Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Information *for* Synthesis of chiral γ-amino-butyric acid derivatives via enantioconvergent ring opening of racemic 2-(hetero)aryl aziridines with ketene silyl acetals

Ling Qi, Pei-Jun Yang, Wen-Tao Ji, Gui-De Tao, Gaosheng Yang and Zhuo Chai*

Table of Contents

General Information	S2
Sources of ketene silyl acetals 1 and aziridines 2 used in this study	53
Typical procedure for the enantioconvergent ring opening of aziridines with ketene silyl ace	etals
	S4
Procedure for the transformation of (R/S)- 3ak to (R/S)-rolipram	S12
References	S13
Copies of HPLC Traces	S14
Copies of ¹ H NMR and ¹³ C NMR Spectra for All New Compounds	S42

General Information

Unless otherwise noted, commercial reagents and solvents were purified prior to use following the guidelines of Perrin and Armarego,¹ and the purified solvents of CH₃CN, toluene and *m*-xylene were stored over activated molecular sieves 4Å. [(CH₃CN)₄Cu]PF₆, chiral diphosphine ligands were purchased from commercial vendors and used as received. Chromatographic purification of products was accomplished by using forced-flow chromatography on Silicycle SiliaFlash[®] F60 40–63 µm, 60 Å silica gel. Thin-layer chromatography (TLC) was performed on silica gel plates (HSGF 254). Visualization of the developed chromatogram was performed by UV light, staining with iodine (dispersed in silica gel), or by KMnO₄ stain.

¹H NMR spectra (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (471 MHz) spectra data were recorded on Bruker AVANCE-500 spectrometers. ¹H NMR chemical shifts are reported in parts per million (ppm) and are referenced to residual protium in the NMR solvent (δ 7.26 for CHCl₃). ¹³C NMR chemical shifts are reported in parts per million (ppm) and are referenced to the carbon resonances of the solvent residual peak (δ 77.16 for CDCl₃). ¹⁹F NMR data recorded are listed by using CFCl₃ as external reference. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz) and integration. Data for ¹³C NMR are recorded with broad-band proton decoupling technique and are reported in terms of chemical shift. Melting points were determined on a SGW X-4 melting apparatus and are uncorrected. Mass spectra were obtained on a Bruker Apex IV RTMS. High performance liquid chromatography (HPLC) was performed on a DIONEX UltiMate 3000 LC systems using Daicel CHIRALPAK[®] columns as noted.

Sources of ketene silyl acetals 1 and aziridines 2 used in this study

Ketene silyl acetals 1a-1g were prepared following literature methods.²

Aziridines **2** were prepared from the corresponding alkenes (8 mmol) and PhI=NSO₂Ar (4 mmol) following Evans' procedure by using Cu(acac)₂ (8 mol%) as catalyst in 30 mL of CH₃CN.^{3a}

The spectroscopic data of all known compounds are in agreement with those previously reported. Analytical data for aziridine substrates previously not reported:

White solid (0.84 g, 68% yield). ¹H NMR (500 MHz, CDCl₃): δ 8.08 (m, 2H), 7.21 (pseudo t, J = 8.8 Hz, 2H), 7.12 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H), 3.76 (dd, J = 7.1, 4.4 Hz, 1H), 2.99 (d, J = 7.1 Hz, 1H), 2.42 (d, J = 4.4 Hz, 1H); ¹³C NMR (125 M Hz, CDCl₃): δ 165.8 (d, ¹ $J_{C-F} = 256.2$ Hz), 159.9, 134.4 (d, ⁴ $J_{C-F} = 2.8$ Hz), 130.8 (d, ³ $J_{C-F} = 9.0$ Hz), 127.9, 126.7, 116.5 (d, ² $J_{C-F} = 22.7$ Hz), 114.2, 55.4, 41.3, 36.1; ¹⁹F NMR (471 MHz, CDCl₃): δ -103.5 (m); HRMS (ESI-TOF) Calculated for C₁₄H₁₂BrClNO₂S ([M+H]⁺):

C₁₅H₁₅FNO₃S ([M+H]⁺): 308.0751, found: 308.0747.

Primrose solid (0.87 g, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, J = 8.8 Hz, 2H), 8.20 (d, J = 8.8 Hz, 2H), 7.26 (m,1H), 7.04 (m, 1H), 6.89–6.83 (m, 2H), 4.20 (dd, J = 7.2, 4.9 Hz, 1H), 3.78 (s, 3H), 3.11 (d, J = 7.7 Hz, 1H), 2.49 (d, J = 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 150.7, 144.3, 129.9, 129.5, 126.5, 124.3, 122.6, 120.8, 110.4, 55.5, 38.4, 35.5; HRMS (ESI-TOF) Calculated for C₁₅H₁₅N₂O₅S ([M+H]⁺): 335.0696, found: 335.0700.

White solid (1.21 g, 72% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H), 3.77 (dd, J = 7.2, 4.4 Hz, 1H), 2.98 (d, J = 7.1 Hz, 1H), 2.41 (d, J = 4.4 Hz, 1H), 0.96 (s, 9H), 0.17 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 156.1, 140.4, 136.8, 129.6, 129.5, 127.9, 127.3, 120.4, 41.4, 36.2, 25.7, 18.3, -4.3; **HRMS** (ESI-TOF) Calculated for C₂₀H₂₇ClNO₃SSi ([M+H]⁺): 424.1164, found: 424.1165.

White solid (1.16 g, 75% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 7.7 Hz, 2H), 6.75 (m, 2H), 6.64 (s, 1H), 4.66 (m, 1H), 3.79 (s, 3H), 3.69 (dd, J = 7.2, 4.4 Hz, 1H), 2.97 (d, J = 7.2 Hz, 1H), 2.42 (s, 3H), 2.38 (d, J = 4.4 Hz, 1H), 1.87–1.76 (m, 6H),

1.59 (m, 2H): ¹³C NMR (125 MHz, CDCl₃) δ 150.2, 147.9, 144.7, 135.2, 129.8, 128.0, 127.3, 119.1, 113.1, 111.9, 80.5, 56.2, 41.4, 35.7, 32.8, 24.1, 21.7; **HRMS** (ESI-TOF) Calculated for C₂₁H₂₆NO₄S ([M+H]⁺): 388.1577, found: 388.1570.

White solid (1.18 g, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 6.78– 6.73 (m, 2H), 6.63 (m, 1H), 4.67 (m, 1H), 3.80 (s, 3H), 3.73 (dd, J = 7.2, 4.4 Hz, 1H), 3.00 (d, J = 7.2 Hz, 1H), 2.43 (d, J= 4.4 Hz, 1H), 1.87–1.77 (m, 6H), 1.59 (m, 2H); ¹³C NMR

(125 MHz, CDCl₃) δ 150.4, 147.9, 140.4, 136.9, 129.6, 129.4, 126.9, 119.1, 113.0, 111.9, 80.5, 56.2, 41.8, 35.9, 32.9, 24.2; **HRMS** (ESI-TOF) Calculated for C₂₀H₂₃ClNO₄S ([M+H]⁺): 408.1031, found: 408.1026.

White solid (1.13 g, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.06–7.94 (m, 2H), 7.21 (m, 2H), 6.78–6.73 (m, 2H), 6.65 (m, 1H), 4.68 (m, 1H), 3.80 (s, 3H), 3.72 (dd, *J* = 7.2, 4.4 Hz, 1H), 3.00 (d, *J* = 7.2 Hz, 1H), 2.42 (d, *J* = 4.4 Hz, 1H), 1.90–1.77 (m, 6H), 1.62–1.57 (m, 2H); ¹³C NMR (125 MHz, 125 MHz).

CDCl₃) δ 165.8 (d, ¹*J*_{C-F} = 256.1 Hz), 150.4, 147.9, 134.4 (d, ⁴*J*_{C-F} = 2.8 Hz), 130.8 (d, ³*J*_{C-F} = 9.0 Hz), 127.0, 119.2, 116.5 (d, ²*J*_{C-F} = 22.7 Hz), 113.1, 112.0, 80.6, 56.2, 41.7, 35.9, 32.8, 24.1; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.5 (m); **HRMS** (ESI-TOF) Calculated for C₂₀H₂₃FNO₄S ([M+H]⁺): 392.1326, found: 392.1327.

White solid (1.12 g, 60% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 7.7 Hz, 1H), 7.45 (s, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.33–7.29 (m, 1H), 7.22–7.18 (m, 3H), 3.86 (dd, J = 7.1, 4.4 Hz, 1H), 2.99 (d, J = 7.2 Hz, 1H), 2.54 (d, J = 4.4 Hz, 1H), 2.45 (s, 3H), 2.34 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 145.4, 145.0,

135.2, 135.1, 134.9, 130.1, 130.0, 129.2, 128.2, 127.0, 125.3, 124.5, 123.6, 119.9, 117.3, 113.7, 34.7, 34.6, 21.8, 21.7; **HRMS** (ESI-TOF) Calculated for $C_{24}H_{23}N_2O_4S_2$ ([M+H]⁺): 467.1094, found: 467.1099.

White solid (1.17 g, 71% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (m, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.49–7.44 (m, 2H), 7.35–7.30 (m, 3H), 7.19 (pseudo t, J = 7.7 Hz, 1H), 3.90 (dd, J = 7.2, 4.4 Hz, 1H), 3.04 (d, J = 7.2 Hz, 1H), 2.61 (d, J = 4.4 Hz, 1H), 2.44 (s, 3H), 1.64 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 149.5, 144.9, 135.6, 135.1, 129.9, 129.0, 128.1, 125.0, 124.4, 123.0, 119.3,

115.5, 84.2, 35.2, 34.4, 28.3, 21.8; **HRMS** (ESI-TOF) Calculated for $C_{22}H_{25}N_2O_4S$ ([M+H]⁺): 413.1530, found: 413.1531.

Typical procedure for the enantioconvergent ring opening of aziridines with ketene silyl acetals.

Under argon atmosphere, to an oven-dried Schlenk tube was added $[(CH_3CN)_4Cu]PF_6$ (1.8 mg, 0.005 mmol) and (S)-BINAP (3.8 mg, 0.006 mmol). The system was evacuated under vacuum and back-

filled with argon (repeated twice). Then 1.0 mL of toluene was added and the resulting mixture was stirred at rt for 20 mins to give a white suspension, followed by the sequential addition of the aziridine 2 (0.1 mmol), ketene silyl acetal 1 (0.11 mmol) and 1.0 mL of toluene. The reaction mixture was stirred at 25±2 °C until the disappearance of 2 as monitored by TLC (visualized by staining with iodine and UV light). Then 10 mL of saturated aqueous NaHCO₃ solution and 10 mL of ethyl acetate (EtOAc) were added, and the phases were separated. The aqueous phase was extracted with EtOAc (3 x 5 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated via rotary evaporation under reduced pressure to provide the crude mixture. Then the crude mixture was purified by column chromatography (eluting with petroleum ether/EtOAc (v/v): 10:1–1:1 containing 0.5 v% triethylamine) to furnish the desired products. As noted in Table 1, in cases where the formation of the byproduct **3aa**^{*} was considerable as judged by TLC, the crude mixture was pretreated with 1.0 mL of TBAF (1 M in THF) by stirring at rt for 1 h before being subjected to flash chromatography to provide the desired product.

The corresponding racemic products for HPLC assay were prepared following a similar procedure with $[(CH_3CN)_4Cu]PF_6$ (5 mol%), *rac*-BINAP (6 mol%), 0.11 mmol of the ketene silval acetal **1** and 0.1 mmol of aziridine **2** in toluene.

7.79 (d, J = 8.8 Hz, 2H), 4.50 (m, 1H), 4.04 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.77 (s, 3H), 3.25–3.17 (m, 2H), 3.05–3.00 (m, 1H), 2.59 (ABM, J = 16.0, 7.2 Hz, 2H), 2.42 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 159.0, 143.6, 137.0, 132.2, 129.8, 128.7, 127.2, 114.4, 60.8, 55.4, 48.1, 40.9, 38.6, 21.7, 14.2; HRMS (ESI-TOF) Calculated for C₂₀H₂₆NO₅S ([M+H]⁺):392.1526, found:392.1535.

Compound **3ab** was obtained as a colorless viscous oil following the general procedure (22.4 mg, 57% yield). ee = 90%, $[\alpha]_{D}^{23}$ = +72.8 (*c* = 0.19, EtOH), **HPLC**: Daicel CHIRALCEL ID column, λ =254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(minor) = 12.4 min, t_R(major) = 13.1 min; ¹**H NMR** (500 MHz, CDCl₃): δ 7.91 (d, *J* = 8.2 Hz, 1H), 7.45 (m, 1H), 7.32–7.25 (m, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.2 Hz,

2H), 4.47 (m, 1H), 4.03 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.78 (s, 3H), 3.28–3.16 (m, 2H), 3.05–2.99 (m, 1H), 2.56 (ABM, J = 15.9, 7.1 Hz, 2H), 2.42 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.8, 159.1, 137.7, 137.1, 132.9, 132.7, 132.1, 129.7, 128.6, 126.3, 114.5, 60.8, 55.4, 48.0, 41.0, 38.7, 20.2, 14.2; HRMS (ESI-TOF) Calculated for C₂₀H₂₆NO₅S ([M+H]⁺): 392.1526, found: 392.1533.

Compound **3ac** was obtained as a colorless viscous oil following the general procedure (36.5 mg, 84% yield). ee = 93%, $[\alpha]_D^{23}$ = -43.1 (*c* = 0.70, CHCl₃), **HPLC**: Daicel CHIRALCEL ID column, λ =254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(minor) = 13.0 min, t_R(major) = 16.7 min; ¹**H NMR** (500 MHz, CDCl₃): δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 6.99 (d, *J* = 8.3 Hz,

2H), 6.80 (d, J = 8.2 Hz, 2H), 4.35 (m, 1H), 4.04 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.78 (s, 3H), 3.29–3.19 (m, 2H), 3.09–3.03 (m, 1H), 2.60 (ABM, J = 16.0, 7.2 Hz, 2H), 1.34 (s, 9H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 159.0, 156.6, 137.0, 132.2, 128.7, 127.0, 126.2, 114.5, 60.8, 55.4, 48.2, 41.0, 38.6, 35.3, 31.2, 14.2; **HRMS** (ESI-TOF) Calculated for C₂₃H₃₂NO₅S ([M+H]⁺): 434.1996, found: 434.1992.

Compound **3ad** was obtained as a primrose solid following the general procedure (31.1 mg, 78% yield). ee = 94%, $[\alpha]_D^{23}$ = -35.0 (*c* = 0.60, CHCl₃), **HPLC**: Daicel CHIRALCEL ID column, λ =254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(minor) = 16.1 min, t_R(major) = 17.1 min; ¹**H NMR** (500 MHz, CDCl₃): δ 7.77 (m, 2H),

7.14 (pseudo t, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 4.66 (dd, J = 7.2, 5.0 Hz, 1H), 4.04 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.76 (s, 3H), 3.28–3.17 (m, 2H), 3.07–3.03 (m, 1H), 2.59 (ABM, J = 16.0, 7.2 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 165.1 (d, ¹ $J_{C-F} = 254.3$ Hz), 159.0, 136.1 (d, ⁴ $J_{C-F} = 2.7$ Hz), 132.1, 129.9 (d, ³ $J_{C-F} = 9.0$ Hz), 128.6, 116.4 (d, ² $J_{C-F} = 22.7$ Hz), 114.4, 60.8, 55.3, 48.1, 40.9, 38.5, 14.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -105.4 (m); HRMS (ESI-TOF) Calculated for C₁₉H₂₃FNO₅S ([M+H]⁺): 396.1275, found: 396.1280.

Compound **3ae** was obtained as a white solid following the general procedure (34.3 mg, 83% yield). ee = 94%, $[\alpha]_D^{23}$ = -96.1 (*c* = 0.69, CHCl₃), **HPLC**: Daicel CHIRALCEL ID column, λ = 254 nm, Hexanes/IPA = 9:1, 1.0 mL/min, t_R(minor) = 37.6 min, t_R(major) = 39.3 min; ¹H NMR (500 MHz, CDCl₃): δ 7.69 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.3 Hz, 2H),

6.79 (d, J = 8.8 Hz, 2H), 4.67 (dd, J = 7.2, 5.0 Hz, 1H), 4.04 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.77 (s, 3H), 3.29–3.17 (m, 2H), 3.08–3.03 (m, 1H), 2.59 (ABM, J = 16.0, 7.2 Hz, 1H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 159.0, 139.2, 138.6, 132.0, 129.5, 128.6, 114.4, 60.8, 55.4, 48.2, 40.9, 38.5, 14.2; HRMS (ESI-TOF) Calculated for C₁₉H₂₃ClNO₅S ([M+H]⁺): 412.0980, found: 412.0987.

Compound **3af** was obtained as a white solid following the general procedure (30.3 mg, 66% yield). ee = 97%, $[\alpha]_{D}^{23}$ = -22.3 (*c* = 0.58, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, λ = 254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(major) = 31.5 min, t_R(minor) = 36.7 min; ¹H **NMR** (500 MHz, CDCl₃): δ 7.61 (m,

4H), 6.98 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.60 (dd, J = 7.2, 5.0 Hz, 1H), 4.05 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.78 (s, 3H), 3.29–3.23 (m, 2H), 3.08–3.03 (m, 1H), 2.59 (ABM, J = 16.0, 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 159.0, 139.1, 132.5, 132.0, 128.7, 128.6, 127.7, 114.5, 60.8, 55.4, 48.2, 40.9, 38.5, 14.2; HRMS (ESI-TOF) Calculated for C₁₉H₂₃BrNO₅S ([M+H]⁺): 456.0475, found: 456.0467.

Compound **3ag** was obtained as a white solid following the general procedure (12.3 mg, 39% yield). ee = 92%, $[\alpha]_{D}^{23}$ = +132.1 (*c* = 0.16, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, λ =254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(major) = 35.2 min, t_R(minor) = 41.3 min; ¹H NMR (500 MHz, CDCl₃): δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.22–7.19

(m, 1H), 6.95 (dd, J = 7.2, 1.7 Hz, 1H), 6.85 (dd, J = 7.7, 6.6 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 4.92 (pseudo t, J = 5.8 Hz, 1H), 4.07 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.75 (s, 3H), 3.62–3.55 (m, 1H), 3.41–3.36 (m, 1H), 3.30–3.25 (m, 1H), 2.67 (ABM, J = 16.0, 6.0 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 172.4, 157.2, 150.0, 146.1, 128.8, 128.5, 128.3, 128.0, 124.3, 121.2, 111.1, 60.9, 55.5, 46.9, 36.8, 36.3, 14.2; **HRMS** (ESI-TOF) Calculated for C₁₉H₂₃N₂O₇S ([M+H]⁺): 423.1220, found: 423.1229.

Compound **3ah** was obtained as a colorless viscous oil following the general procedure (25.8 mg, 51% yield). ee = 90%, $[\alpha]_{D}^{23} = -4.4$ (c = 0.25, EtOH), **HPLC**: Daicel CHIRALCEL AS-H column, $\lambda = 254$ nm, Hexanes/IPA = 7:3, 1.0 mL/min, $t_{R}(\text{minor}) = 8.4 \text{ min}, t_{R}(\text{major}) = 10.8 \text{ min}; {}^{1}\text{H}$ **NMR** (500 MHz, CDCl₃): δ 8.31 (d, J = 8.8 Hz, 2H), 7.94 (d, J = 8.8 Hz, 2H),

6.90 (d, J = 8.2 Hz, 2H), 6.72 (d, J = 8.2 Hz, 2H), 4.79 (dd, J = 7.1, 5.0 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 3.38–3.32 (m, 1H), 3.21–3.10 (m, 2H), 2.59 (ABM, J = 16.0, 7.7 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H), 0.97 (s, 9H), 0.18 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 172.0, 155.3, 150.2, 146.1, 132.4, 128.5, 128.4, 124.5, 120.7, 61.0, 48.3, 41.0, 38.5, 25.8, 18.3, 14.2, -4.3; HRMS (ESI-TOF) Calculated for C₂₄H₃₅N₂O₇SSi ([M+H]⁺): 523.1929, found: 523.1923.

Compound **3ai** was obtained as a colorless viscous oil following the general procedure (48.0 mg, 94% yield). ee = 95%, $[\alpha]_D^{23}$ = +19.7 (*c* = 0.95, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, λ =254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(minor) = 7.4 min, t_R(major) = 10.3 min; ¹H **NMR** (500 MHz, CDCl₃): δ 7.70 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 2H), 6.91 (d, *J* = 8.2

Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 4.54 (brs, 1H), 4.05 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.30–3.24 (m, 1H), 3.21–3.15 (m, 1H), 3.08–3.03 (m, 1H), 2.67 (ABM, J = 15.9, 7.7 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H), 0.97 (s, 9H), 0.18 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 155.2, 139.3, 138.6, 132.6, 129.5, 128.6, 128.5, 120.6, 60.8, 48.1, 40.9, 38.5, 25.8, 18.3, 14.2, -4.3; **HRMS** (ESI-TOF) Calculated for C₂₄H₃₅ClNO₅SSi ([M+H]⁺): 512.1688, found: 512.1686.

Compound **3aj** was obtained as a colorless viscous oil following the general procedure (27.7 mg, 66% yield). ee = 83%, $[\alpha]_{D}^{23}$ = +51.1 (*c* = 0.28, EtOH), **HPLC**: Daicel CHIRALCEL AD-H column, λ =254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(major) = 19.8 min, t_R(minor) = 22.9 min; ¹H **NMR** (500 MHz, CDCl₃): $\delta \delta$ 7.64 (d, *J* = 7.7 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J*

= 7.7 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 6.55 (s, 1H), 4.41 (dd, J = 7.1, 5.0 Hz, 1H), 4.05 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 3.28–3.17 (m, 2H), 3.06–3.02 (m, 1H), 2.60 (ABM, J = 16.0, 7.2 Hz, 2H), 2.41 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 149.3, 148.5, 143.6, 137.0, 132.7, 129.8, 127.2, 119.6, 111.6, 110.7, 60.8, 56.0, 55.95, 48.1, 41.3, 38.5, 21.6, 14.2; HRMS (ESI-TOF) Calculated for C₂₁H₂₈NO₆S ([M+H]⁺): 422.1632, found: 422.1625.

Compound (*S*)-**3ak** was obtained as a white solid following the general procedure (42.6 mg, 89% yield). ee = 89%, $[\alpha]_{D}^{23}$ = +33.0 (*c* = 0.84, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, λ =254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(major) = 21.3 min, t_R(minor) = 27.9 min; ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 6.74 (d, *J*

= 8.2 Hz, 1H), 6.61–6.55 (m, 2H), 4.67 (m, 1H), 4.49 (dd, J = 7.3, 5.0 Hz, 1H), 4.04 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.80 (s, 3H), 3.26–3.14 (m, 2H), 3.04–2.99 (m, 1H), 2.60 (ABM, J = 16.0, 7.2 Hz, 2H), 2.41 (s, 3H), 1.92–1.78 (m, 6H), 1.59 (m, 2H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 149.4, 148.0, 143.5, 136.9, 132.5, 129.8, 127.2, 119.6, 114.3, 112.3, 80.5, 60.8, 56.2, 48.1, 41.2, 38.5, 32.9, 24.1, 21.6, 14.2; HRMS (ESI-TOF) Calculated for C₂₅H₃₄NO₆S ([M+H]⁺): 476.2101, found: 476.2109.

The compound (*R*)-**3ak** was obtained as a white solid following the general procedure (42.6 mg, 89% yield) except that (*R*)-BINAP was used as ligand. The spectral data are in agreement with those of (*S*)-**3ak**. ee = 89%, $[\alpha]_{D}^{23}$ = -34.2 (*c* = 0.80, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, λ =254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(minor) = 22.0 min, t_R(major) = 26.3 min.

Compound **3al** was obtained as a white solid following the general procedure (35.2 mg, 71% yield). ee = 88%, $[\alpha]_D^{23}$ = - 89.1 (*c* = 0.68, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, λ =254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(major) = 21.1 min, t_R(minor) = 26.7 min; ¹H NMR (500 MHz, CDCl₃): δ 7.69 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J*

= 8.3 Hz, 1H), 6.59–6.55 (m, 2H), 4.67 (m, 1H), 4.48 (dd, J = 7.7, 4.4 Hz, 1H), 4.07 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.81 (s, 3H), 3.31–3.26 (m, 1H), 3.20–3.13 (m, 1H), 3.07–3.01 (m, 1H), 2.59 (ABM, J = 16.0, 7.2 Hz, 2H), 1.90–1.78(m, 6H), 1.60 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 149.5, 148.1, 139.2, 138.5, 132.3, 129.5, 128.6, 119.5, 114.3, 112.3, 80.6, 60.9, 56.2, 48.1, 41.1, 38.5, 32.9, 24.2, 14.2; HRMS (ESI-TOF) Calculated for C₂₄H₃₁ClNO₆S ([M+H]⁺): 496.1555, found: 496.1563.

Compound **3am** was obtained as a white solid following the general procedure (34.6 mg, 72% yield). ee = 88%, $[\alpha]_{D}^{23}$ = -31.8 (*c* = 0.69, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, $\lambda = 254$ nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(major) = 20.3min, t_R(minor) = 26.7 min; ¹H **NMR** (500 MHz, CDCl₃): δ 7.77 (m, 2H), 7.15 (pseudo t, *J* = 8.2 Hz, 2H), 6.74 (d, *J* = 8.3

Hz, 1H), 6.60–6.55 (m, 2H), 4.67 (m, 1H), 4.57 (dd, J = 7.2, 4.9 Hz, 1H), 4.05 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.80 (s, 3H), 3.29–3.24 (m, 1H), 3.20–3.14 (m, 1H), 3.06–3.00 (m, 1H), 2.59 (ABM, J = 16.0, 7.2 Hz, 2H), 1.92–1.76 (m, 6H), 1.59 (m, 2H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 165.1 (d, ${}^{1}J_{C-F}$ = 254.3 Hz), 149.5, 147.8, 136.0 (d, ${}^{4}J_{C-F}$ = 3.6 Hz), 132.4, 129.8 (d, ${}^{3}J_{C-F}$ = 9.1 Hz), 119.6, 116.4 (d, ${}^{2}J_{C-F}$ = 22.8 Hz), 114.2, 112.3, 80.5, 60.8, 56.1, 48.1, 41.1, 38.5, 32.8, 24.1, 14.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -105.3 (m); HRMS (ESI-TOF) Calculated for C₂₄H₃₁FNO₆S ([M+H]⁺): 480.1851, found: 480.1845.

Compound **3an** was obtained as a white solid following the general procedure (28.2 mg, 70% yield). ee = 89%, $[\alpha]_D^{23}$ = +19.3 (*c* = 0.55, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, $\lambda = 254$ nm, Hexanes/IPA = 7:3, 1.0 mL/min, $\lambda = 254$ nm, t_R(major) = 21.9min, t_R(minor) = 30.3 min; ¹H **NMR** (500 MHz, CDCl₃): δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.47 (m, 1H), 7.35 (d, *J* = 7.7

Hz, 1H), 7.26–7.17 (m, 4H), 6.45 (s, 1H), 4.77 (pseudo t, J = 6.6 Hz, 1H), 4.10 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.57–3.52 (m, 1H), 3.38–3.29 (m, 2H), 2.76 (d, J = 7.1 Hz, 2H), 2.39 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.5, 156.7, 154.8, 143.6, 136.9, 129.8, 128.2, 127.1, 124.2, 123.0, 120.9, 111.1, 104.1, 61.0, 45.5, 36.0, 35.5, 21.6, 14.2; HRMS (ESI-TOF) Calculated for C₂₁H₂₄NO₅S ([M+H]⁺): 402.1370, found: 402.1365.

Compound **3ao** was obtained as a white solid following the general procedure (22.3 mg, 53% yield). ee = 95%, $[\alpha]_{D}^{23}$ = +36.5 (*c* = 0.44, CHCl₃), **HPLC**: Daicel CHIRALCEL AS-H column, λ = 254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(major) = 18.2 min, t_R(minor) = 24.1 min; ¹H **NMR** (500 MHz, CDCl₃): δ 7.70 (m, 2H), 7.47 (m, 1H), 7.39–7.33 (m, 3H), 7.27–7.19 (m, 2H), 6.45 (s,

1H), 4.86 (pseudo t, J = 6.6 Hz, 1H), 4.11 (ABX₃, J = 11.0, 7.1 Hz, 2H), 3.57–3.50 (m, 1H), 3.41–3.31 (m, 2H), 2.75 (ABM, J = 15.9, 7.1 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.4, 156.4, 154.8, 139.3, 138.5, 129.5, 128.5, 128.1, 124.3, 123.1, 121.0, 111.1, 104.2, 61.1, 45.5, 36.0, 35.5, 14.2; **HRMS** (ESI-TOF) Calculated for C₂₀H₂₁ClNO₅S ([M+H]⁺): 422.0823, found: 422.0832.

Compound **3ap** was obtained as a primrose solid following the general procedure (40.0 mg, 75% yield). ee = 87%, $[\alpha]_D^{23}$ = -39.8 (*c* = 0.80, CHCl₃), **HPLC**: Daicel CHIRALCEL AD-H column, λ =254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(minor) = 24.3 min, t_R(major) = 31.9 min; ¹H **NMR** (500 MHz, CDCl₃): δ 8.15 (brs, 1H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.49 (m, 2H), 7.46–7.38 (m,

5H), 7.32 (pseudo t, J = 7.7 Hz, 1H), 7.21–7.16 (m, 3H), 5.43 (AB, J = 12.1 Hz, 2H), 4.60 (pseudo t, J = 6.6 Hz, 1H), 4.11 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.59 (m, 1H), 3.34–3.25 (m, 2H), 2.75 (ABM, J = 16.0, 6.6 Hz, 2H), 2.37 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 172.0, 150.7 (brs, this signal is weak due to the ¹⁴N quadrupole relaxation effect of the neighboring N atom of the Cbz group), 143.5, 136.8, 135.8, 135.0, 129.7, 129.1, 128.95, 128.92, 128.8, 127.0, 125.2, 123.2, 122.7, 120.7, 119.1, 115.6, 69.0, 61.0, 46.4, 36.9, 33.0, 21.6, 14.2; **HRMS** (ESI-TOF) Calculated for C₂₉H₃₁N₂O₆S ([M+H]⁺): 535.1897, found: 535.1889.

Compound **3aq** was obtained as a primrose solid following the general procedure (43.5 mg, 76% yield). ee = 90%, $[\alpha]_D^{23}$ = -18.5 (*c* = 0.86, CHCl₃), **HPLC**: Daicel CHIRALCEL AD-H column, λ =254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(minor) = 20.3 min, t_R(major) = 25.0 min; ¹**H NMR** (500 MHz, CDCl₃): δ 8.05 (brs, 1H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.48 (m, 2H), 7.45–7.38 (m, 4H), 7.29 (m, 1H), 7.24 (m, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 5.42

(AB, J = 12.1 Hz, 2H), 4.71 (m, 1H), 4.07 (q, J = 7.2 Hz, 2H), 3.51–3.46 (m, 1H), 3.26 (pseudo t, J = 6.6 Hz, 2H), 2.71 (ABM, J = 16.0, 7.1 Hz, 2H), 2.38 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.7, 150.3, 143.7, 136.7, 134.8, 134.1, 130.3, 129.8, 129.1, 129.0, 128.9, 128.87, 127.0, 125.3, 124.1, 120.1, 118.7, 116.6, 69.2, 61.0, 46.3, 36.9, 32.9, 21.6, 14.2; HRMS (ESI-TOF) Calculated for C₂₉H₃₀ClN₂O₆S ([M+H]⁺): 569.1508, found: 569.1516.

Compound **3ar** was obtained as a white solid following the general procedure (41.7 mg, 77% yield). ee = 81%, $[\alpha]_D^{23}$ = +43.6 (*c* = 0.81, CHCl₃), **HPLC**: Daicel CHIRALCEL OD-H column, λ =254 nm, Hexanes/IPA = 86:14, 1.0 mL/min, t_R(minor) = 23.7 min, t_R(major) = 27.3 min; ¹H NMR (500 MHz, CDCl₃): δ 7.94 (d, *J* = 8.2 Hz, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.3 Hz,

2H), 7.37 (m, 2H), 7.30 (pseudo t, J = 7.1 Hz, 1H), 7.23–7.15 (m, 5H), 4.62 (pseudo t, J = 6.6 Hz, 1H), 4.11 (ABX₃, J = 11.0, 7.2 Hz, 2H), 3.58–3.52 (m, 1H), 3.30–3.19 (m, 2H), 2.73 (ABM, J = 16.0, 7.7 Hz, 2H), 2.39 (s, 3H), 2.32 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.8, 145.2, 143.6, 136.8, 135.4, 135.1, 130.1, 129.8, 129.5, 127.0, 126.9, 125.2, 123.6, 123.4, 121.9, 119.5, 114.0, 60.9, 46.4, 37.0, 33.2, 21.7, 21.6, 14.1; **HRMS** (ESI-TOF) Calculated for C₂₈H₃₁N₂O₆S₂ ([M+H]⁺): 555.1618, found: 555.1625.

Compound **3as** was obtained as a primrose viscous oil following the general procedure (31.1 mg, 62% yield). ee = 68%, $[\alpha]_{D}^{23}$ = +31.4 (*c* = 0.60, CHCl₃), **HPLC**: Daicel CHIRALCEL ID column, λ =254 nm, Hexanes/IPA = 86:14, 1.0 mL/min, t_R(minor) = 32.7 min, t_R(major) = 35.6 min; ¹H NMR (500 MHz, CDCl₃): δ 8.12 (brs, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.38 (m, 2H), 7.30 (m,

1H), 7.21–7.15 (m, 3H), 4.65 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 3.61–3.56 (m, 1H), 3.33–3.25 (m, 2H), 2.73 (ABM, J = 15.9, 7.7 Hz, 2H), 2.39 (s, 3H), 1.67 (s, 9H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 172.0, 149.5, 143.5, 136.8, 135.7, 129.7, 129.0, 127.0, 124.9, 123.1, 122.7, 119.6, 119.0, 115.6, 84.1, 60.9, 46.4, 37.0, 33.0, 28.3, 21.6, 14.2; HRMS (ESI-TOF) Calculated for

 $C_{26}H_{33}N_2O_6S$ ([M+H]⁺): 501.2054, found: 501.2045.

Compound **3da** was obtained as a white solid following the general procedure (15.1 mg, 40% yield). ee = 80%, $[\alpha]_D^{23}$ = -91.6 (*c* = 0.26, CHCl₃), **HPLC**: Daicel CHIRALCEL ID column, λ = 254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(minor) = 18.2 min, t_R(major) = 19.6 min; ¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 6.98 (d, *J* = 8.8 Hz,

2H), 6.80 (d, J = 8.8 Hz, 2H), 4.45 (m, 1H), 3.77 (s, 3H), 3.59 (s, 3H), 3.26–3.18 (m, 2H), 3.07–2.99 (m, 1H), 2.61 (ABM, J = 16.0, 7.2 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 172.4, 159.0, 143.6, 136.9, 132.1, 129.8, 128.6, 127.2, 114.5, 55.4, 51.9, 48.1, 40.8, 38.2, 21.6; HRMS (ESI-TOF) Calculated for C₁₉H₂₄NO₅S ([M+H]⁺): 378.1370, found: 378.1367.

Compound **3ea** was obtained as a white solid following the general procedure (21.9 mg, 54% yield). ee = 88%, $[\alpha]_D^{23}$ = +5.0 (*c* = 0.32, EtOH), **HPLC**: Daicel CHIRALCEL IC column, λ = 254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(minor) = 34.0 min, t_R(major) = 36.0 min; ¹**H NMR** (500 MHz, CDCl₃): δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H),

6.79 (d, J = 8.8 Hz, 2H), 4.90 (m, 1H), 4.39 (dd, J = 7.2, 4.9 Hz, 1H), 3.77 (s, 3H), 3.26–3.15 (m, 2H), 3.05–3.00 (m, 1H), 2.56 (ABM, J = 15.4, 7.1 Hz, 2H), 2.42 (s, 3H), 1.14 (d, J = 6.1 Hz, 3H), 1.10 (d, J = 6.7 Hz, 3H); ¹³**C** NMR (125 MHz, CDCl₃): δ 171.4, 159.0, 143.6, 137.0, 132.1, 129.8, 128.7, 127.2, 114.4, 68.2, 55.4, 48.2, 41.0, 38.9, 21.8, 21.79, 21.6; HRMS (ESI-TOF) Calculated for C₂₁H₂₈NO₅S ([M+H]⁺): 406.1683, found: 406.1686.

Compound **3fa** was obtained as a white solid following the general procedure (7.0 mg, 16% yield). ee = 78%, $[\alpha]_D^{23}$ = -252.7 (*c* = 0.10, CHCl₃), **HPLC**: Daicel CHIRALCEL ID column, λ = 254 nm, Hexanes/IPA = 7:3, 1.0 mL/min, t_R(minor) = 12.5 min, t_R(major) = 13.8 min; ¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 6.98 (d, *J* = 8.8 Hz,

2H), 6.80 (d, J = 8.8 Hz, 2H), 4.36 (dd, J = 7.7, 5.0 Hz, 1H), 3.78 (s, 3H), 3.25–3.19 (m, 1H), 3.17–3.11 (m, 1H), 3.03–2.98 (m, 1H), 2.51 (ABM, J = 15.4, 7.1 Hz, 2H), 2.42 (s, 3H), 1.32 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 171.2, 158.9, 143.5, 137.0, 132.3, 129.8, 128.7, 127.2, 114.4, 81.0, 55.4, 48.2, 41.1, 39.8, 28.1, 21.7; HRMS (ESI-TOF) Calculated for C₂₂H₃₀NO₅S ([M+H]⁺): 420.1839, found: 420.1847.

Compound **3ga** was obtained as a primrose solid following the general procedure (14.2 mg, 34% yield). ee = 94%, $[\alpha]_{D}^{23}$ = -53.3 (*c* = 0.25, CHCl₃), **HPLC**: Daicel CHIRALCEL AD-H column, λ =254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(minor) = 11.8 min, t_R(major) = 16.0 min; ¹H NMR (500 MHz, CDCl₃): δ 7.62 (d, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 6.82 (AB, *J* = 8.8

Hz, 4H), 4.07 (brs, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 3.79 (s, 3H), 3.37–3.32 (m, 1H), 3.19 (m, 1H), 3.00 (dd, *J* = 11.5, 4.5 Hz, 1H), 2.44 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H), 1.04 (s, 3H), 0.99 (s, 3H); ¹³C NMR

(125 MHz, CDCl₃): δ 171.2, 158.9, 143.5, 137.0, 132.3, 129.8, 128.7, 127.2, 114.4, 81.0, 55.4, 48.2, 41.1, 39.8, 28.1, 21.7; **HRMS** (ESI-TOF) Calculated for C₂₂H₃₀NO₅S ([M+H]⁺): 420.1839, found: 420.1830.

Procedure for the transformation of (R/S)-3ak to (R/S)-rolipram

Under argon atmosphere, to a stirred solution of the (*S*)-**3ak** (47.6 mg, 0.1 mmol, 89% ee) in dry toluene (4.0 mL) was added *p*-tolylsulfonic acid (0.9 mg, 0.005 mmol, 5 mol%), and the resulting reaction mixture was refluxed for 96 h. After being cooled down to room temperature, the reaction mixture was quenched by dropwise addition of saturated aqueous NaHCO₃ solution (4.0 mL), extracted with EtOAc (10 mL x 3). The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo by rotary evaporation. The residue was purified by flash chromatography on silica gel (eluting with EtOAc/petroleum ether (v/v) = 1:4) to afford the product (*S*)-**4** as a white solid in 87% yield (37.4 mg).

Ee = 87%, $[\alpha]_{D}^{23}$ = +38.2 (*c* = 0.11, CHCl₃), **HPLC**: Daicel CHIRALCEL AD-H column, λ =254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(major) = 13.4 min, t_R(minor) = 15.7 min; ¹**H NMR** (500 MHz, CDCl₃): δ 7.92 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 6.77 (m, 1H), 6.65 (m, 2H), 4.68 (m, 1H), 4.28 (dd, *J* = 9.9, 8.2 Hz, 1H), 3.81 (s, 3H), 3.75 (dd, *J* = 9.9, 7.7 Hz, 1H), 3.55–3.49 (m, 1H),

2.80 (dd, J = 17.0, 8.2 Hz, 1H), 2.57 (dd, J = 17.1, 8.8 Hz, 1H), 2.44 (s, 3H), 1.92–1.77 (m, 6H), 1.59 (m, 2H); ¹³**C NMR** (125 MHz, CDCl₃): δ 172.4, 149.6, 148.1, 145.3, 135.2, 132.4, 129.8, 128.2, 118.6, 113.4, 112.2, 80.6, 56.2, 54.0, 39.8, 36.8, 32.9, 24.1, 21.8; **HRMS** (ESI-TOF) Calculated for C₂₃H₂₇NO₅S ([M+H]⁺): 430.1683, found: 430.1691.

The compound (*R*)-4 was prepared by following the same procedure from (*R*)-3ak. White solid (38.6 mg, 90% yield), ee = 87%, $[\alpha]_{D}^{23}$ = -44.4 (*c* = 0.59, CHCl₃), HPLC: Daicel CHIRALCEL AD-H column, λ =254 nm, Hexanes/IPA = 4:1, 1.0 mL/min, t_R(minor) = 13.1 min, t_R(major) = 15.2 min. The spectral data agree with those of (*S*)-4.

Under argon atmosphere, to a stirred solution of naphthalene (80.0 mg, 0.624 mmol) in 1.0 mL of dried THF was added freshly cut sodium turnings (11.5 mg, 0.5 mmol) and the resulting mixture was stirred at rt for 2 h to give a deep green solution. Then a solution of (*S*)-4 (43.0 mg, 0.1 mmol, 87% ee) in dried THF (1.0 mL) was added dropwise to the above solution at -78 °C, and the resulting reaction mixture was stirred at -78 °C for 0.5 h before being allowed to warm to rt for another 1.5 h of stirring. Then the reaction mixture was quenched by dropwise addition of saturated aqueous NH₄Cl solution (2.0 mL), diluted with 10.0 mL of deionized water, and extracted with EtOAc (10 mL x 3). The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo by rotary evaporation. The residue was purified by flash chromatography on silica gel (eluting with EtOAc/petroleum ether (v/v) = 2:1) to afford the product (*S*)-rolipram as a white solid in 84% yield (23.1 mg).

Ee = 88%, $[\alpha]_{D}^{23}$ = +28.3 (*c* = 0.49, MeOH) {lit.⁴ $[\alpha]_{D}^{25}$ = +26.2 (*c* = 0.60, MeOH) for 98% ee (*S*)}, **HPLC**: Daicel CHIRALCEL ID column, λ =254 nm, Hexanes/IPA = 86:14, 1.0 mL/min, t_R(minor) = 13.6 min, t_R(major) = 14.4 min. The spectral data are in good agreement with those of literature report.⁴

The compound (*R*)-rolipram was prepared by following the same procedure from (*R*)-4. White solid (23.6 mg, 86% yield), ee = 88%, $[\alpha]_{D}^{23}$ = -34.9 (*c* = 0.69, MeOH), **HPLC**: Daicel CHIRALCEL ID column, λ =254 nm, Hexanes/IPA = 86:14, 1.0 mL/min, t_R(major) = 13.1min, t_R(minor) = 15.0 min.

References

- D. D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*; 3rd ed., Pergamon Press, Oxford, 1988.
- A. G. Wenzel and E. N. Jacobsen, Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives: Enantioselective Synthesis of β-Aryl-β-Amino Acids, J. Am. Chem. Soc., 2002, 124, 12964–12965.
- 2a: (a) D. A. Evans, M. M. Faul and M. T. Bilodeau, Development of the Copper-Catalyzed Olefin Aziridination Reaction, J. Am. Chem. Soc., 1994, 116, 2742–2732; (b) 2b, 2c, 2e, 2f, 2h, 2j, 2n, 2o, 2p and 2q: P.-J. Yang, L. Qi, Z. Liu, G. Yang and Z. Chai, Lewis Acid-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic N-Sulfonylaziridines, J. Am. Chem. Soc., 2018, 140, 17211– 17217.
- C. Palomo, A. Landa, A. Mielgo, M. Oiarbide, Á. Puente and S. Vera, Water-Compatible Iminium Activation: Organocatalytic Michael Reactions of Carbon-Centered Nucleophiles with Enals, *Angew. Chem., Int. Ed.*, 2007, 46, 8431–8435.

Copies of HPLC Traces

Area Percent Report						
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area%	Height%	
1	12.192	106.480	272.315	49.44	53.33	
2	13.243	108.879	238.303	50.56	46.67	

Area Percent Report						
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area%	Height%	
1	12.438	12.167	38.247	4.82	7.44	
2	13.125	240.077	475.518	95.18	92.56	

Area Percent Report						
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area%	Height%	
1	12.960	15.628	40.268	3.52	8.11	
2	16.693	427.791	456.085	96.48	91.89	

Area Percent Report					
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area%	Height%
1	37.620	14.546	17.081	2.74	5.68
2	39.337	516.919	283.593	97.26	94.32

S20

Area Percent Report						
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area%	Height%	
1	19.803	252.297	306.295	91.43	93.62	
2	22.890	23.641	20.872	8.57	6.38	

Area Percent Report					
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area%	Height%
1	21.273	247.493	148.386	94.79	95.06
2	27.982	13.616	7.717	5.21	4.94

Area Percent Report					
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area %	Height %
1	21.145	459.736	204.485	93.97	93.59
2	26.735	29.478	14.000	6.03	6.41

Area Percent Report						
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area %	Height %	
1	20.313	222.875	125.369	93.96	94.73	
2	26.730	14.329	6.969	6.04	5.27	

Area Percent Report					
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area %	Height %
1	24.275	153.485	168.334	6.34	8.20
2	31.863	2267.590	1884.634	93.66	91.80

Area Percent Report					
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area %	Height %
1	18.232	8.484	17.080	4.98	7.30
2	19.442	161.981	216.869	95.02	92.70

Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area %	Height %			
1	13.422	205.266	389.448	93.43	94.94			
2	15.718	14.440	20.774	6.57	5.06			

Area Percent Report								
Peak #	RetTime [min]	Area [mAU *min]	Height [mAU]	Area %	Height %			
1	13.585	11.095	33.289	5.97	10.73			
2	14.395	174.899	276.859	94.03	89.27			

Copies of ¹H NMR and ¹³C NMR Spectra for All New Compounds

