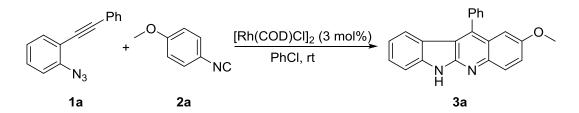
Supporting Information

Rhodium-Catalyzed Coupling-Cyclization of o-Alkynyl Arylazides						
with	Arylisocyanides:	Synthesis	of	6H-Indolo[2,3-b]quinolines,		
Dibenzonaphthyridones		and		Dihydrodibenzo[b,g		
[1 9]	nanhthyridinas					

[1,8]-naphthyridines

Ming Yang, Tao Liu, Yue Gong, Qing-Wen Ai, and Yu-Long Zhao*

Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; e-mail: zhaoyl351@nenu.edu.cn

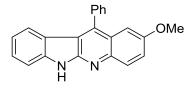

Table of contents

I. General Information
II. General Procedure for the Preparation of 3 (3a as example)S2-11
III. General Procedure for the Preparation of 5 (5d as example)S12-16
IV. General Procedure for the Preparation of 7 (7b as example)S17-19
V. General Procedure for the Preparation of 8
VI. ORTEP Drawing of Compounds 3g and 7a S22-23
VII. Copies of ¹ H NMR and ¹³ C NMR Spectra of Compounds 3, 5, 7, 8

I. General Information:

All reagents were commercial and were used without further purification. Chromatography was carried on flash silica gel (300-400 mesh). All reactions were monitored by TLC, which was performed on percolated aluminum sheets of silica gel 60 (F254). Unless noted, the ¹H NMR spectra were recorded at 500 MHz, 600 MHz in CDCl₃, the ¹³C NMR spectra were recorded at 151 MHz in CDCl₃ with TMS as internal standard, and the ¹⁹F NMR spectra were recorded at 471 MHz in CDCl₃. All coupling constants (J values) were reported in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). The compound **3g** and **7a** were glued on a glass fiber. X-ray single-crystal data of **3g** and **7a** were collected by a Bruker D8 Venture diffractometer (Mo K α radiation, $\lambda =$ 0.71073 Å (Cu K α radiation, $\lambda = 1.54178$ Å)) at 293(2) K, and IP technique in the range $2.19^{\circ} < \theta < 27.48^{\circ}$. Empirical absorption correction was applied. The structures were solved by the direct method and refined by the full-matrix least-squares method on F^2 using the SHELXS 97 crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Hydrogen atoms were located from difference Fourier maps. In addition, o-Alkynyl Arylazides 1, 4 and 6 were synthesized according to known literature procedure.¹ Arylisocyanides 2 were prepared according to the previous reported method.²

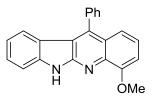
II. General Procedure for the Preparation of 3 (3a as example):



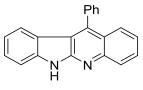
A sealed tube equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (0.006 mmol, 3.0 mg) in PhCl (2.0 mL), then **1a** (0.3 mmol, 65.8 mg) and **2a** (0.2 mmol, 26.6 mg) were added. Subsequently, the reaction mixture was stirred at room temperature for 8 h. After the reaction was complete, the reaction mixture was poured into saturated aqueous NaCl (30 mL) and extracted with CH₂Cl₂ (10 mL×3). The combined organic extracts were dried over anhydrous Mg₂SO₄. The crude residue was purified by silica gel column chromatography (EtOAc/petroleum ether = 3:50, V/V) to afford pure product **3a** (55.8 mg, 86%) as a yellow solid.

A gram-scale synthesis of compound 3a:

A sealed tube equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (0.225 mmol, 110.9 mg) in PhCl (20 mL), then **1a** (11.3 mmol, 2.5 g) and **2a** (7.5 mmol, 1.0 g) were added. Subsequently, the reaction mixture was stirred at room temperature for 10 h. After the reaction was complete, the reaction mixture was poured into saturated aqueous NaCl (150 mL) and extracted with CH_2Cl_2 (30 mL×3). The combined organic extracts were dried over anhydrous Mg₂SO₄. The crude residue was purified by silica gel column chromatography (EtOAc/petroleum ether = 3:50, V/V) to afford pure product **3a** (1.7 g, 71%) as a yellow solid.

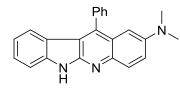

2-Methoxy-11-phenyl-6*H*-indolo[2,3-*b*]quinoline (3a):

Yellow solid, 55.8 mg, 86% yield. The melting point of this compound is consistent with reported previously. ¹H NMR (600 MHz, CDCl₃) δ 10.66 (s, 1H), 8.13 (d, *J* = 9.2

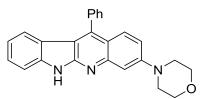

Hz, 1H), 7.69 - 7.63 (m, 3H), 7.56 (d, J = 6.7 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.47 - 7.40 (m, 2H), 7.07 (d, J = 2.7 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.26, 152.26, 142.02, 141.76, 141.43, 136.69, 129.37, 129.08, 128.55, 127.78, 127.71, 124.15, 123.06, 120.99, 120.93, 119.45, 116.85, 110.77, 104.89, 55.48. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₂H₁₇N₂O⁺: 325.1335, found: 325.1337. The values of the NMR spectra are in accordance with reported literature data.³

4-Methoxy-11-phenyl-6*H*-indolo[2,3-*b*]quinoline (3b):

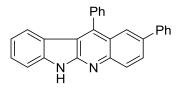
Yellow solid; mp: 253 - 255 °C, 46.1 mg, 71% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.96 (s, 1H), 7.69 (dt, J = 13.0, 7.0 Hz, 3H), 7.54 – 7.51 (m, 2H), 7.49 (d, J = 8.0 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.29 (t, J = 8.0 Hz, 1H), 7.20 – 7.15 (m, 2H), 6.95 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ 154.77, 151.97, 142.08, 141.97, 138.54, 136.79, 129.57, 129.47, 129.12, 128.43, 124.12, 123.02, 122.76, 120.55, 119.74, 117.95, 115.84, 111.42, 107.98, 56.19. HRMS (ESI-TOF): [M+Na]⁺ calculated for C₂₂H₁₆N₂ONa⁺: 347.1155, found: 347.1145.


11-Phenyl-6*H*-indolo[2,3-*b*]quinoline (3c):

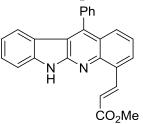
Yellow solid, 44.2 mg, 75% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 11.84 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.74 - 7.67 (m, 4H), 7.63 (d, J = 8.3 Hz, 1H), 7.56 (d, J = 6.7 Hz, 2H), 7.49 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 7.2 Hz, 1H), 7.43 - 7.37 (m, 1H), 6.96 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 152.95, 146.85, 142.14, 141.97, 136.45, 129.64, 129.54, 129.20, 129.08, 128.45,


127.77, 126.21, 123.36, 123.33, 122.76, 120.68, 119.80, 115.91, 111.40. HRMS (ESI-TOF): $[M+H]^+$ calculated for $C_{21}H_{15}N_2^+$: 395.1230, found: 395.1224. The values of the NMR spectra are in accordance with reported literature data.³

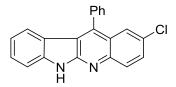
N,*N*-dimethyl-11-phenyl-6*H*-indolo[2,3-*b*]quinolin-2-amine (3d):


Yellow solid; mp: 258 - 260 °C, 27.7 mg, 41% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.52 (s, 1H), 7.91 (d, J = 9.3 Hz, 1H), 7.71 (t, J = 7.3 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.50 (dd, J = 9.3, 2.8 Hz, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 6.65 (d, J = 2.7 Hz, 1H), 2.84 (s, 6H). ¹³C NMR (151 MHz, DMSO- d_6) δ 151.11, 146.74, 142.02, 141.15, 139.85, 137.11, 129.66, 129.46, 128.97, 128.30, 127.96, 124.34, 122.62, 120.73, 120.13, 119.21, 115.78, 111.12, 104.36, 40.97. HRMS (ESI-TOF): [M+Na]⁺ calculated for C₂₃H₁₉N₃Na⁺: 360.1471, found: 360.1478.

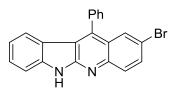
4-(11-Phenyl-6*H*-indolo[2,3-*b*]quinolin-3-yl)morpholine (3e):


Yellow solid; mp: 292 - 294 °C, 36.4 mg, 48% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.63 (s, 1H), 7.72 - 7.65 (m, 3H), 7.52 (d, J = 7.0 Hz, 2H), 7.46 - 7.42 (m, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.29 - 7.27 (m, 1H), 7.25 (dd, J = 9.3, 2.1 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 3.82 - 3.78 (m, 4H), 3.32 - 3.28 (m, 4H). ¹³C NMR (151 MHz, DMSO- d_6) δ 153.39, 151.79, 148.75, 141.75, 141.38, 136.69, 129.51, 129.04, 127.39, 126.72, 121.97, 121.17, 119.55, 117.56, 115.56, 113.32, 111.16, 108.59, 66.52, 48.65. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₅H₂₂N₃O⁺: 380.1757, found: 380.1758.

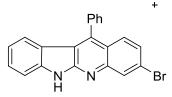
2,11-Diphenyl-6*H*-indolo[2,3-*b*]quinoline (3f):


Yellow solid; mp: 296 - 298 °C, 44.5 mg, 60% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.92 (s, 1H), 8.15 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.84 (s, 1H), 7.77 - 7.69 (m, 3H), 7.64 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.7 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.46 (q, J = 7.2 Hz, 3H), 7.35 (t, J = 7.3 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 153.10, 146.36, 142.20, 142.18, 140.66, 136.31, 135.11, 129.71, 129.63, 129.54, 129.35, 128.56, 128.47, 128.36, 127.72, 127.21, 123.61, 123.49, 122.84, 120.67, 119.90, 116.36, 111.48. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₇H₁₉N₂⁺: 371.1543, found: 371.1539.

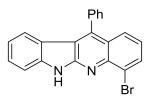
Methyl (*E*)-3-(11-phenyl-6*H*-indolo[2,3-*b*]quinolin-4-yl)acrylate (3g):


Yellow solid; mp: 199 - 201 °C, 39.4 mg, 52% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 12.18 (s, 1H), 9.07 (d, J = 16.3 Hz, 1H), 8.27 (d, J = 6.7 Hz, 1H), 7.75 - 7.69 (m, 4H), 7.57 (d, J = 7.9 Hz, 2H), 7.51 - 7.43 (m, 3H), 7.02 - 6.97 (m, 2H), 6.91 (d, J = 7.8 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 167.61, 152.64, 144.76, 142.57, 142.22, 142.00, 136.29, 130.30, 129.67, 129.53, 129.33, 129.05, 128.75, 127.98, 123.65, 122.93, 122.88, 120.50, 120.11, 118.79, 116.31, 111.55, 51.96. HRMS (ESI-TOF): [M + H] ⁺ calculated for C₂₅H₁₉N₂O₂⁺: 379.1441, found: 379.1438.

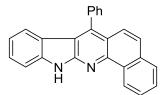
2-Chloro-11-phenyl-6*H*-indolo[2,3-*b*]quinoline (3h):


Yellow solid; mp: 265 - 267 °C, 42.7 mg, 65% yield. ¹H NMR (600 MHz, DMSO) δ 11.96 (s, 1H), 8.06 (d, *J* = 9.0 Hz, 1H), 7.71 (m, 4H), 7.57 – 7.55 (m, 2H), 7.53 (d, *J* = 2.4 Hz, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.44 (m, 1H), 6.99 – 6.95 (m, 1H), 6.91 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 153.12, 145.17, 142.33, 141.04, 135.71, 129.87, 129.78, 129.50, 129.30, 128.91, 127.48, 124.51, 124.02, 122.94, 120.34, 120.04, 116.67, 111.57. HRMS(ESI-TOF): [M+H]⁺ calculated for C₂₁H₁₄ClN₂⁺: 329.0840, found: 329.0842.

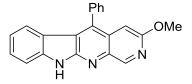
2-Bromo-11-phenyl-6*H*-indolo[2,3-*b*]quinoline (3i):


Yellow solid, 52.3 mg, 70% yield. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.96 (s, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.83 (dd, J = 9.0, 2.2 Hz, 1H), 7.76 – 7.71 (m, 3H), 7.69 (s, 1H), 7.59 – 7.56 (m, 2H), 7.48 (dt, J = 14.9, 7.4 Hz, 2H), 6.99 (t, J = 7.4 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 153.16, 145.39, 142.35, 141.02, 135.71, 131.85, 130.10, 129.83, 129.55, 129.53, 128.96, 127.78, 124.70, 122.96, 120.38, 120.10, 116.64, 115.74, 111.60. HRMS(ESI-TOF): [M+H]⁺ calculated for C₂₁H₁₄BrN₂⁺: 373.0335, found: 373.0333. The values of the NMR spectra are in accordance with reported literature data.³

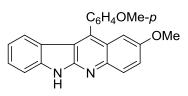
3-Bromo-11-phenyl-6*H***-indolo**[2,3-*b*]quinoline (3j):


Yellow solid; mp: 258-260 °C, 33.6 mg, 45% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 12.02 (s, 1H), 8.29–8.23 (m, 1H), 7.76–7.69 (m, 3H), 7.60–7.54 (m, 4H), 7.53–7.44 (m, 2H), 7.03–6.97 (m, 1H), 6.92 (d, J = 7.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 153.43, 147.49, 142.19, 142.16, 135.86, 129.73, 129.53, 129.43, 128.80, 128.23, 126.35, 122.85, 122.50, 122.21, 120.50, 120.15, 116.37, 111.59. HRMS(ESI-TOF): $[M+H]^+$ calculated for $C_{21}H_{14}BrN_2^+$: 373.0335, found: 373.0341.

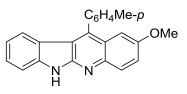
4-Bromo-11-phenyl-6*H*-indolo[2,3-*b*]quinoline (3k):


Yellow solid; mp: 266 - 268 °C, 32.1 mg, 43% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.97 (s, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.78 (dd, J = 9.0, 2.2 Hz, 1H), 7.73 - 7.66 (m, 4H), 7.57 - 7.53 (m, 2H), 7.50 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H), 6.96 (t, J =7.3 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 153.12, 145.35, 142.33, 140.95, 135.71, 131.77, 130.02, 129.77, 129.51, 129.49, 128.89, 127.75, 124.66, 122.95, 120.37, 120.05, 116.61, 115.73, 111.58. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₁H₁₄BrN₂⁺: 373.0335, found: 373.0333.

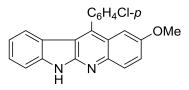
7-Phenyl-12*H*-benzo[*h*]indolo[2,3-*b*]quinoline (3l):


Yellow solid; mp: 289 - 292 °C, 53.7 mg, 78% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 12.11 (s, 1H), 9.32 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 6.3 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.62 - 7.53 (m, 5H), 7.52 - 7.44 (m, 4H), 7.36 (dt, J = 8.1, 4.2 Hz, 1H), 6.89 (d, J = 3.4 Hz, 2H). ¹³C NMR (151 MHz, DMSO- d_6) δ 151.90, 144.57, 142.48, 141.43, 136.80, 133.42, 131.14, 129.65, 129.63, 129.62, 129.17, 128.41, 128.18, 127.98, 126.90, 124.80, 123.98, 123.83, 122.52, 120.75, 119.89, 115.24, 111.67. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₅H₁₇N₂⁺: 345.1386, found: 345.1382.

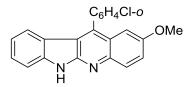
3-Methoxy-5-phenyl-10*H***-indolo**[2,3-*b*][1,7]naphthyridine (3m):


Yellow solid; mp: 266 - 268 °C, 50.1 mg, 77% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.87 (s, 1H), 8.28 (d, J = 9.0 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.3 Hz, 2H), 7.6 - 7.56 (m, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.21 (d, J = 9.0 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 159.42, 151.50, 142.29, 140.36, 139.78, 139.11, 135.84, 135.27, 130.51, 128.68, 128.60, 128.52, 123.11, 120.44, 119.61, 117.63, 115.38, 111.55, 53.20. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₁H₁₆N₃O⁺: 326.1288, found: 326.1280.

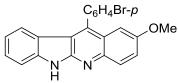
2-Methoxy-11-(4-methoxyphenyl)-6*H*-indolo[2,3-*b*]quinoline (3n):

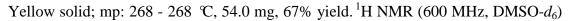

Yellow solid; mp: 246 - 248 °C, 50.0 mg, 72% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.68 (s, 1H), 7.97 (d, J = 9.1 Hz, 1H), 7.48 (m, 3H), 7.44 - 7.40 (m, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.04 - 6.99 (m, 2H), 6.96 (t, J = 7.5 Hz, 1H), 3.92 (s, 3H), 3.69 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 159.84, 155.15, 151.87, 142.76, 142.06, 140.63, 130.90, 129.20, 128.41, 128.22, 124.18, 122.82, 121.05, 120.67, 119.51, 116.24, 115.06, 111.23, 104.58, 55.67, 55.57. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₃H₁₉N₂O₂⁺: 355.1441, found: 355.1439.

2-Methoxy-11-(*p*-tolyl)-6*H*-indolo[2,3-*b*]quinoline (30):


Yellow solid; mp: 286 - 288 °C, 50.1 mg, 74% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.70 (s, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.51 (d, J = 7.6 Hz, 2H), 7.49 - 7.39 (m, 5H), 7.00 - 6.92 (m, 3H), 3.68 (s, 3H), 2.52 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 155.17, 151.86, 142.74, 142.08, 140.79, 138.42, 133.57, 130.28, 129.43, 129.22, 128.25, 123.96, 122.80, 121.08, 120.60, 119.49, 116.03, 111.25, 104.55, 55.58, 21.55. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₃H₁₉N₂O⁺: 339.1492, found: 339.1499.

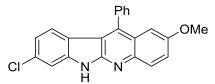
11-(4-Chlorophenyl)-2-methoxy-6*H*-indolo[2,3-*b*]quinoline (3p):


Yellow solid; mp: 260 - 262 °C, 52.4 mg, 73% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.73 (s, 1H), 7.99 (d, J = 9.2 Hz, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.47 (s, 1H), 7.45 (s, 2H), 7.00 (t, J = 6.9 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.90 (d, J = 2.8 Hz, 1H), 3.71 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 155.36, 151.75, 142.70, 142.17, 139.22, 135.46, 133.99, 131.62, 129.90, 129.34, 128.48, 123.61, 122.69, 121.30, 120.30, 119.71, 115.94, 111.39, 104.20, 55.65. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₂H₁₆ClN₂⁺O: 359.0946, found: 359.0947.


11-(2-Chlorophenyl)-2-methoxy-6*H*-indolo[2,3-*b*]quinoline (3q):

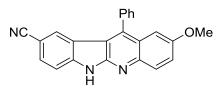
Yellow solid; mp: 270 - 272 °C, 62.4 mg, 87% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.76 (s, 1H), 7.98 (d, J = 9.1 Hz, 1H), 7.76 (d, J = 7.3 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 8.0 Hz, 1H), 7.46 - 7.39 (m, 2H), 6.97 (q, J = 7.7 Hz, 2H), 6.90 (s, 1H), 3.69 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 155.33, 151.76, 142.70, 142.19, 139.17, 135.46, 134.00, 131.58, 129.85, 129.28, 128.42, 123.60, 122.693, 121.22, 120.31, 119.66, 115.94, 111.37, 104.18, 55.58. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₂H₁₆ClN₂O⁺: 359.0946, found: 359.0947.


11-(4-Bromophenyl)-2-methoxy-6*H*-indolo[2,3-*b*]quinoline (3r):

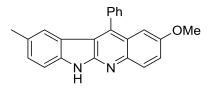

δ 11.77 (s, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.89 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.49 (d, J = 8.0 Hz, 1H), 7.45 - 7.39 (m, 2H), 7.00 - 6.97 (m, 2H), 6.90 (s, 1H), 3.69 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 155.35, 151.77, 142.71, 142.21, 139.18, 135.86, 132.77, 131.88, 129.31, 128.44, 123.53, 122.69, 122.63, 121.25, 120.31, 119.67, 115.87, 111.40, 104.19, 55.62. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₂H₁₆BrN₂O⁺: 403.0441, found: 403.0447.

11-Hexyl-2-methoxy-6*H*-indolo[2,3-b]quinoline (3s):

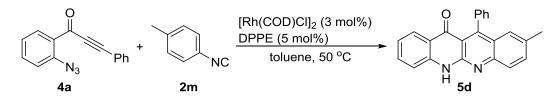
White solid; mp: 180 - 182 °C, 39.9 mg, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 11.07 (s, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 8.10 (d, *J* = 9.1 Hz, 1H), 7.56 - 7.49 (m, 3H), 7.46 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.32 - 7.27 (m, 1H), 4.01 (s, 3H), 3.66 - 3.55 (m, 2H), 1.92 (q, *J* = 7.9 Hz, 2H), 1.71 - 1.60 (m, 2H), 1.49 - 1.33 (m, 4H), 0.92 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.31, 152.15, 143.01, 142.20, 141.21, 128.61, 127.41, 123.94, 123.45, 121.35, 120.73, 119.92, 116.48, 110.80, 102.93, 55.62, 31.75, 30.00, 29.24, 29.11, 22.64, 14.11. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₂H₂₅N₂O⁺: 333.1961, found: 333.1954.


8-Chloro-2-methoxy-11-phenyl-6*H*-indolo[2,3-*b*]quinoline (3t):

Yellow solid; mp: 256 - 258 °C, 62.4 mg, 87% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.85 (s, 1H), 7.99 (d, J = 9.2 Hz, 1H), 7.74 - 7.67 (m, 3H), 7.56 (d, J = 6.9 Hz, 2H), 7.48 - 7.43 (m, 2H), 7.00 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 2.5 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 155.46, 151.90, 142.89, 140.95, 136.25, 132.71, 129.82, 129.44, 129.39, 124.00, 123.85, 121.50, 119.72,


119.46, 115.26, 111.03, 104.44, 55.58. HRMS (ESI-TOF): $[M+H]^+$ calculated for $C_{22}H_{16}ClN_2O^+$: 359.0946, found: 359.0956.

2-Methoxy-11-phenyl-6*H*-indolo[2,3-*b*]quinoline-9-carbonitrile (3u):


Yellow solid; mp: 269 - 271 °C, 46.1 mg, 66% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 12.29 (s, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 6.6 Hz, 3H), 7.58 (d, J = 5.8 Hz, 3H), 7.46 (dd, J = 9.2, 2.2 Hz, 1H), 7.05 (s, 1H), 6.94 (s, 1H), 3.68 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 155.71, 151.73, 144.54, 143.28, 141.88, 135.83, 131.49, 129.9, 129.65, 129.52, 129.34, 126.55, 124.10, 122.14, 120.88, 120.41, 114.66, 112.42, 104.34, 101.15, 55.59. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₃H₁₆N₃O⁺: 350.1288, found: 350.1285.

2-Methoxy-9-methyl-11-phenyl-6*H*-indolo[2,3-*b*]quinoline (3v):

Yellow solid, 36.5 mg, 54% yield. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.60 (s, 1H), 7.97 (d, *J* = 9.1 Hz, 1H), 7.74 - 7,66 (m, 3H), 7.55 (d, *J* = 7.0 Hz, 2H), 7.41 (d, *J* = 9.1 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 6.93 (s, 1H), 6.68 (s, 1H), 3.67 (s, 3H), 2.17 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 155.11, 152.06, 142.66, 140.50, 140.22, 136.65, 129.65, 129.52, 129.37, 129.18, 129.15, 127.96, 123.71, 122.85, 121.00, 120.61, 115.92, 111.02, 104.48, 55.53, 21.58. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₃H₁₉N₂O⁺: 339.1492, found: 339.1494. The values of the NMR spectra are in accordance with reported literature data.⁴

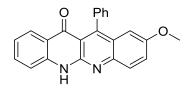
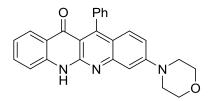
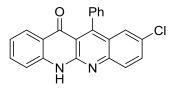

A sealed tube equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (0.006 mmol, 3.0 mg) and DPPE (0.01 mmol, 4.0 mg) in toluene (2.0 mL), then **4a** (0.2 mmol, 49.5 mg) and **2m** (0.2 mmol, 23.4 mg) were added. Subsequently, the reaction mixture was stirred at 50 °C for 6 h. After the reaction was complete, the reaction mixture was poured into saturated aqueous NaCl (30 mL) and extracted with CH₂Cl₂ (10 mL×3). The combined organic extracts were dried over anhydrous Mg₂SO₄. The crude residue was purified by silica gel column chromatography (EtOAc/petroleum ether = 1:10, V/V) to afford pure product **5d** (47.1 mg, 70%) as a yellow solid.

Table 1. Optimization of Reaction Conditions ^a	
--	--

	Ph^+ NC N ₃ Ph ⁺ NC	catalyst, lig solvent, 40 -		$\rightarrow \bigcup_{\substack{N \\ H \\ 5d}} O Ph$		
Entry	Catalyst (mol%)	Ligand (mol%)	T (°C)	Solvent	$\operatorname{Yield}^{b}(\%)$	
1	[Rh(COD)Cl] ₂ (3.0)	DPPE (5.0)	50	toluene	70 ^c	
2	$Pd(acac)_2$ (3.0)	DPPE (5.0)	50	toluene	30	
3	Ag ₂ CO ₃ (3.0)	DPPE (5.0)	50	toluene	0	
4	$[Rh(COD)Cl]_2(3.0)$	DPPE (0.0)	50	toluene	60	
5	[Rh(COD)Cl] ₂ (3.0)	DPPE (5.0)	30	toluene	43	
6	$[Rh(COD)Cl]_2(3.0)$	DPPE (5.0)	60	toluene	55	
7	[Rh(COD)Cl] ₂ (3.0)	DPPE (5.0)	50	PhCl	52	
8	[Rh(COD)Cl] ₂ (3.0)	DPPE (5.0)	50	DCM	0	
9	[Rh(COD)Cl] ₂ (3.0)	DPPE (5.0)	50	DMF	0	

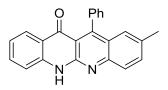

^{*a*} Reaction conditions: **4a** (0.2 mmol), **2m** (0.2 mmol), catalyst (0.006 mmol), ligand (0.01 mmol), solvent (2.0 mL), at 30-60 °C for 6 h in a sealed tube. [Rh(COD)Cl]₂ = Chloro(1,5-cyclooctadiene)-rhodium(I)dimer, DPPE = 1,2-Bis(diphenylphosphino)ethane. ^{*b*} Estimated by ¹H NMR spectroscopy using CH₂Br₂ as an internal standard. ^{*c*} Isolated yield.

2-Methoxy-12-phenyldibenzo[*b*,*g*][1,8]naphthyridin-11(6*H*)-one (5a):

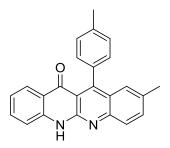

Yellow solid; mp: 217 - 219 °C, 47.9 mg, 68% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.53 (s, 1H), 8.26 (s, 1H), 7.89 (d, J = 8.9 Hz, 1H), 7.64 - 7.54 (m, 4H), 7.47 (s, 1H), 7.37 (s, 2H), 7.20 (s, 1H), 7.15 (s, 1H), 6.76 (s, 1H), 3.69 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 179.68, 156.07, 152.69, 149.23, 145.60, 140.69, 138.47, 134.36, 128.32, 127.83, 127.81, 127.74, 127.67, 126.35, 126.20, 121.66, 121.42, 116.00, 114.03, 105.26, 55.33. HRMS (ESI-TOF): [M+Na]⁺ calculated for C₂₃H₁₆N₂NaO₂⁺: 375.1104, found: 375.1098.

3-Morpholino-12-phenyldibenzo[*b*,*g*][1,**8**]naphthyridin-11(6*H*)-one (5b):

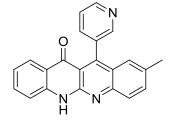
Yellow solid; mp: 194 - 196 °C, 55.4 mg, 68% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.79 (s, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.52 - 7.44 (m, 3H), 7.20 - 7.27 (m, 3H), 7.09 - 7.15 (m, 2H), 7.01 (d, J = 1.8 Hz, 1H), 3.75 - 3.83 (m, 4H),3.35 - 3.41 (m, 4H). ¹³C NMR (151 MHz, DMSO- d_6) δ 178.56, 153.97, 152.30, 151.86, 151.25, 141.57, 139.01, 134.34, 128.89, 128.54, 128.14, 127.37, 126.64, 121.31, 121.20, 119.17, 117.05, 116.63, 111.14, 105.33, 66.34, 47.56. HRMS (ESI-TOF): [M+Na]⁺ calculated for C₂₆H₂₁N₃NaO₂⁺: 430.1526, found: 430.1528.


2-Chloro-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-one (5c):

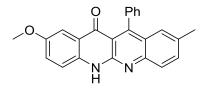
Yellow solid, 45.7 mg, 64% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.15 (s, 1H), 8.21


(d, J = 7.9 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.65 (dd, J = 9.0, 1.9 Hz, 1H), 7.59 (q, J = 8.4, 7.4 Hz, 4H), 7.46 (d, J = 2.1 Hz, 1H), 7.32 (d, J = 6.4 Hz, 2H), 7.20 - 7.13 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 179.48, 153.89, 150.46, 147.58, 140.44, 137.32, 134.72, 133.55, 130.05, 128.42, 128.06, 127.98, 127.87, 127.79, 126.98, 126.16, 121.99, 121.70, 116.05, 114.37. HRMS (ESI-TOF): [M+Na]⁺ calculated for C₂₂H₁₃ClN₂NaO⁺: 379.0609, found: 379.0598. The values of the NMR spectra are in accordance with reported literature data.⁵

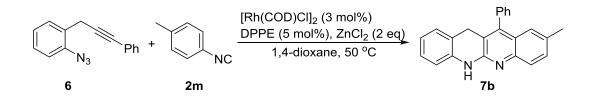
2-Methyl-12-phenyldibenzo[*b*,*g*][1,8]naphthyridin-11(6*H*)-one (5d):


Yellow solid, 47.1 mg, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.54 (s, 1H), 8.15 (dd, J = 8.0, 1.1 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.56 – 7.49 (m, 5H), 7.27 – 7.22 (m, 2H), 7.19 (s, 1H), 7.15 (d, J = 8.2 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 179.47, 154.50, 149.74, 146.86, 140.39, 138.02, 135.54, 134.52, 134.40, 128.23, 127.81, 127.76, 127.73, 127.09, 125.55, 125.40, 121.80, 121.71, 116.17, 114.01, 21.71. HRMS (ESI-TOF): [M+Na]⁺ calculated for C₂₃H₁₆N₂NaO⁺: 359.1155, found: 359.1145. The values of the NMR spectra are in accordance with reported literature data.⁶

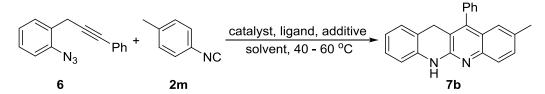
2-Methyl-12-(*p*-tolyl)dibenzo[*b*,*g*][1,8]naphthyridin-11(6*H*)-one (5e):


Yellow solid; mp: 228 - 230 °C, 45.6 mg, 65% yield. ¹H NMR (500 MHz, CDCl₃) δ 10.53 (s, 1H), 8.26 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.3 Hz, 1H), 7.40 (d, J = 7.6 Hz, 2H), 7.32 (s, 1H), 7.22 (d, J = 7.7Hz, 2H), 7.17 (d, J = 8.3 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 2.54 (s, 3H),2.41 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 179.85, 154.23, 150.17, 147.84, 140.68, 137.18, 135.19, 134.34, 134.05, 128.98, 127.88, 127.80, 127.09, 126.16, 125.77, 121.75, 121.47, 115.97, 114.16, 21.70, 21.63. HRMS (ESI-TOF): $[M+Na]^+$ calculated for C₂₄H₁₈N₂NaO⁺: 373.1311, found: 373.1302.

2-Methyl-12-(pyridin-3-yl)dibenzo[b,g][1,8]naphthyridin-11(6H)-one (5f):

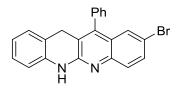

Yellow solid; mp: 182 - 184 °C, 42.5 mg, 63% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 12.09 (s, 1H), 8.71 (d, J = 2.9 Hz, 1H), 8.47 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.6 Hz, 1H), 7.70 – 7.75 (m, 3H), 7.58 (d, J = 8.1 Hz, 2H), 7.17 (t, J = 7.3 Hz, 1H), 7.05 (s, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 179.36, 150.02, 148.78, 148.62, 148.50, 148.41, 141.83, 136.23, 135.52, 135.02, 134.70, 134.38, 127.04, 126.77, 125.69, 124.71, 123.43, 121.50, 120.85, 117.23, 113.89, 21.72. HRMS (ESI-TOF): [M+Na]⁺ calculated for C₂₂H₁₅N₃NaO⁺: 360.1107, found: 360.1116.

9-Methoxy-2-methyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-one (5g):

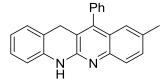

Yellow solid; mp: 215 - 217 °C, 53.5 mg, 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 10.36 (s, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 2.8 Hz, 1H), 7.54 - 7.65 (m, 4H), 7.30 - 7.38 (m, 2H), 7.26 (s, 1H), 7.24 (dd, J = 8.9, 2.9 Hz, 1H), 7.17 (d, J = 8.9 Hz, 1H), 3.79 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 179.35, 154.71, 153.80, 149.65, 147.96, 138.47, 135.27, 135.25, 133.93, 128.18, 127.82, 127.57, 126.91, 126.06, 125.42, 125.36, 122.04, 117.65, 113.28, 106.84, 55.71, 21.70. HRMS $(\text{ESI-TOF}): \ [\text{M}+\text{Na}]^+ \ \text{calculated for} \ \text{C}_{24}\text{H}_{18}\text{N}_2\text{NaO}_2^+: \ 389.1260, \ \text{found:} \ 389.1262.$

IV. General Procedure for the Preparation of 7 (7b as example):

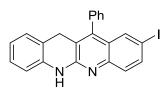
A sealed tube equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (0.006 mmol, 3.0 mg), DPPE (0.01 mmol, 4.0 mg) and $ZnCl_2$ (0.4 mmol, 54.5 mg) in 1,4-dioxane (2.0 mL), then **6** (0.2 mmol, 46.7 mg) and **2m** (0.2 mmol, 23.4 mg) were added. Subsequently, the reaction mixture was stirred at 50 °C for 6 h. After the reaction was complete, the reaction mixture was poured into saturated aqueous NaCl (30 mL) and extracted with CH_2Cl_2 (10 mL×3). The combined organic extracts were dried over anhydrous Mg_2SO_4 . The crude residue was purified by silica gel column chromatography (EtOAc/petroleum ether = 1:10, V/V) to afford pure product **7b** (46.4 mg, 72%) as a yellow solid.


 Table 2. Optimization of Reaction Conditions^a

entry	catalysts	ligand	additive	t	solvent	yield ^b	
	(mol %)	(mol %)	(eq)	(°C)	solvent	(%)	
1	$[Rh(COD)Cl]_2(3)$	DPPE (5)		50	1,4-dioxane	50	
2	$[Rh(COD)Cl]_2(3)$	DPPE (5)	$ZnCl_2(1 eq)$	50	1,4-dioxane	60	
3	$[Rh(COD)Cl]_2(3)$	DPPE (5)	$ZnCl_2(2 eq)$	50	1,4-dioxane	72^{c}	
4	$[Rh(COD)Cl]_2(3)$	DPPE (5)	$ZnCl_2(3 eq)$	50	toluene	52	
5	$[Rh(COD)Cl]_2(3)$	DPPE (5)	$ZnCl_2(2 eq)$	50	CH ₃ CN	55	
6	$[Rh(COD)Cl]_2(3)$	DPPE (5)	$ZnCl_2(2 eq)$	50	THF	42	
7	$[Rh(COD)Cl]_2(3)$	DPPE (5)	$ZnCl_2(2 eq)$	50	1,4-dioxane	62	
8	$[Rh(COD)Cl]_2(3)$	DPPE (5)	BF_3 •Et ₂ O (2 eq)	50	1,4-dioxane	35	
9	$[Rh(COD)Cl]_2(3)$	2,2'-bpy (5)	$ZnCl_2(2 eq)$	50	1,4-dioxane	25	
10	$[Rh(COD)Cl]_2(3)$	DPPE (5)	AgOTf (2 eq)	50	1,4-dioxane	48	
11	$[Rh(COD)Cl]_{2}(3)$	DPPE (5)	$Zn(OAc)_{2}(2 eq)$	50	1,4-dioxane	50	
12	$[Rh(COD)Cl]_{2}(3)$	DPPE (5)	$ZnCl_2(2 eq)$	40	1,4-dioxane	65	
13	$[Rh(COD)Cl]_2(3)$	DPPE (5)	$ZnCl_2(2 eq)$	60	1,4-dioxane	68	
^a Reaction conditions: 6 (0.2 mmol), 2m (0.2 mmol), catalyst (0.006 mmol), ligand (0.01 mmol), addive (0.2-0.4							
mmol), solvent (2.0 mL), at 40-60 $^{\circ}$ for 6 h in a sealed tube. [Rh(COD)Cl] ₂ =							
Chloro(1,5-cyclooctadiene)-rhodium(I)dimer, DPPE = $1,2$ -Bis(diphenylphosphino)ethane. ^b Estimated by ¹ H NMR							

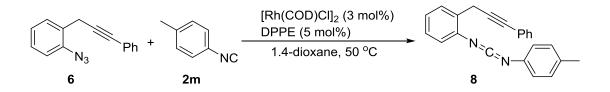

spectroscopy using CH₂Br₂ as an internal standard. ^c Isolated yield.

9-Bromo-11-phenyl-5,12-dihydrodibenzo[*b*,*g*][1,8]naphthyridine(7a):

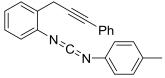

Yellow solid; mp: 198 - 200 °C, 51.9 mg, 67% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 7.64 - 7.53 (m, 5H), 7.36 (s, 1H), 7.32 - 7.25 (m, 2H), 7.09 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 6.86 (d, J = 7.4 Hz, 1H), 6.71 (s, 1H), 3.94 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 152.07, 146.36, 145.10, 138.16, 135.70, 132.46, 129.11, 128.89, 128.52, 128.46, 128.17, 127.91, 127.56, 126.90, 121.63, 119.39, 116.62, 116.37, 114.14, 30.13. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₂H₁₆BrN₂⁺: 387.0491, found: 387.0481.

9-Methyl-11-phenyl-5,12-dihydrodibenzo[b,g][1,8]naphthyridine (7b):

Yellow solid; mp: 190 - 192 °C, 46.4 mg, 72% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, J = 8.5 Hz, 1H), 7.61 (s, 1H), 7.58 (t, J = 7.3 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.29 (d, J = 7.0 Hz, 2H), 7.08 (t, J = 7.6 Hz, 1H), 6.99 (s, 1H), 6.96 (d, J = 7.4 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 7.9 Hz, 1H), 3.91 (s, 2H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.13, 146.63, 144.72, 138.67, 136.65, 132.64, 131.24, 129.02, 128.85, 128.46, 128.02, 127.40, 126.02, 125.46, 125.10, 121.21, 119.61, 115.36, 113.95, 30.13, 21.47. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₃H₁₉N₂⁺: 323.1543, found: 323.1549.


9-Iodo-11-phenyl-5,12-dihydrodibenzo[*b*,*g*][1,8]naphthyridine (7c):

Yellow solid; mp: 195 - 197 °C, 60.8 mg, 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (s, 1H), 7.75 (dd, J = 8.8, 1.6 Hz, 1H), 7.63 - 7.53 (m, 4H), 7.46 (d, J = 8.8 Hz, 1H), 7.27 (d, J = 7.1 Hz, 2H), 7.09 (s, 1H), 6.97 (d, J = 7.4 Hz, 1H), 6.86 (d, J = 7.4


Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 3.92 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 152.03, 146.15, 145.52, 138.07, 137.85, 135.66, 134.63, 129.10, 128.89, 128.51, 128.45, 128.07, 127.56, 121.68, 119.38, 116.40, 114.13, 87.31, 30.10. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₂H₁₆IN₂⁺: 435.0353, found: 435.0349.

V. General Procedure for the Preparation of 8:

A sealed tube equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (0.006 mmol, 3.0 mg) and DPPE (0.01 mmol, 4.0 mg) in toluene (2.0 mL), then **6** (0.2 mmol, 46.7 mg) and **2m** (0.2 mmol, 23.4 mg) were added. Subsequently, the reaction mixture was stirred at 50 °C for 0.5 h. After the reaction was complete, the reaction mixture was poured into saturated aqueous NaCl (30 mL) and extracted with CH₂Cl₂ (10 mL×3). The combined organic extracts were dried over anhydrous Mg₂SO₄. The crude residue was purified by silica gel column chromatography (EtOAc/petroleum ether = 3:50, V/V) to afford pure product **8** (35.5 mg, 55%) as a yellow liquid and pure product **7b** (6.4 mg, 10%) as yellow liquid.

N-(2-(3-Phenylprop-2-yn-1-yl)phenyl)-*N*-(*p*-tolyl)methanediimine (8):

Yellow liquid, 35.5 mg, 55% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.5 Hz, 1H), 7.49 (dd, J = 6.7, 3.0 Hz, 2H), 7.33 (p, J = 3.4 Hz, 3H), 7.28 – 7.25 (m, 2H), 7.24 – 7.19 (m, 1H), 7.14 – 7.09 (m, 4H), 3.96 (s, 2H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 136.70, 135.53, 135.37, 134.78, 131.71, 130.92, 130.11, 129.40, 128.23, 127.92, 127.83, 125.72, 124.71, 123.97, 123.68, 87.04, 82.95, 22.30, 21.00. HRMS (ESI-TOF): [M+H]⁺ calculated for C₂₃H₁₉N₂⁺: 323.1543, found: 323.1541.

References:

1. (a) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Umpolung Reactivity of Indole through Gold Catalysis. Angew. Chem. Int. Ed. 2011, 50, 8358-8362. (b) Liu, Q.; Chen, P.; Liu, G. Palladium-Catalyzed C–C Triple Bond Cleavage: Efficient Synthesis of 4H-Benzo[d][1,3]oxazin-4-ones. ACS Catal. 2013, 3, 178-181. (c) Su, H.; Bao, M.; Pei, C.; Hu, W.; Qiu, L.; Xu, X. Gold-catalyzed dual annulation of azide-tethered alkynes with nitriles: expeditious synthesis of oxazolo[4,5-c]quinolines. Org. Chem. Front. 2019, 6, 2404-2409. (d) Qiu, Y. F.; Niu, Y. J.; Wei, X.; Cao, B.-Q.; Wang, X. C.; Quan, Z.-J. AgSCF₃/Na₂S₂O₈-Promoted Trifluoromethylthiolation/Cyclization of o-Propargyl Arylazides/ o-Alkynyl Benzylazides: Synthesis of SCF₃-Substituted Quinolines and Isoquinolines. J. Org. Chem. 2019, 84, 4165-4178. 2. (a) Zhang, Z.; Huang, B. L.; Qiao, G. Y.; Zhu, L.; Xiao, F.; Chen, F.; Fu, B.; Zhang, Z. H. Tandem Coupling of Azide with Isonitrile and Boronic Acid: Facile Access to Functionalized Amidines. Angew. Chem., Int. Ed. 2017, 56, 4320-4323. (b) Hu, Z.; Yuan, H.; Men, Y.; Liu, Q.; Zhang, J.; Xu, X. Cross-Cycloaddition of Two Different Isocyanides: Chemoselective Heterodimerization and [3+2]-Cyclization of 1,4-Diazabutatriene. Angew. Chem., Int. Ed. 2016, 55, 7077-7080. (c) Liu, Y.; Chen, X. L.; Li, X. Y.; Zhu, S. S.; Li, S. J.; Song, Y.; Qu, L. B.; Yu, B. 4CzIPN-^tBu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated N-Heteroaromatics. J. Am. Chem. Soc. 2021, 143, 964-972.

3. Ali, W.; Dahiya, A.; Pandey, R.; Alam, T.; Patel, B. K., Microwave-Assisted Cascade Strategy for the Synthesis of Indolo[2,3-*b*]quinolines from 2-(Phenylethynyl)anilines and Aryl Isothiocynates. *J. Org. Chem.* **2017**, *82*, 2089-2096.

4. Schmittel, M.; Steffen, J. P.; Rodri'guez, D.; Engelen, B.; Neumann, E.; Cinar, M. E. Thermal C2-C6 Cyclization of Enyne-Carbodiimides: Experimental Evidence Contradicts a Diradical and Suggests a Carbene Intermediate. *J. Org. Chem.* **2008**, *73*, 3005-3016.

5. Manoj, M. and Prasad, K. J. R., Synthesis of novel phenyl substituted dibenzonaphthyridines. *J. Chem. Res.* **2009**, *12*, 720-725.

6. Manoj, M.; Prasad, K. J. R., Effect of Substituents in the Syntheses of Phenyl-Substituted Dibenzonaphthyridines. *J. Heterocycl. Chem.* **2013**, *50*, 1049-1063.

VI. ORTEP Drawing of Compound 3g and 7a:

C H N

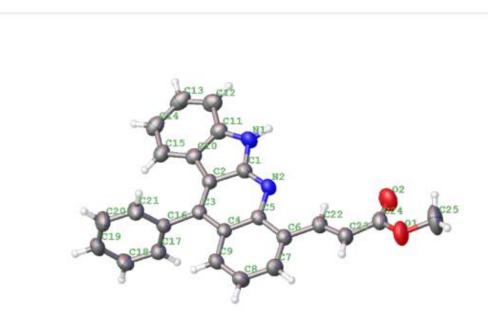


Figure 1. The ORTEP drawing of crystal 3g (The ellipsoid contour percent probability level is 50%).

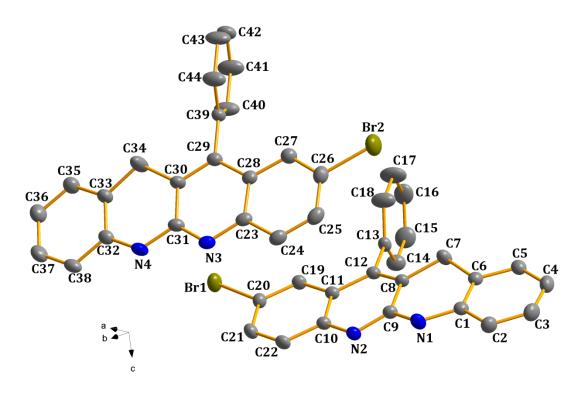
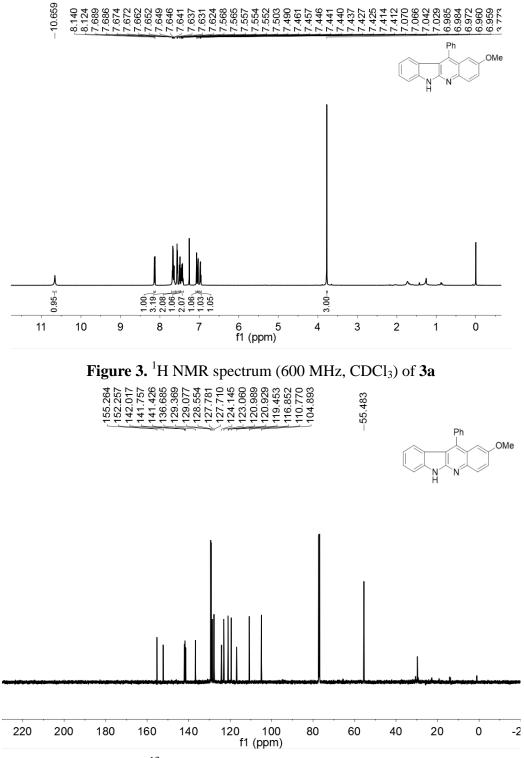
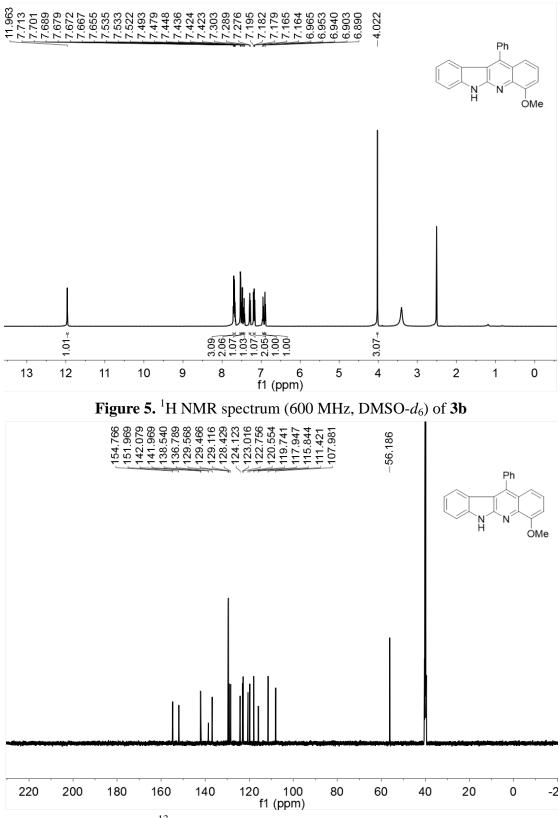
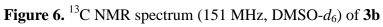
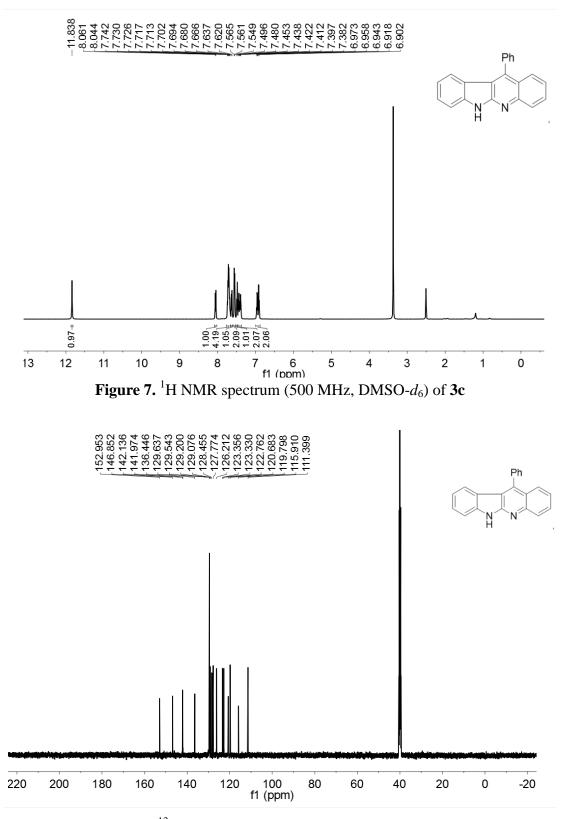


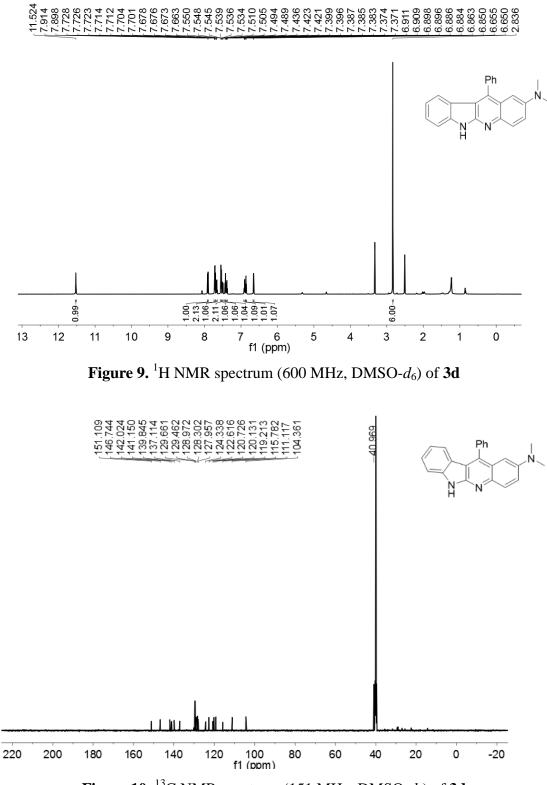
Figure 2. The ORTEP drawing of crystal 7a (The ellipsoid contour percent probability level is 50%).

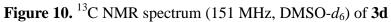
Method of Crystallization: The **3g** and **7a** were recrystallized from mixed solvents of ethyl acetate and petroleum ether at 25 °C.

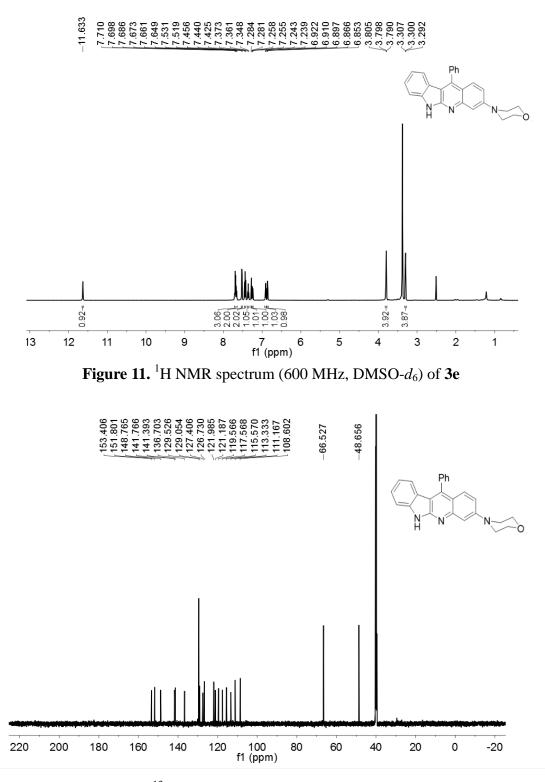
Introduction of crystal measuring instrument: X-ray single-crystal data of 3g and 7a were collected by a Bruker D8 Venture diffractometer (Mo K α radiation, $\lambda =$ 0.71073 Å (Cu Ka radiation, $\lambda = 1.54178$ Å)) at 293(2) K. The adsorption corrections were conducted by a multiscan technique. All the structures were solved via direct method and refined by the full-matrix least-squares technique using the SHELXL-2014 program. Anisotropic thermal parameters were used to refine the non-hydrogen atoms and hydrogen atoms contained in calculated were positions, refining with isotropic thermal parameters locating at those of the parent atoms.

VII. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of Compounds 3, 5, 7 and 8:


Figure 4. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3a





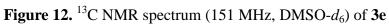


Figure 8. ¹³C NMR spectrum (126 MHz, DMSO- d_6) of **3c**

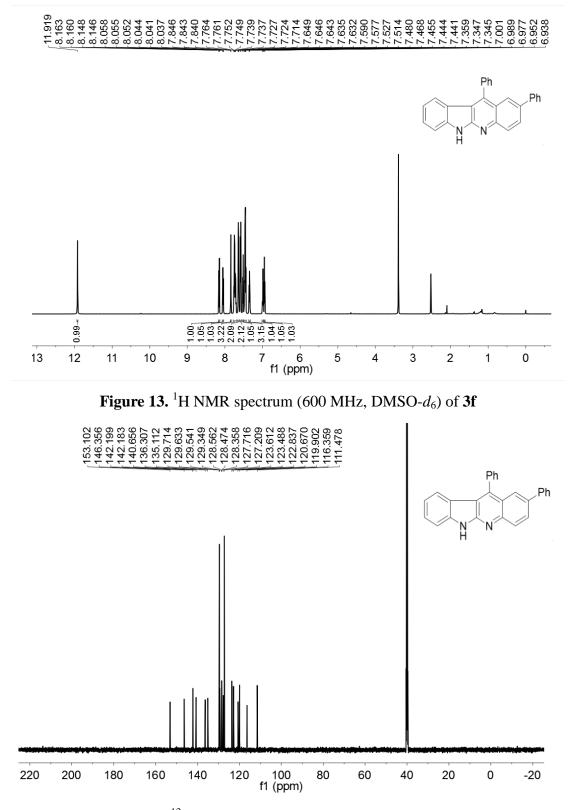
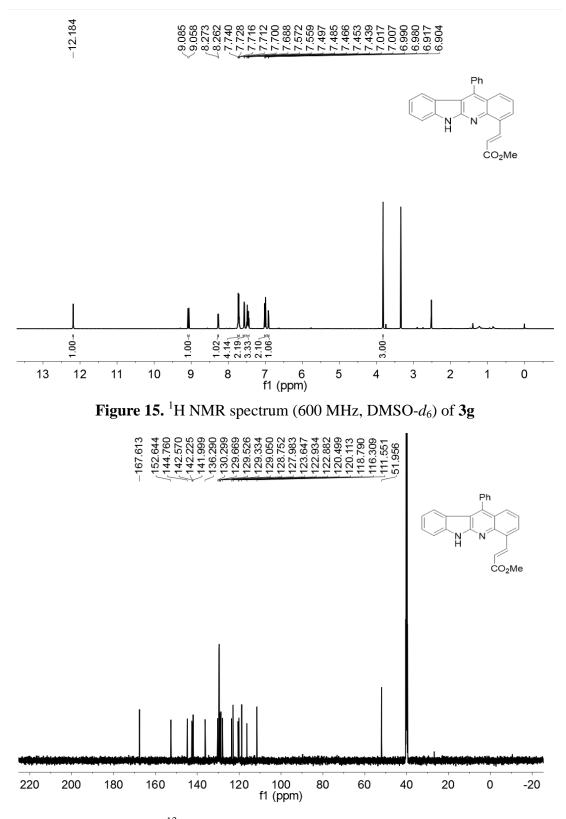



Figure 14. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of 3f

Figure 16. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of **3g**

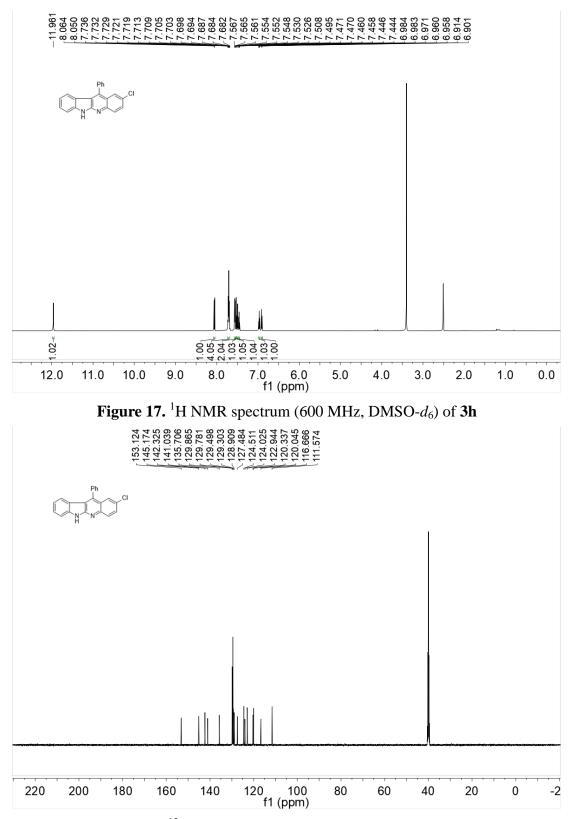


Figure 18. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of 3h

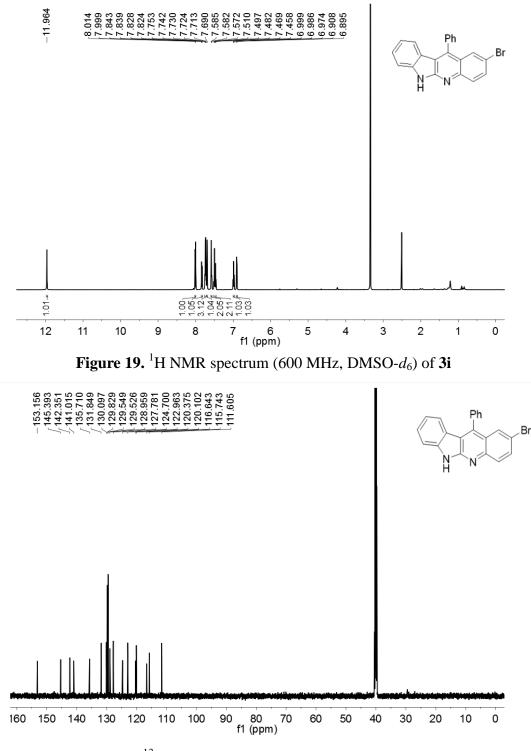
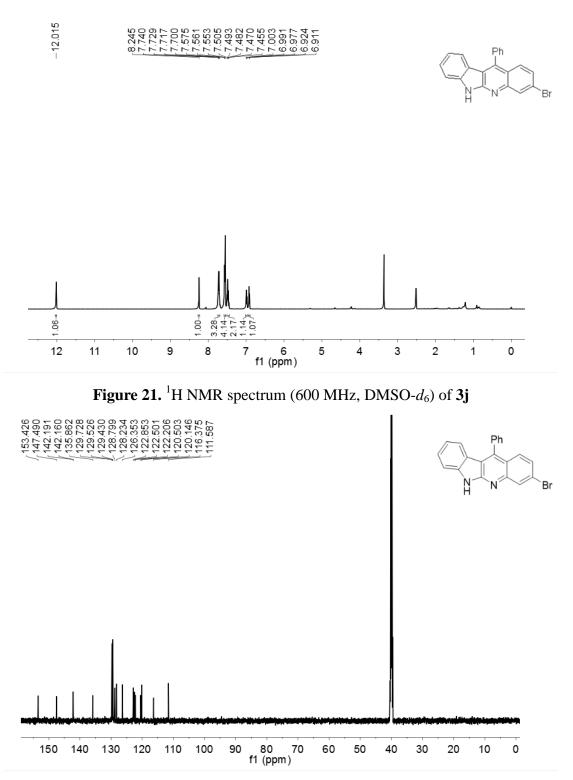
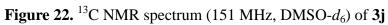




Figure 20. ¹³C NMR spectrum (151 MHz, DMSO-*d*₆) of 3i

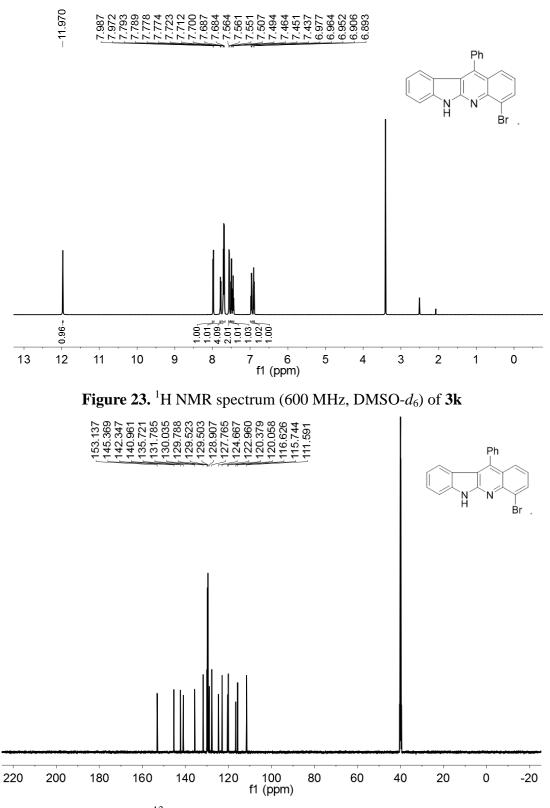
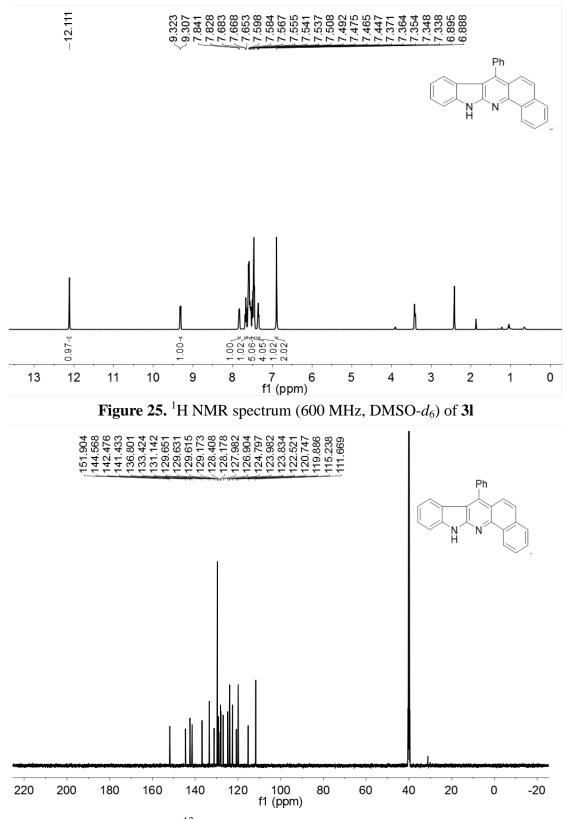
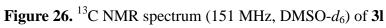




Figure 24. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of 3k

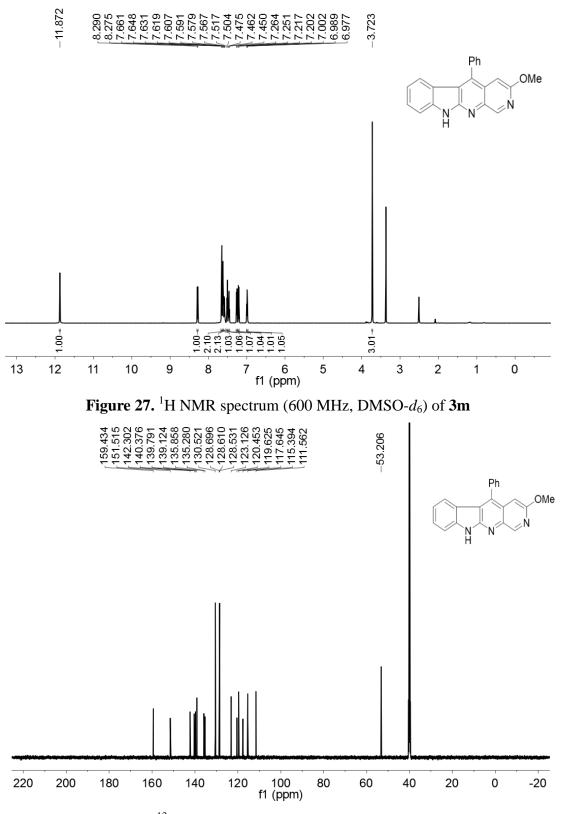


Figure 28. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of 3m

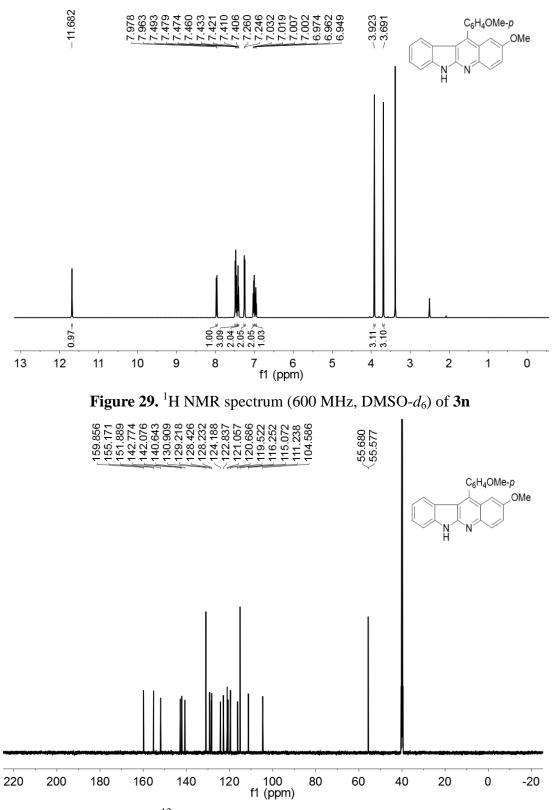
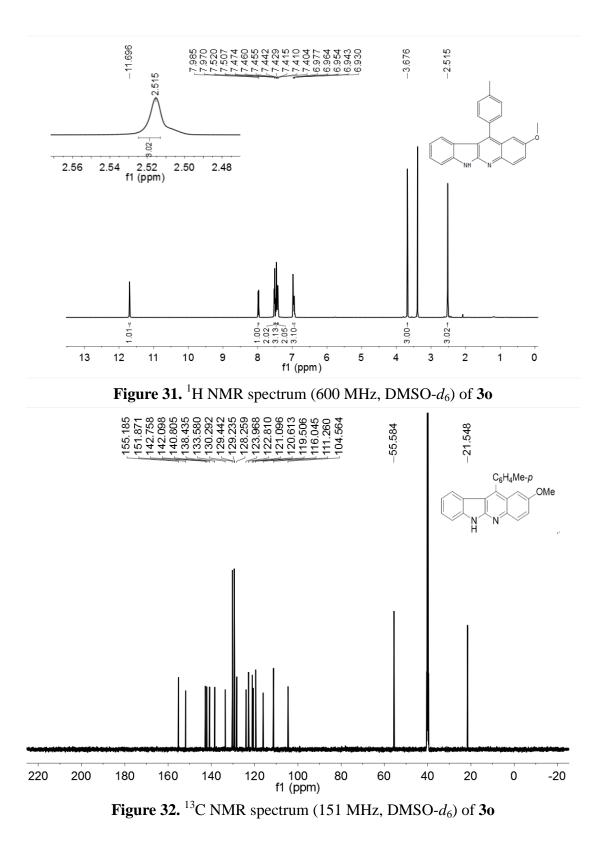



Figure 30. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of 3n

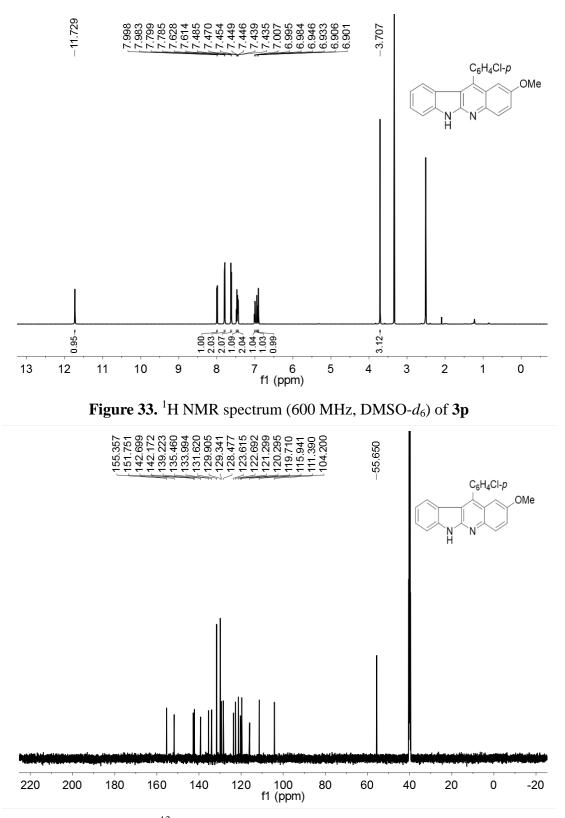


Figure 34. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of **3p**

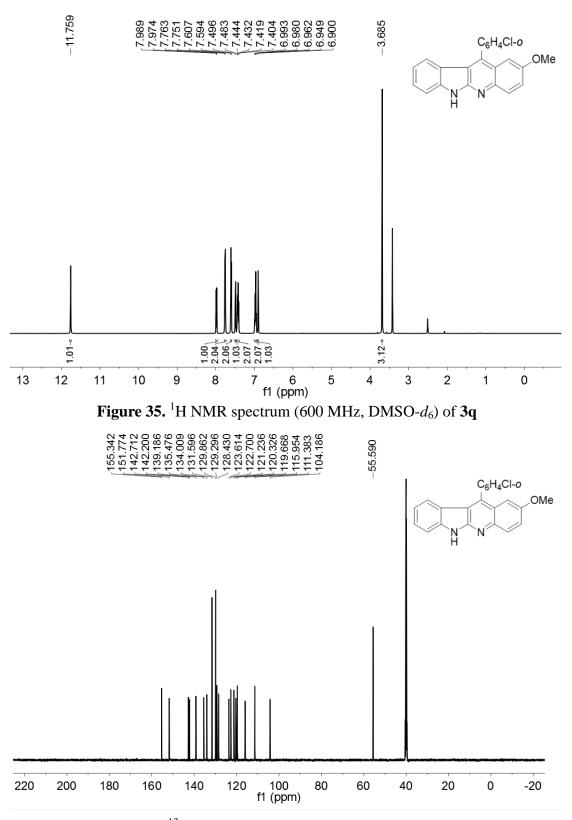


Figure 36. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of 3q

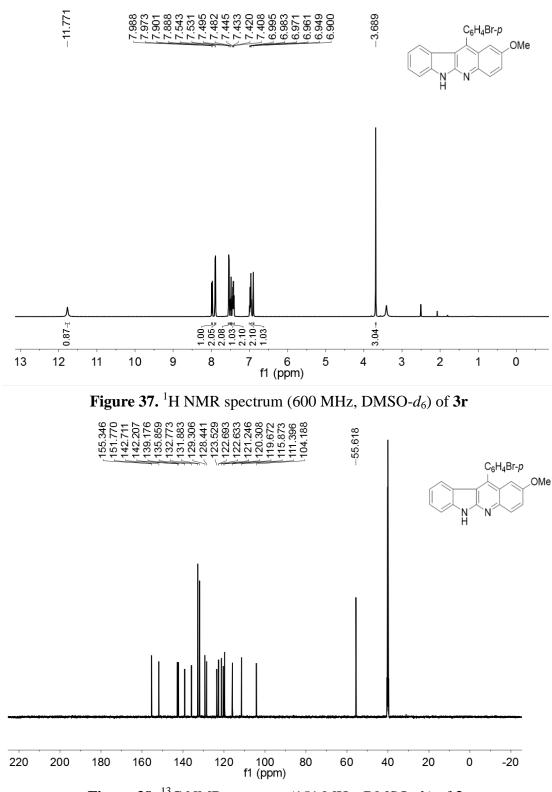
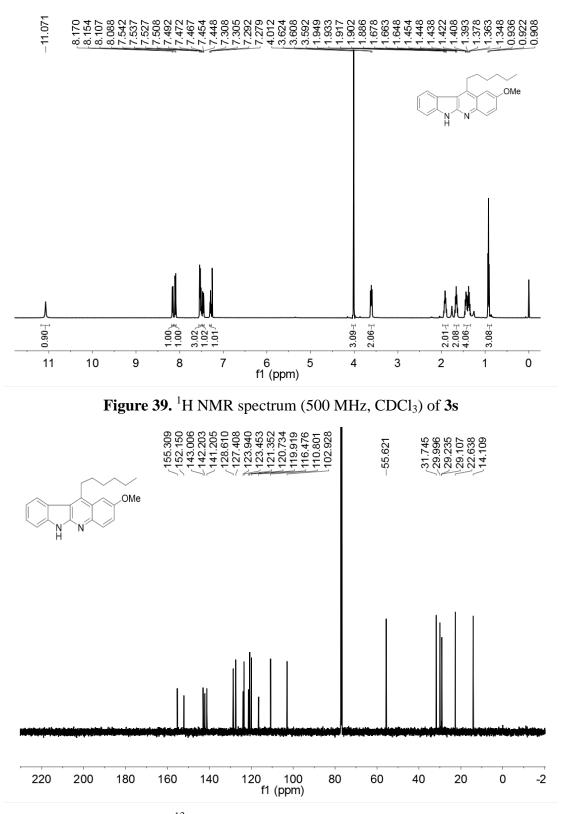
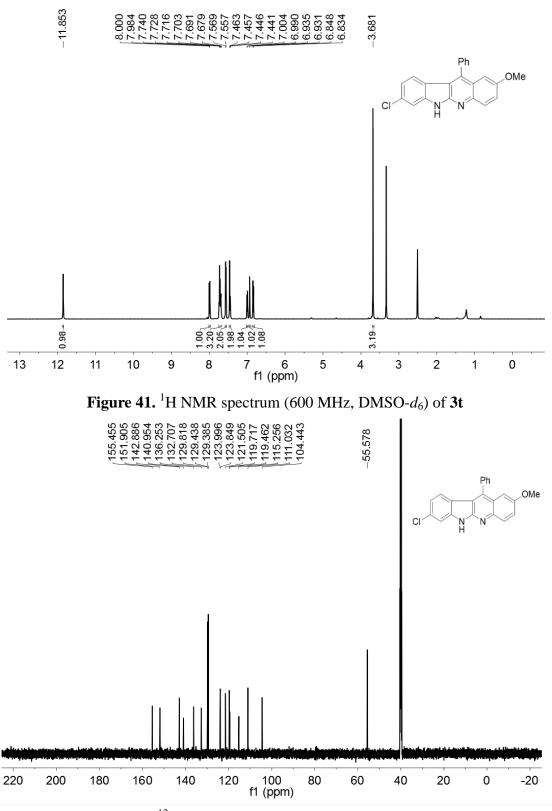
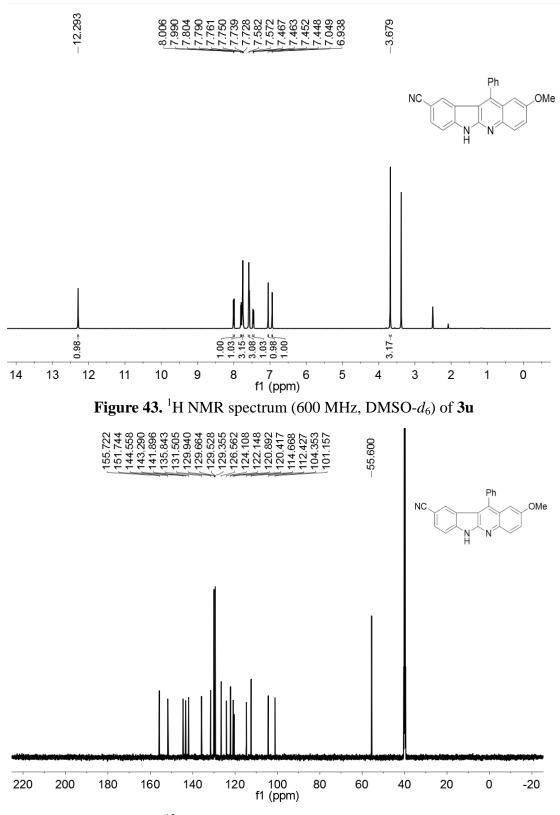


Figure 38. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of 3r

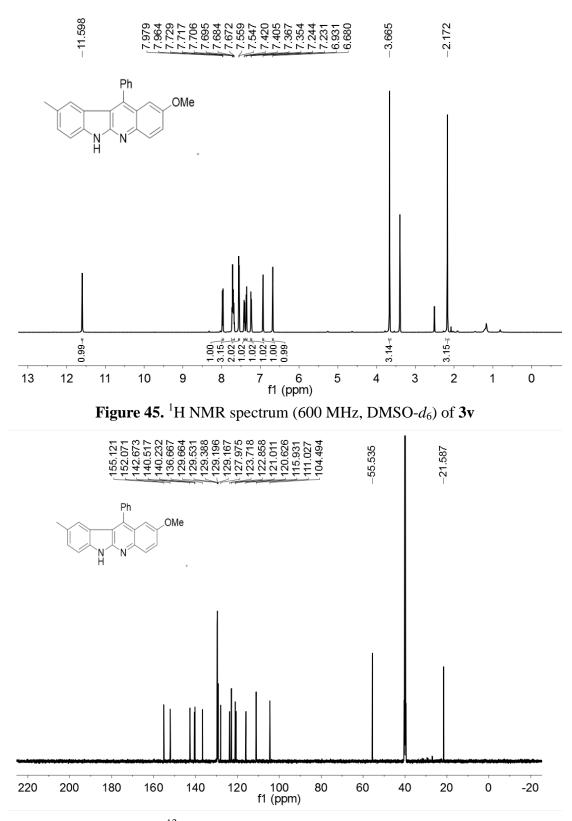

Figure 40. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3s

Figure 42. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of **3t**

Figure 44. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of **3u**

Figure 46. ¹³C NMR spectrum (151 MHz, DMSO- d_6) of **3v**

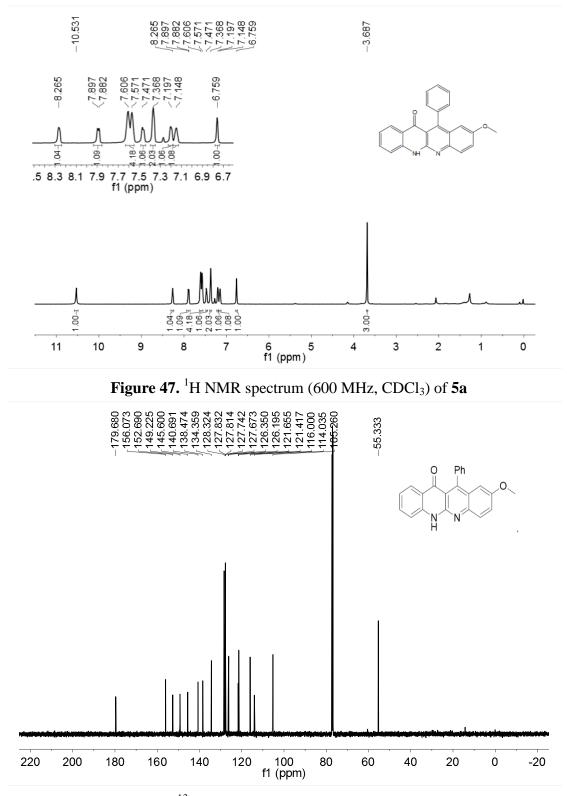
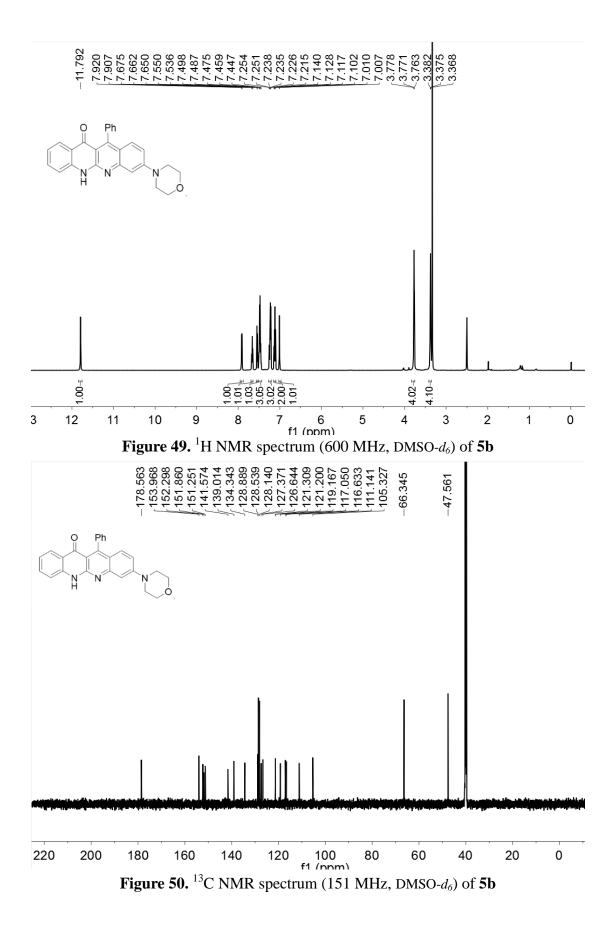
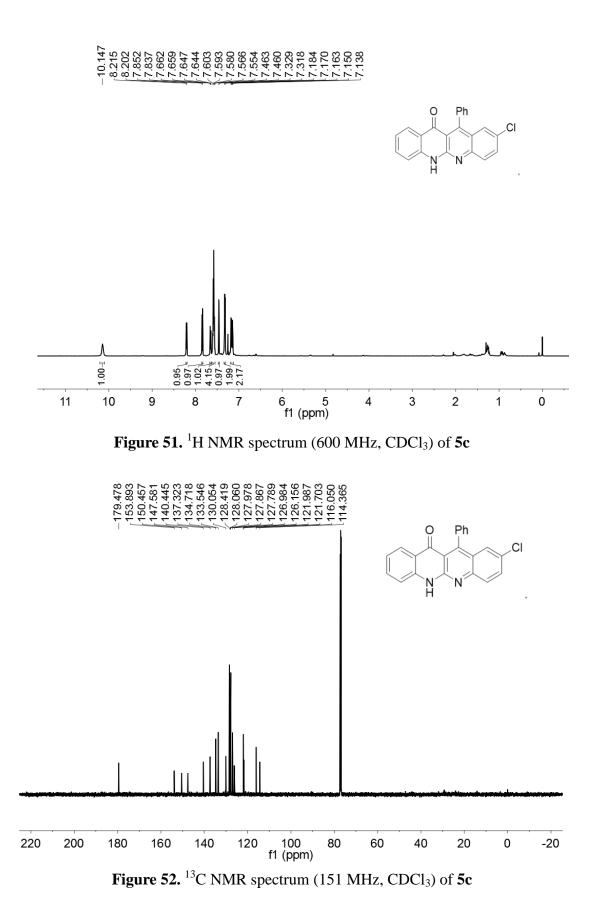




Figure 48. ¹³C NMR spectrum (151 MHz, CDCl₃) of 5a

S47

S48

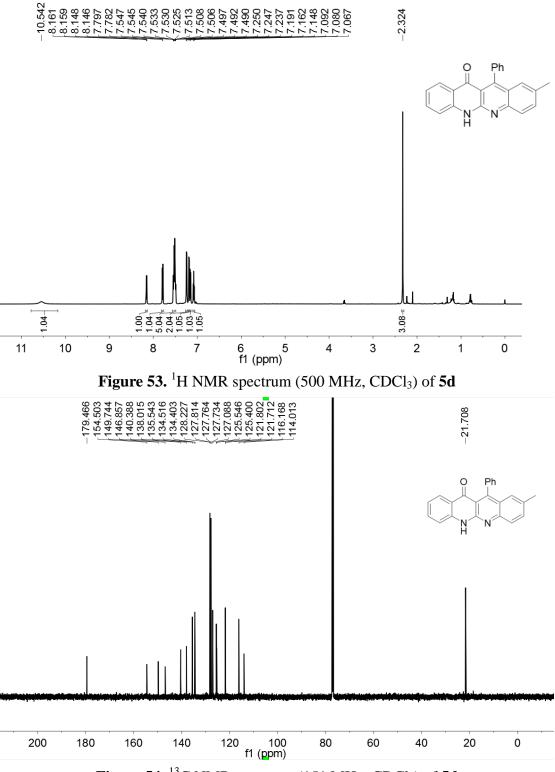


Figure 54. ¹³C NMR spectrum (151 MHz, CDCl₃) of 5d

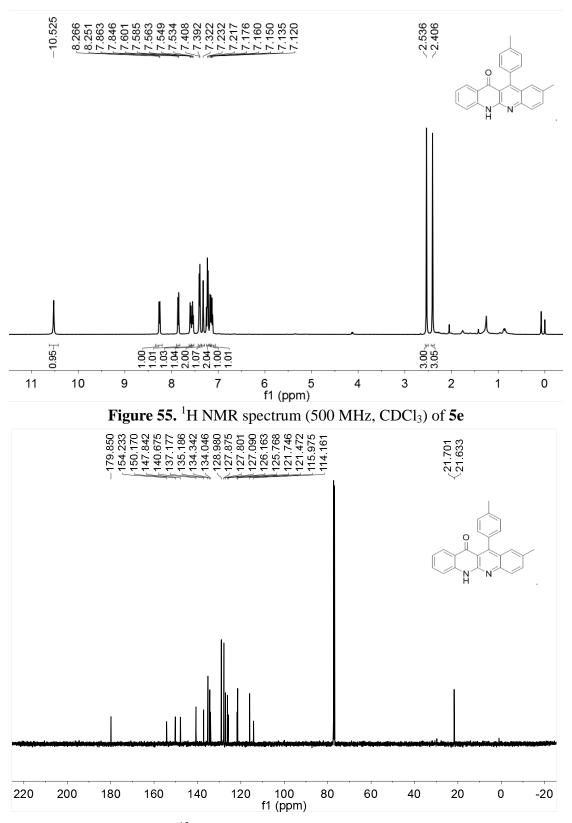


Figure 56. ¹³C NMR spectrum (151 MHz, CDCl₃) of 5e

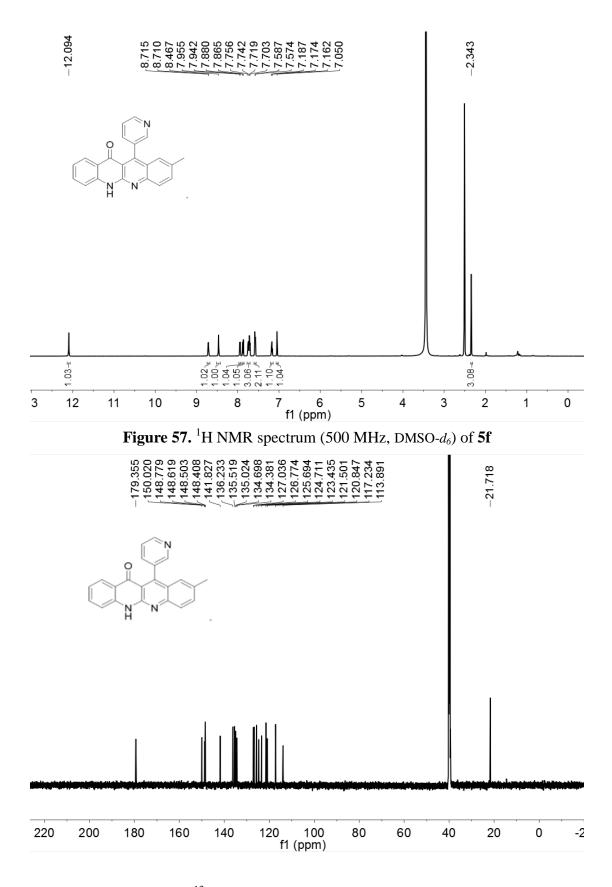


Figure 58. ¹³C NMR spectrum (151 MHz, DMSO-*d*₆) of 5f

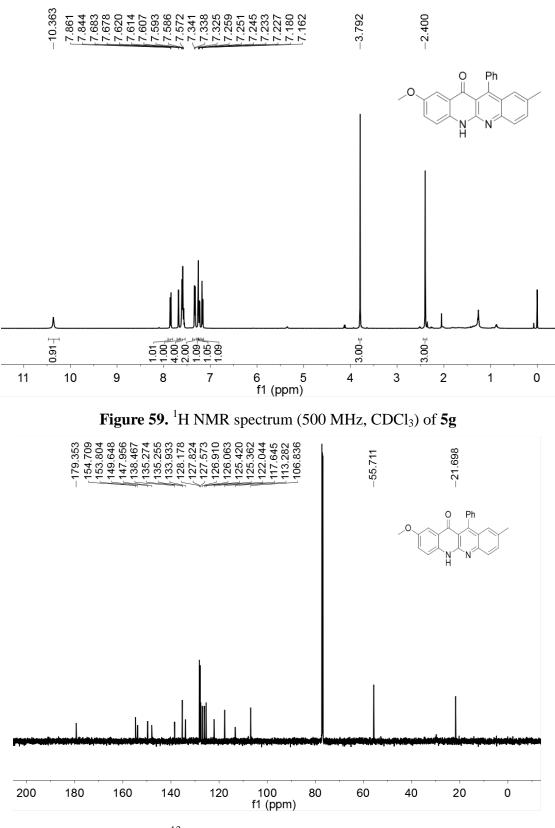


Figure 60. ¹³C NMR spectrum (151 MHz, CDCl₃) of 5g

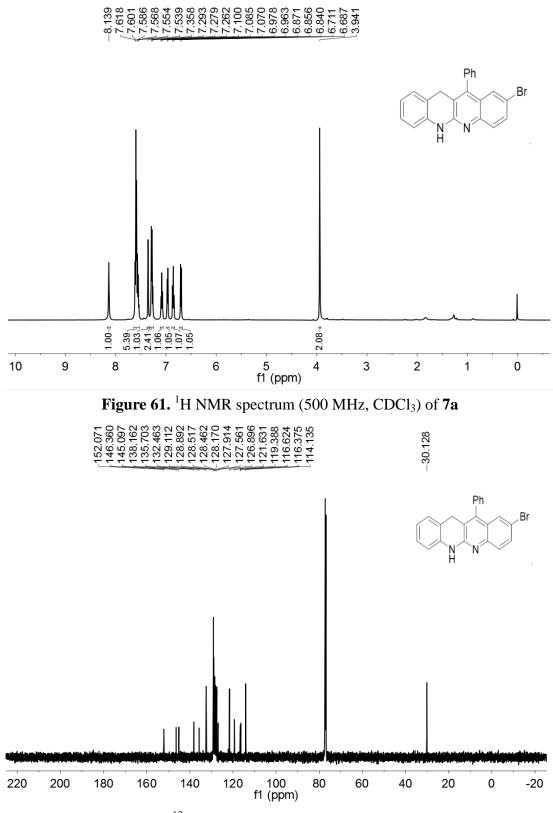


Figure 62. ¹³C NMR spectrum (151 MHz, CDCl₃) of 7a

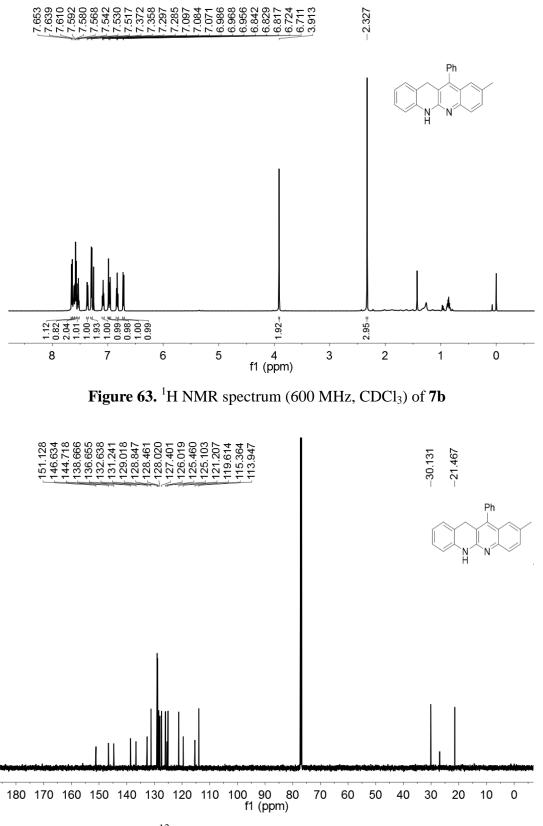


Figure 64. ¹³C NMR spectrum (151 MHz, CDCl₃) of 7b

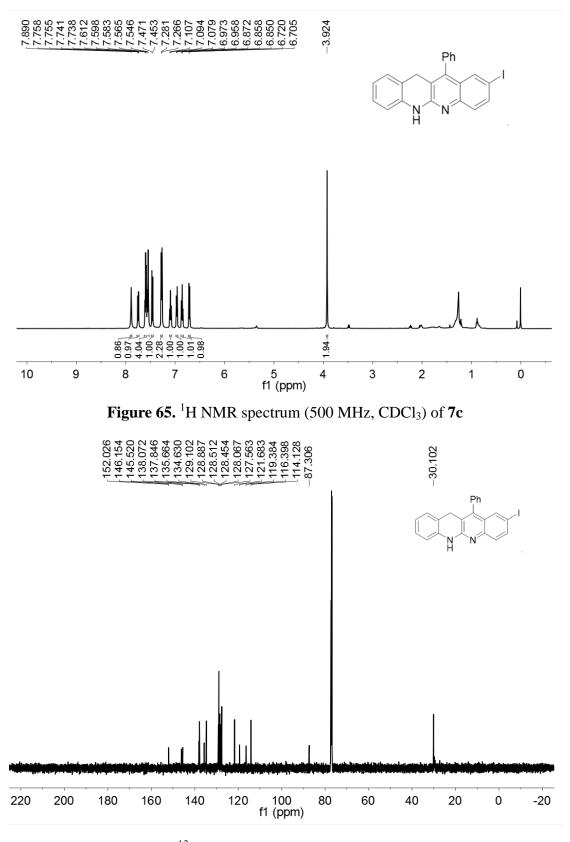


Figure 66. ¹³C NMR spectrum (151 MHz, CDCl₃) of 7c

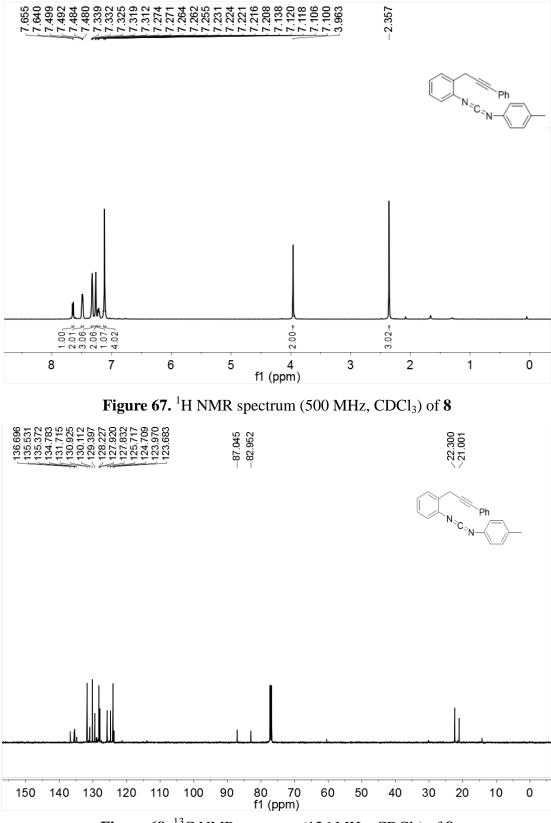


Figure 68. ¹³C NMR spectrum (126 MHz, CDCl₃) of 8