₁₀₄H₉₃N₁₂O₁₂ (1702.7062).

Bis(calix[4]arene) **16** was collected during purification of the tris(calixarene) **15** by column chromatography. Yield 0.015 g (15%), white solid. M.p. 219–221 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.19

(d, 4H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 7.10 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 7.06 (s, 2H; OH), 6.97 (s, 2H; ArH_{Trz}), 6.96 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.87 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.75 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.72 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.70 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.32 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 5.08–5.02 (m, 4H; NCH₂), 4.86 (s, 4H; OCH₂Trz), 4.43–4.36 (m, 4H; NCH₂CH₂), 4.05 (d, 4H, ${}^{2}J_{\text{HH}} = 13.2$ Hz; ArCH₂Ar), 3.92 (d, 4H, ${}^{2}J_{\text{HH}} = 15.8$ Hz; ArCH₂Ar), 3.62 (d, 4H, ${}^{2}J_{\text{HH}} = 15.8$ Hz; ArCH₂Ar), 3.60 (d, 4H, ${}^{4}J_{\text{HH}} = 2.4$ Hz; OCH₂C), 3.46 (d, 8H, ${}^{2}J_{\text{HH}} = 13.2$ Hz; ArCH₂Ar), 2.30 (t, 2H, ${}^{4}J_{\text{HH}} = 2.4$ Hz; CH) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 155.72, 155.30, 152.63, 150.82 (C_{Ar}), 144.80 (C_{Ar Trz}), 135.17, 134.27, 132.35 (C_{Ar}), 130.19, 129.40, 129.25, 128.79 (CH_{Ar}), 127.38 (C_{Ar}), 126.11 (CH_{Ar}), 125.24 (CH_{Ar Trz}), 124.22, 122.51, 119.63 (CH_{Ar}), 80.39 (CCH), 74.42 (CH), 74.05, 64.09, 58.16 (OCH₂), 49.15 (NCH₂), 38.09, 31.17 (ArCH₂Ar) ppm. ESI-MS *m/z*: 1139.4706 [M+H]⁺ for C₇₂H₆₃N₆O₈ (1139.4707).

Tris(calix[4]arene) **17** was prepared according to *General procedure* from calixarene **4** (0.129 g, 0.20 mmol), calixarene **9** (0.057 g, 0.10 mmol), CuI (0.012 g, 0.06 mmol) and Et₃N (0.148 ml,

1.20 mmol) in toluene (12 ml). The reaction mixture was stirred at 60 °C for 24 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.028 g (15%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.94 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.89 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.82 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.68 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.49 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.12 (s, 4H; ArH_{Trz}), 4.80 (s, 8H; OCH₂Trz), 4.40–4.31 (m, 8H; NCH₂), 4.08–3.98 (m, 8H; NCH₂CH₂), 3.91 (d, 8H, ²*J*_{HH} = 16.4 Hz; ArCH₂Ar), 3.82 (d, 8H, ²*J*_{HH} = 16.4 Hz; ArCH₂Ar), 3.58 (s, 8H; ArCH₂Ar), 3.42–3.32 (m, 8H; OCH₂CH₂CH₃), 1.19–1.07 (m, 8H; CH₂CH₃), 0.69 (t, 12H, ³*J*_{HH} = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 157.16, 155.63, 155.02 (C_{Ar}), 144.30 (C_{Ar Trz}), 134.35, 134.22, 133.38 (C_{Ar}), 129.99, 129.07, 128.46 (CH_{Ar}), 123.30 (CH_{Ar Trz}), 123.26, 122.57, 122.53 (CH_{Ar}), 71.52, 68.70, 63.19 (OCH₂), 48.83 (NCH₂), 38.99, 38.07 (ArCH₂Ar), 22.16 (CH₂CH₃), 9.89 (CH₃) ppm. ESI-MS *m/z*: 935.9506 [M+2H]²⁺ for C₁₁₆H₁₁₈N₁₂O₁₂ (935.9507).

Tris(calix[4]arene) **18** was prepared according to *General procedure* from calixarene **5** (0.290 g, 0.40 mmol), calixarene **11** (0.140 g, 0.20 mmol), CuI (0.023 g, 0.12 mmol) and Et₃N (0.360 ml,

2.40 mmol) in toluene (20 ml). The reaction mixture was stirred at 60 °C for 12 h. Column: gradient from dichloromethane to dichloromethane/ethanol (70:1). Yield 0.025 g (6%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.78 (s, 4H; ArH_{Trz}), 7.11 (s, 12H; ArH), 7.10 (s, 8H; ArH), 6.77 (s, 8H; ArH), 6.75 (s, 4H; OH), 5.18 (s, 8H; OCH₂Trz), 4.31 (d, 8H, ²J_{HH} = 13.1 Hz; ArCH₂Ar), 4.10–4.04 (m, 8H; NCH₂), 4.01 (s, 8H; ArCH₂Ar), 3.62–3.54 (m, 8H; NCH₂C<u>H₂</u>), 3.39 (d, 8H, ²J_{HH} = 13.1 Hz; ArCH₂Ar), 1.31 (s, 36H; C(CH₃)₃), 0.92 (s, 36H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.82, 150.32, 149.51, 147.49 (C_{Ar}), 144.81 (C_{Ar Trz}), 141.97, 133.61, 132.18 (C_{Ar}), 128.93 (CH_{Ar}), 127.81 (C_{Ar}), 125.64, 125.16 (CH_{Ar}), 123.98 (CH_{Ar Trz})^{*}, 122.68 (CH_{Ar}), 70.40, 66.59 (OCH₂), 48.68 (NCH₂), 37.97 (ArCH₂Ar), 33.91, 33.85 (<u>C</u>(CH₃)₃), 31.67 (C(<u>CH₃)₃</u>), 31.45 (ArCH₂Ar), 30.92 (C(<u>CH₃)₃</u>) ppm; ESI-MS *m/z*: 1098.0884 [M+2Na]²⁺ for C₁₃₆H₁₅₆Na₂N₁₂O₁₂ (1098.0892); 2173.1874 [M+Na]⁺ for C₁₃₆H₁₅₆Na_{N12}O₁₂ (2173.1891).

Tris(calix[4]arene) **19** was prepared according to *General procedure* from calixarene **6** (0.100 g, 0.20 mmol), calixarene **11** (0.070 g, 0.10 mmol), CuI (0.011 g, 0.06 mmol) and Et₃N (0.15 ml) in toluene

(15 ml). The reaction mixture was stirred at 60 °C for 12 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.025 g (14%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.74 (s, 4H; ArH_{Trz}), 7.44 (s, 4H; OH), 7.13–7.08 (m, 20H; ArH), 6.88 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.75 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.71 (t, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 5.19 (s, 8H; OCH₂Trz), 4.36 (d, 8H, ²*J*_{HH} = 13.2 Hz; ArCH₂Ar), 4.09–4.03 (m, 8H; NCH₂), 4.01 (s, 8H; ArCH₂Ar), 3.69–3.63 (m, 8H; NCH₂C<u>H₂</u>), 3.46 (d, 8H, ²*J*_{HH} = 13.2 Hz; ArCH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.81, 153.02, 151.75 (C_{Ar}), 144.22 (C_{Ar Trz}), 133.57, 132.80 (C_{Ar}), 129.16, 129.01, 128.66 (CH_{Ar}), 127.88 (C_{Ar}), 125.79 (CH_{Ar}), 124.04 (CH_{Ar Trz}), 122.64, 119.33 (CH_{Ar}), 70.42, 66.97 (OCH₂), 48.81 (NCH₂), 37.96, 31.29 (ArCH₂Ar) ppm. ESI-MS *m/z*: 1724.6871 [M+Na]⁺ for C₁₀₄H₉₂NaN₁₂O₁₂ (1724.6883).

Tris(calix[4]arene) **20** was prepared according to *General procedure* from calixarene **7** (0.194 g, 0.24 mmol), calixarene **11** (0.084 g, 0.12 mmol), CuI (0.046 g, 0.24 mmol) and Et₃N (4 ml) in toluene

(15 ml). The reaction mixture was stirred at 70 °C for 9 h. Column: gradient from dichloromethane to dichloromethane/ethanol (40:1), the product separated from the column was additionally washed with methanol. Yield 0.060 g (22%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (s, 4H; ArH_{Trz}), 7.08 (s, 8H; ArH), 6.90–6.81 (m, 12H; ArH), 6.43 (s, 8H; ArH), 5.28 (s, 8H; OCH₂Trz), 4.26 (d, 8H, ²*J*_{HH} = 12.8 Hz; ArCH₂Ar), 4.07–4.01 (m, 8H; NCH₂), 3.90–3.84 (m, 8H; NCH₂CH₂), 3.82 (s, 8H; ArCH₂Ar), 3.71–3.65 (m, 8H; OCH₂CH₂CH₃), 3.09 (d, 8H, ²*J*_{HH} = 12.8 Hz; ArCH₂Ar), 1.82–1.71 (m, 8H; CH₂CH₃), 1.31 (s, 36H; C(CH₃)₃), 1.05 (t, 12H, ³*J*_{HH} = 7.5 Hz; CH₃), 0.81 (s, 36H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃+CD₃OD): δ = 155.77, 153.33, 152.24, 145.27, 145.12 (C_{Ar}), 144.03 (C_{Ar Trz})*, 135.39, 133.36, 131.53 (C_{Ar}), 129.41, 125.69, 125.16, 124.31 (CH_{Ar}), 122.51 (CH_{Ar Trz})*, 76.96, 68.35, 65.52 (OCH₂), 49.62 (NCH₂), 36.92 (ArCH₂Ar), 33.89, 33.40 (C(CH₃)) ppm. ESI-MS *m/z*: 1171.1915 [M+H+Na]²⁺ for C₁₄₈H₁₈₁NaN₁₂O₁₂ (1171.1921); 1182.1825 [M+2Na]²⁺ for C₁₄₈H₁₈₀Na₂N₁₂O₁₂ (1182.1831).

Tris(calix[4]arene) **21** was prepared according to *General procedure* from calixarene **8** (0.234 g, 0.40 mmol), calixarene **11** (0.140 g, 0.20 mmol), CuI (0.076 g, 0.40 mmol) and Et₃N (1.12 ml, 8.0 mmol)

in a mixture of toluene (10 ml) and 1,2-dichloroethane (10 ml). The reaction mixture was stirred at room temperature for 48 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.041 g (11%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.12$ (d, 8H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 7.06 (d, 8H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.89 (t, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.86 (t, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.78 (d, 8H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.43 (s, 4H; ArH_{Trz}), 6.36 (t, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 4.85 (s, 8H; OCH₂Trz), 4.15 (s, 16H; NCH₂CH₂), 4.01 (s, 8H; ArCH₂Ar), 3.77 (d, 8H, ${}^{2}J_{HH} = 15.5$ Hz; ArCH₂Ar), 3.62 (d, 8H, ${}^{2}J_{HH} = 15.5$ Hz; ArCH₂Ar), 3.43-3.37 (m, 8H; OCH₂CH₂CH₃), 1.48-1.37 (m, 8H; CH₂CH₃), 0.75 (t, 12H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃+CD₃OD): $\delta = 156.89$, 155.93, 154.79 (C_{Ar}), 144.52 (C_{Ar Trz}), 134.28, 133.82 (C_{Ar}), 129.88, 129.28, 129.07 (CH_{Ar}), 123.95 (CH_{Ar Trz})*, 123.64, 122.92, 120.69 (CH_{Ar}), 71.96, 67.88, 63.41 (OCH₂), 48.41 (NCH₂), 38.09, 37.68 (ArCH₂Ar), 22.87 (<u>C</u>H₂CH₃),

9.90 (CH₃) ppm. ESI-MS m/z: 957.9321 [M+2Na]²⁺ for C₁₁₆H₁₁₆Na₂N₁₂O₁₂ (957.9327); 1892.8754 [M+Na]⁺ for C₁₁₆H₁₁₆NaN₁₂O₁₂ (1892.8761).

Bis(calix[4]arene) **22** was prepared according to *General procedure* from calixarene **13** (0.554 g, 0.64 mmol), calixarene **8** (0.373 g, 0.64 mmol), CuSO₄·5H₂O (0.160 g, 0.64 mmol) and sodium ascorbate (0.253 g, 1.28 mmol) in a mixture of THF (76 ml) and water (15 ml). The reaction mixture was stirred at 60 °C for 24 h. Column 1: gradient from dichloromethane to dichloromethane/ethanol (50:1). Column 2: gradient from hexane to hexane/ethyl acetate (5:1). Yield 0.420 g (45%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.19$ (d, 4H, ³J_{HH} = 7.5 Hz; ArH), 7.04 (d, 4H,

 ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz; ArH}$, 6.92 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz; ArH}$), 6.90 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz; ArH}$), 6.87 (t, 2H, ${}^{3}J = 7.5 \text{ Hz; ArH}$), 6.82 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz; ArH}$), 6.67 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz; ArH}$), 6.39 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz; ArH}$), 6.17 (s, 2H; ArH_{Trz}), 4.80 (s, 4H; OCH₂Trz), 4.45–4.39 (m, 4H; NCH₂), 4.13–4.08 (m, 4H; NCH₂C<u>H</u>₂), 4.04 (d, 4H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 4.02 (s, 4H; OCH₂CC), 3.80 (d, 4H, <math>{}^{2}J_{\text{HH}} = 15.2 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.63 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.62 (d, 4H, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz; ArCH₂Ar}), 3.35–3.28 (m, 4H; OC<u>H₂CH₂CH₂CH₃), 1.36–1.26 (m, 4H; C<u>H₂CH₃), 0.87 (s, 18H; C(CH₃)₃), 0.68 (t, 6H, {}^{3}J_{\text{HH}} = 7.5 \text{ Hz; CH₃}), 0.08 (s, 12H; SiCH₃) ppm; {}^{13}C NMR (100 \text{ MHz, CDCl₃): <math>\delta = 156.94$, 155.63, 155.55, 154.74 (C_{Ar}), 144.26 (C_{Ar Trz}), 135.23, 134.44, 134.06, 133.51 (C_{Ar}), 130.25, 129.75, 129.03, 128.44 (CH_{Ar}), 124.41 (CH_{Ar Trz}), {}^* 123.69, 123.08, 121.39 (CH_{Ar}), 102.57 (OCH₂C), 89.94 (OCH₂CC), 71.79, 68.67, 63.21 (OCH₂), 58.33 (O<u>C</u>H₂CC), 49.04 (NCH₂), 38.25, 38.13 (ArCH₂Ar), 25.95 (C(<u>C</u>H₃)₃), 22.89 (<u>C</u>H₂CH₃), 16.38 (<u>C</u>(CH₃)₃), 10.07 (CH₂<u>C</u>H₃), -4.84 (SiCH₃) ppm. ESI-MS *m/z*: 1452.7400 [M+H]⁺ for C₉₀H₁₀₃N₆O₈Si₂ (1452.7400).</u></u>

Bis(calix[4]arene) 23. To a suspension of bis(calix[4]arene) 22 (0.420 g, 0.29 mmol) in THF (1.7 ml) a solution of $nBu_4NF\cdot 3H_2O$ (0.018 g, 0.058 mmol) in THF (1.7 ml) and water (0.034 ml) was added. The mixture was stirred at 50 °C for 12 h and cooled to room temperature. The solvent was removed and the residue was dissolved in dichloromethane. The solid formed was collected and dissolved in dichloromethane. Methanol was added, and the solid formed was collected and dried. Yield 0.250 g (70%), white solid. M.p. 294–296 °C. ¹H NMR (400 MHz,

CDCl₃): δ = 7.21 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 7.05 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.97 (d, 4H,

 ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.95 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.87 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.82 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.73 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.38 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.21 (s, 2H; ArH_{Trz}), 4.81 (s, 4H; OCH₂Trz), 4.39–4.32 (m, 4H; NCH₂), 4.14–4.07 (m, 4H; NCH₂CH₂), 4.05 (d, 4H, ${}^{2}J_{\text{HH}} = 16.1 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.84 (d, 4H, ${}^{4}J_{\text{HH}} = 2.4 \text{ Hz}; \text{ OCH}_2\text{CC}$), 3.81 (d, 4H, ${}^{2}J_{\text{HH}} = 16.1 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.79 (d, 4H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.63 (d, 4H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.37–3.30 (m, 4H; OCH₂CH₂CH₃), 2.33 (t, 2H, ${}^{4}J_{\text{HH}} = 2.4 \text{ Hz}; \text{ CH}$), 1.38–1.26 (m, 4H; CH₂CH₃), 0.68 (t, 6H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ CH}_3$) ppm; ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 156.92$, 155.56, 155.50, 154.74 (C_{Ar}), 144.30 (C_{Ar Trz}), 135.17, 134.41, 134.02, 133.52 (C_{Ar}), 130.43, 129.79, 129.09, 128.68 (CH_{Ar}), 124.28 (CH_{Ar Trz}), 124.00, 123.28, 123.07, 121.25 (CH_{Ar}), 80.10 (OCH₂CCH), 74.72 (OCH₂CCH), 71.85, 68.70, 63.24 (OCH₂), 57.83 (O<u>C</u>H₂CCH), 48.88 (NCH₂), 38.24, 38.07 (ArCH₂Ar), 22.89 (<u>C</u>H₂CH₃), 10.06 (CH₂<u>C</u>H₃) ppm. ESI-MS *m/z*: 1223.5637 [M+H]⁺ for C₇₈H₇₅N₆O₈ (1223.5641).

Tris(calix[4]arene) **24** was prepared according to *General procedure* from bis(calix[4]arene) **23** (0.122 g, 0.10 mmol), calixarene **4** (0.065 g, 0.10 mmol), CuSO₄·5H₂O (0.025 g, 0.10 mmol) and

sodium ascorbate (0.040 g, 0.20 mmol) in a mixture of THF (12 ml) and water (2.4 ml). The reaction mixture was stirred at 60 °C for 24 h. Column: gradient from dichloromethane to dichloromethane/ethanol (40:1). Yield 0.048 g (26%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.09 (d, 4H, ³J_{HH} = 7.5 Hz; ArH), 7.05 (d, 4H, ³J_{HH} = 7.5 Hz; ArH), 6.99 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.96–6.85 (m, 12H; ArH), 6.81 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.77 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.65 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.50 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.37 (t, 2H, ${}^{3}J_{HH}$ = 7.5 Hz; ArH), 6.13 (s, 2H; ArH_{Trz}), 6.11 (s, 2H; ArH_{Trz}), 4.79 (s, 4H; OCH₂Trz), 4.78 (s, 4H; OCH₂Trz), 4.51–4.40 (m, 8H; NCH₂), 4.14–4.07 (m, 4H; NCH₂CH₂), 4.07–4.01 (m, 4H; NCH₂CH₂), 3.91 (d, 4H, ${}^{2}J_{HH} = 16.4$ Hz; ArCH₂Ar), 3.84 (s, 4H; ArCH₂Ar), 3.80 (d, 4H, $^{2}J_{\text{HH}} = 15.8 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.79 \text{ (s, 4H; ArCH}_{2}\text{Ar}), 3.69 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^{2}J_{\text{HH}} = 16.4 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.60 \text{ (d, 4H, } ^$ (d, 4H, ${}^{2}J_{HH} = 15.8$ Hz; ArCH₂Ar), 3.43–3.36 (m, 4H; OC<u>H₂</u>CH₂CH₂CH₃), 3.36–3.29 (m, 4H; OCH2CH2CH3), 1.38-1.26 (m, 4H; CH2CH3), 1.21-1.08 (m, 4H; CH2CH3), 0.71 (t, 6H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ CH}_{3}$, 0.68 (t, 6H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ CH}_{3}$) ppm; ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta =$ 157.08, 156.94, 155.80, 155.61, 154.96, 154.63 (CAr), 144.30, 143.75 (CAr Trz), 134.42, 134.39, 134.30, 134.00, 133.81, 133.30 (CAr), 130.05, 129.74, 129.45, 128.93, 128.70, 128.37 (CHAr), 124.25, 124.16 (CH_{Ar Trz}), 123.61, 123.24, 123.09, 122.92, 122.44, 121.36 (CH_{Ar}), 71.71, 71.43,

68.89, 68.64, 63.18, 63.06 (OCH₂), 48.96, 48.85 (NCH₂), 38.34, 38.25, 38.11 (ArCH₂Ar), 22.84, 22.08 (<u>C</u>H₂CH₃), 10.05, 9.82 (CH₂<u>C</u>H₃) ppm. ESI-MS m/z: 1870.8942 [M+H]⁺ for C₁₁₆H₁₁₇N₁₂O₁₂ (1870.8942).

Tris(calix[4]arene) **25** was prepared according to *General procedure* from bis(calix[4]arene) **23** (0.122 g, 0.10 mmol), calixarene **13** (0.087 g, 0.10 mmol), CuSO₄·5H₂O (0.025 g, 0.10 mmol)

and sodium ascorbate (0.040 g, 0.20 mmol) in a mixture of THF (12 ml) and water (2.4 ml). The reaction mixture was stirred at 60 °C for 24 h. Column 1: gradient from dichloromethane to dichloromethane/ethanol (20:1). Column 2: gradient from hexane to hexane/ethyl acetate (1:1). Yield 0.052 g (25%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.20 (d, 4H, ${}^{3}J_{\rm HH} = 7.5$ Hz; ArH), 7.05 (d, 4H, ${}^{3}J_{\rm HH} = 7.5$ Hz; ArH), 6.99 (d, 4H, ${}^{3}J_{\rm HH} = 7.5$ Hz; ArH), 6.92 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.91 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.88 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.81 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.77 (t, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.66 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.52 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.36 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.14 (s, 2H; ArH_{Trz}), 6.10 (s, 2H; ArH_{Trz}), 4.79 (s, 8H; OCH₂Trz), 4.55–4.48 (m, 4H; NCH₂), 4.47–4.40 (m, 4H; NCH₂), 4.14–4.07 (m, 8H; NCH₂CH₂), 4.05 (d, 4H, ${}^{2}J_{HH} = 16.0$ Hz; ArCH₂Ar), 4.04 (s, 4H; OCH₂CC), 3.83 (d, 4H, ${}^{2}J_{HH} = 16.3$ Hz; ArCH₂Ar), 3.79 (d, 4H, ${}^{2}J_{HH} = 16.0$ Hz; ArCH₂Ar), 3.75 (d, 4H, ${}^{2}J_{HH} = 16.0$ Hz; ArCH₂Ar), 3.72 (d, 4H, ${}^{2}J_{HH} = 16.3$ Hz; ArCH₂Ar), 3.60 (d, 4H, $^{2}J_{\text{HH}} = 16.0 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.38-3.27 \text{ (m, 4H; OCH}_{2}\text{CH}_{2}\text{CH}_{3}), 1.36-1.25 \text{ (m, 4H; CH}_{2}\text{CH}_{3}),$ 0.87 (s, 18H; C(CH₃)₃), 0.67 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃), 0.08 (s, 12H; Si(CH₃)₂) ppm; ${}^{13}C$ NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 157.00, 155.86, 155.66, 155.56, 154.88, 154.68 (C_{Ar}), 144.37, 143.75$ (CAT Trz), 135.34, 134.47, 134.31, 134.03, 133.88, 133.44 (CAr), 130.36, 129.77, 129.44, 128.97, 128.70, 128.38 (CH_{Ar}), 124.37, 124.26 (CH_{Ar Trz}), 123.74, 123.66, 123.11, 123.07, 123.00, 121.37 (CH_{Ar}), 102.51 (OCH₂<u>C</u>), 90.05 (OCH₂C<u>C</u>), 71.71, 68.97, 68.70, 63.25, 62.92 (OCH₂), 58.32 (OCH₂CC), 49.25, 48.86 (NCH₂), 38.37, 38.28, 38.15 (ArCH₂Ar), 25.96 (C(CH₃)₃), 22.88 (<u>CH</u>₂CH₃), 16.40 (<u>C</u>(CH₃)₃), 10.09 (CH₂<u>C</u>H₃), -4.84 (Si(CH₃)₂) ppm. ESI-MS *m/z*: 1046.0055 $[M+2H]^{+2}$ for $C_{128}H_{138}N_{12}O_{12}Si_2$ (1046.0059).

Tab	Table S1Different catalytic systems used in the CuAAC reactions between calixarenes 3 and 9								
		E (1				R	leaction	n outco	ome
Entry	Catalyst (equiv per bis(azide))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	3 or 9	Semitube	Polymer	Other products
1	CuI · P(OEt) ₃ (0.3)	_	THF	50	24	+	_	+	_
2	CuSO ₄ /Na asc. (0.3)	_	THF/H ₂ O (5:1)	50	24	+	_	_	+
3	CuI (0.3)	Et ₃ N (20)	toluene	rt	48	+	+	++	_
4	CuI (0.3)	Et ₃ N (20)	THF	50	24	+	_	+	+
4	CuI (0.3)	Et ₃ N (20)	toluene	75	24	_	+	++	_
6	CuI (0.3)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	9	+	+	+	+

Tuning the conditions for the preparation of calix[4]semitubes

Tab	Table S2 Different catalytic systems tested in the CuAAC reactions between calixarenes 4 and 9								
						R	eaction	n outco	ome
Entry	Catalyst (equiv per bis(azide))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	4 or 9	17	Polymer	Other products
1	CuSO ₄ /Na asc. (0.1)	_	THF/H ₂ O (5:1)	60	36	+	_	+	+
2	CuSO ₄ /Na asc. (0.3)	_	THF/H ₂ O (5:1)	60	24	+	_	+	+
3	CuSO ₄ /Na asc. (1.0)	_	THF/H ₂ O (5:1)	60	24	_	_	+	+
4	$CuSO_4/Na asc. (1.0)^*$	_	THF/H ₂ O (5:1)	60	24	+	+	+	_
5	$CuSO_4/Na asc. (1.0)^{**}$	_	THF/H ₂ O (5:1)	60	24	+	_	_	+
6	CuI (0.3)	Et ₃ N (20)	toluene	rt	48	+	+	+	_
7	CuI (0.3)	Et ₃ N (20)	toluene	rt	60	+	_	++	+
8	CuI (1.0)	Et ₃ N (20)	toluene	rt	48	+	_	+	+
9	CuI (0.1)	Et ₃ N (20)	toluene	60	36	_	+	++	_
10	CuI (0.3)	Et ₃ N (20)	toluene	60	24	_	+	+	_
11	CuI (0.3)	Et ₃ N (400)	toluene	60	24	_	+	+	_
12	CuI (1.0)	Et ₃ N (20)	toluene	60	24	_	+	+	+
13	CuI (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	24	_	+	+	+

Different establishes systems tested in the CuAAC reactions between ahla 62 . . 1:..... 1 0

*- the reaction was conducted in a diluted solution (2 volumes of the solvent were used); ** - the reaction was conducted in a diluted solution (10 volumes of the solvent were used).

Tabl	e S3
------	------

Different catalytic systems used in the CuAAC reactions between calixarenes **5** and **11**

						R	eaction	n outco	ome
Entry	Catalyst (equiv per bis(alkyne))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	5 or 11	18	Polymer	Other products
1	CuI·P(OEt) ₃ (1.0)	_	toluene	rt	48	+	_	_	+
2	CuI·P(OEt) ₃ (1.0)	_	toluene	60	5	+	+	+	_
3	CuI·P(OEt) ₃ (1.0)	<i>i</i> Pr ₂ EtN (20)	toluene	rt	48	+	+	+	_
4	CuI·P(OEt) ₃ (1.0)	<i>i</i> Pr ₂ EtN (20)	toluene	60	5	_	+	+	_
5	CuI (1.0)	_	toluene	rt	48	+	_	_	_
6	CuI (1.0)	Et ₃ N (2)	toluene	rt	48	+	_	++	_
7	CuI (1.0)	Et ₃ N (4)	toluene	rt	48	+	+	+	_
8	CuI (1.0)	Et ₃ N (10)	toluene	rt	48	_	+	+	_
9	CuI (0.3)	Et ₃ N (20)	toluene	rt	48	_	+	+	_
10	CuI (1.0)	Et ₃ N (20)	toluene	rt	48	_	+	+	_
11	CuI (2.0)	Et ₃ N (20)	toluene	rt	48	_	+	+	_
12	CuI (0.3)	Et ₃ N (20)	toluene	60	12	_	+	+	_
13	CuI (1.0)	Et ₃ N (20)	toluene	60	5	_	+	+	_

Tab	Table S4Tuning the CuI/Et ₃ N/toluene catalytic system in the CuAAC between calixarenes 7 and 11								
						R	leaction	1 outco	ome
Entry	Catalyst (equiv per bis(alkyne))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	7 or 11	20	Polymer	Other products
1	CuI (1.0)	_	toluene	rt	48	+	_	_	_
2	CuI (0.3)	Et ₃ N (20)	toluene	rt	48	+	+	+	+
3	CuI (1.0)	Et ₃ N (20)	toluene	rt	48	+	+	+	_
4	CuI (2.0)	Et ₃ N (20)	toluene	rt	48	_	+	++	_
5	CuI (1.0)	Et ₃ N (400)	toluene	70	9	_	+	+	_

Tabl	Table S5Different catalytic systems tested in the CuAAC reactions between calizarenes 8 and 11								
						R	eaction	n outco	ome
Entry	Catalyst (equiv per bis(alkyne))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	8 or 11	21	Polymer	Other products
1	CuSO ₄ /Na asc. (0.1)	_	THF/H ₂ O (5:1)	rt	60	++	_	_	+
2	CuSO ₄ /Na asc. (0.3)	_	THF/H ₂ O (5:1)	60	24	_	_	+	+
3	CuSO ₄ /Na asc. (1.0)	_	THF/H ₂ O (5:1)	60	24	_	_	+	+
4	CuI (1.0)	_	toluene/dichloromethane	rt	48	++	-	_	-
5	CuI (0.3)	Et ₃ N (20)	toluene	rt	48	++	+	_	+
6	CuI (1.0)	Et ₃ N (20)	toluene	rt	48	+	+	+	_
7	CuI (2.0)	Et ₃ N (20)	toluene	rt	48	+	+	+	_
8	CuI (0.3)	Et ₃ N (20)	toluene/1,2-dichloroethane	rt	48	_	+	++	_
9	CuI (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	rt	48	_	+	+	_
10	CuI (0.3)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	24	+	+	++	+
11	CuI (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	24	+	+	+	+

NMR spectra of novel compounds

Figure S1. ¹H NMR spectrum of calix[4]arene **11** (400 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of calix[4]arene **11** (100 MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of calix[4]arene **12** (400 MHz, CDCl₃).

Figure S4. ¹³C NMR spectrum of calix[4]arene 12 (100 MHz, CDCl₃).

Figure S5. ¹H NMR spectrum of calix[4]arene **13** (400 MHz, CDCl₃).

Figure S6. ¹³C NMR spectrum (APT) of calix[4]arene **13** (100 MHz, CDCl₃).

Figure S8. ¹³C NMR spectrum (APT) of tris(calix[4]arene) **14** (100 MHz, CDCl₃).

Figure S9. ¹H NMR spectrum of tris(calix[4]arene) **15** (400 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 15 (100 MHz, CDCl₃).

Figure S11. ¹H NMR spectrum of bis(calix[4]arene) 16 (400 MHz, CDCl₃).

Figure S12. ¹³C NMR spectrum (APT) of bis(calix[4]arene) 16 (100 MHz, CDCl₃).

Figure S13. ¹H NMR spectrum of tris(calix[4]arene) 17 (400 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 17 (100 MHz, CDCl₃).

Figure S15. ¹H NMR spectrum of tris(calix[4]arene) 18 (400 MHz, CDCl₃).

Figure S16. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 18 (100 MHz, CDCl₃).

Figure S17. ¹H NMR spectrum of tris(calix[4]arene) **19** (400 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 19 (100 MHz, CDCl₃).

Figure S19. ¹H NMR spectrum of tris(calix[4]arene) 20 (400 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 20 (100 MHz, CDCl₃+CD₃OD).

Figure S22. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 21 (100 MHz, CDCl₃+CD₃OD).

Figure S24. ¹³C NMR spectrum (APT) of bis(calix[4]arene) 22 (100 MHz, CDCl₃).

Figure S25. ¹H NMR spectrum of bis(calix[4]arene) 23 (400 MHz, CDCl₃).

Figure S26. ¹³C NMR spectrum (APT) of bis(calix[4]arene) 23 (100 MHz, CDCl₃).

Figure S27. ¹H NMR spectrum of tris(calix[4]arene) 24 (400 MHz, CDCl₃).

Figure S28. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 24 (100 MHz, CDCl₃).

Figure S29. ¹H NMR spectrum of tris(calix[4]arene) 25 (400 MHz, CDCl₃).

Figure S30. ¹³C NMR spectrum (APT) of tris(calix[4]arene) 25 (100 MHz, CDCl₃).

Details of X-ray diffraction measurements

Crystallographic data were collected at 150 K on a Bruker SMART APEX II diffractometer equipped with a PHOTON II CMOS detector using graphite monochromatized Mo–K α radiation ($\lambda = 0.71073$ Å) using a ω -scan mode. Absorption correction based on measurements of equivalent reflections was applied.^[S8] The structure was solved by direct methods and refined by full matrix least-squares on F² with anisotropic thermal parameters for all non-hydrogen atoms using Olex2 package.^[S9] Hydrogen atoms were placed in calculated positions and refined using a riding model. Crystallographic details are presented in Table S6. CCDC 2157422 contains the supplementary crystallographic data for the structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Empirical formula	$C_{136}H_{156}N_{12}O_{12}{\cdot}1.75CH_{3}OH{\cdot}3.44CH_{2}Cl_{2}$
M_{w}	2489.94
Temperature (K)	150(2)
Size (mm)	$0.35\times0.28\times0.17$
Cryst. system	triclinic
Space group	P-1
<i>a</i> (Å)	12.9900(8)
<i>b</i> (Å)	23.3144(17)
<i>c</i> (Å)	24.9990(15)
α (deg)	94.717(3)
β (deg)	99.611(2)
γ (deg)	101.122(2)
V (Å ³)	7273.2(8)
Z	2
$ ho_{\rm cald} ({\rm g} \cdot {\rm cm}^{-3})$	1.141
Abs coeff (mm^{-1})	0.195
<i>F</i> (000)	2656
θ range (deg)	$1.63 < \theta < 25.03$
no. of collected/unique rflns	90200 / 25299
Completeness to θ (%)	98.5
no. of data/restraints/params	25299/167/1564
Goodness of fit on F^2	1.569
Final <i>R</i> indices $(I > 2\sigma(I))$	R1 = 0.1466, WR2 = 0.4014
R indices (all data)	R1 = 0.2255, $wR2 = 0.4423$
Largest diff peak/hole $(e/Å^3)$	2.83 / -1.08

Table S6. Details of the X-ray crystal data collection and structure refinement for compound 14

References

- S1. Z.-G. Luo, Y. Zhao, F. Xu, C. Ma, X.-M. Xu and X.-M. Zhang, Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety *via* K₂CO₃catalyzed 1,3-dipolar cycloaddition reaction, *Chinese Chem. Lett.*, 2014, 25, 1346–1348.
- S2. A. Gorbunov, N. Ozerov, M. Malakhova, A. Eshtukov, D. Cheshkov, S. Bezzubov, V. Kovalev and I. Vatsouro, Assembling triazolated calix[4]semitubes by means of copper(I)-catalyzed azide–alkyne cycloaddition, *Org. Chem. Front.*, 2021, 8, 3853–3866.
- S3. Z. Asfari, A. Bilyk, C. Bond, J. M. Harrowfield, G. A. Koutsantonis, N. Lengkeek, M. Mocerino, B. W. Skelton, A. N. Sobolev, S. Strano, J. Vicens and A. H. White, Factors influencing solvent adduct formation by calixarenes in the solid state, *Org. Biomol. Chem.*, 2004, 2, 387–396.
- S4. W. Xu, J. J. Vittal and R. J. Puddephatt, Propargyl calix[4]arenes and their complexes with silver(I) and gold(I), *Can. J. Chem.*, 1996, **74**, 766–774.
- S5. S. Cecioni, R. Lalor, B. Blanchard, J.-P. Praly, A. Imberty, S. E. Matthews and S. Vidal, Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates, *Chem. – Eur. J.*, 2009, **15**, 13232–13240.
- S6. V. A. Burilov, N. A. Epifanova, E. V. Popova, S. F. Vasilevsky, S. E. Solovieva, I. S. Antipin and A. I. Konovalov, Regioselective synthesis of 1,2,3-triazolyl derivatives of calix[4]arenes based on 1,3-dipolar cycloaddition, *Russ. Chem. Bull.*, 2013, 62, 767–772.
- S7. V. G. Organo, A. V. Leontiev, V. Sgarlata, H. V. R. Dias and D. M. Rudkevich, Supramolecular features of calixarene-based synthetic nanotubes, *Angew. Chem. Int. Ed.*, 2005, 44, 3043–3047.
- S8. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., 2008, A64, 112–122.
- S9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, **4** 2, 339–341.