Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Ni and Fe Catalyzed Cascade Radical Reactions of Oxime Esters with Diselenides

Linpeng Liu,^a Yanyu Jian,^a Weigao Hu,^b Shaohu Zhao,^a Zhang-Jie Shi,^{c,d} Nicklas Selander^b* and Taigang Zhou^a*

^{a.}College of Chemistry and Chemical Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu, Sichuan 610500, P. R. China

^{b.}Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, SE-106 91 Stockholm, Sweden ^{c.}Department of Chemistry, Fudan University, Shanghai 200438, China

^d State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China

Email: tgzhou@swpu.edu.cn nicklas.selander@su.se

Table of Contents

1. General Information	S2
2. Experimental Procedures	S3
2.1 Preparation of Oxime Ester Derivatives	S3
2.2 Screening of reaction conditions	S8
2.3 General procedure for the selenylation of oxime esters	
2.4 Amplification reaction	S14
3. Trapping the radical intermediate with TEMPO	
4. Spectral Data	S16
5. References	
6. ¹ H, ¹³ C, and ¹⁹ F NMR Spectra S-1	S32

1. General Information

All reactions were carried out under argon atmosphere using standard Schlenk techniques. FeCl₂ was purchased from Bide Pharmatech. Other reagents were purchased from Adamas-beta[®] and Aladdin[®]. All commercial reagents were used as received. γ , δ -Unsaturated oxime esters, cyclic ketoxime esters and aryl diselenides were prepared according to literature procedures using commercial reagents (Sect. 2.1). ¹H NMR and ¹³C NMR spectra were recorded at room temperature on a Bruker 400 or a 600 MHz spectrometer. Chemical shifts (δ) are reported in ppm with the following abbreviations used for the observed multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), br (broad), m (multiplet for unresolved lines). ¹H NMR chemical shifts were referenced to the residual solvent signal for $CDCl_3$ (7.26 ppm), and ${}^{13}C$ NMR chemical shifts were referenced to the solvent signal of CDCl₃ (77.16 ppm). Analytical TLC was performed on pre-coated silica gel plates. After elution, the plates were visualized by UV illumination at 254-360 nm and by staining with 5% PdCl₂ solvent (in 10% hydrochloric acid solvent). The crude products were purified by column chromatography using silica gel (200-300 mesh). GC analyses were performed on a Shimadzu Nexis GC-2030 equipped with an ZB-5MS plus column (30 mm \times 0.32 mm \times 0.50 μ m). HRMS analysis was performed on Shimadzu LCMS-ITTOF and Waters Vion IMS QTof. Isomeric ratios of the products were determined by ¹H NMR analysis of crude reaction mixtures.

2. Experimental Procedures

2.1 Preparation of Oxime Ester Derivatives

The oxime esters **1a-1u**, **4a-4l** (listed in Table S1) and aryl diselenides **2r-2w** (listed in Table S2) were synthesized according to literature procedures. Spectral data can be found in the following references: **1a-1b**^[1, 2], **1e**^[3], **1i-1j**^[3], **1l-1m**^[3, 4], **1o-1q**^[5, 6], **4a-4g**^[7-9], **4i-4k**^[10-12], **2r-2w**^[13, 14]

Table S2: Aryl diselenides used in this study

Synthesis of oxime esters 1c-1d, 1f-1h, 1k

Step 1: A dry two-neck flask equipped with a stirring bar was charged with CuI (5mol%) and then the flask was refilled with argon. The acid chloride (1.1 equiv.) and THF (0.7 M) were subsequently added. The mixture was stirred at room temperature for a few minutes and then cooled down to -78 C. 3-Butenylmagnesium bromide (10 mmol, 0.5 M in THF) was added dropwise to the mixture. After completion, the reaction mixture was allowed to warm up to room temperature overnight. Then the reaction was quenched by adding saturated aqueous NH₄Cl solution and diluted with EA. The layers were separated, and the aqueous layer was extracted with EA. The combined organic layers were dried over MgSO₄, concentrated in *vacuo*. Purification of the crude product by column chromatography on silica gel provided the ketone.

Step 2: To hydroxylamine hydrochloride (1.2 equiv.) and sodium acetate (1.2 equiv.) was added the solution of alkenyl ketone in MeOH (0.3 M). The reaction mixture was heated to 75 °C and stirred overnight. The resulting mixture was cooled

down to room temperature, diluted with brine and extracted with EA. The organic layer was dried over Na₂SO₄ and concentrated in *vacuo*. Purification of the crude product by column chromatography on silica gel provided the oxime.

Step 3: To a solution of γ , δ -unsaturated oxime (1.0 equiv) in DCM (1.0 M) were added triethylamine (2.0 equiv) and C₆F₅COCl (1.2 equiv) at 0 °C. After stirring for 6 h, water was added and the mixture was diluted with EA. The organic layer was washed with water and dried over anhydrous Na₂SO₄. The solvent was removed in *vacuo* and the residue was subjected to column chromatography with the indicated eluent system to obtain γ , δ -unsaturated oxime esters **1c-1d**, **1f- 1h**, **1k**.

Synthesis of compound 1n

To a flask charged with potassium carbonate (1.2 equiv) was added a solution of ethyl benzoacetate (10 mmol) and 1-bromo-3-methylbut-2-ene (1.08 equiv) in acetone (0.4 M). The reaction mixture was heated at reflux overnight. After cooling, solids were removed by filtration and washed with acetone. The combined filtrates were concentrated in *vacuo*. Then the residue was dissolved in ethanol. 10 % Aqueous sodium hydroxide solution was added to the solution. The reaction mixture was heated at reflux for 3 h. After cooling, the mixture was extracted with EA. The combined organic layers were dried over MgSO₄ and concentrated in *vacuo*. Purification of the crude product by column chromatography on silica gel provided 5-methyl-1-phenylhex-4-en-1-one.

To a flask charged with hydroxylamine hydrochloride (1.2 equiv.) and sodium acetate (1.2 equiv.) was added the solution of 5-methyl-1-phenylhex-4-en-1-one in

MeOH (0.3 M). The reaction mixture was heated to 75 $^{\circ}$ C and stirred overnight. The resulting mixture was cooled down to room temperature, diluted with brine and extracted with EA. The organic layer was dried over Na₂SO₄ and concentrated in *vacuo*. Purification of the crude product by column chromatography on silica gel provided the 5-methyl-1-phenylhex-4-en-1-one oxime.

To a solution of 5-methyl-1-phenylhex-4-en-1-one oxime (1.0 equiv) in DCM (1.0 M) were added triethylamine (2.0 equiv) and C_6F_5COCl (1.2 equiv) at 0 °C. After stirring for 6 h, water was added and the mixture was diluted with EA. The organic layer was washed with water and dried over anhydrous Na₂SO₄. The solvent was removed in *vacuo* and the residue was subjected to column chromatography with the indicated eluent system to obtain 1-phenylhex-4-en-1-one *o*-perfluorobenzoyl oxime **1n**.

Synthesis of oxime ester 4h

$$S \xrightarrow{O} \frac{\text{hydroxylamine hydrochloride}}{\text{MeOH, 75 °C}} \xrightarrow{N-OH} \underbrace{C_6F_5COCI}_{\text{DCM, Et}_3N, 0 °C} \xrightarrow{N-OCOC_6F_5}_{\text{dh}}$$

To a flask charged with hydroxylamine hydrochloride (1.2 equiv.) and sodium acetate (1.2 equiv.) was added a solution of thietan-3-one (10 mmol) in MeOH (0.3 M). The reaction mixture was heated to 75 $^{\circ}$ C and stirred overnight. The resulting mixture was cooled down to room temperature, diluted with brine and extracted with EA. The organic layer was dried over Na₂SO₄ and concentrated in *vacuo*. Purification of the crude product by column chromatography on silica gel provided the thietan-3-one oxime.

To a solution of thietan-3-one oxime (1.0 equiv) in DCM (1.0 M) were added triethylamine (2.0 equiv) and C_6F_5COCl (1.2 equiv) at 0 °C. After stirring for 6 h, water was added and the mixture was diluted with EA. The organic layer was washed with water and dried over anhydrous Na₂SO₄. The solvent was removed in *vacuo* and the residue was subjected to column chromatography with the indicated eluent system to obtain thietan-3-one o-perfluorobenzoyl oxime 4h.

Synthesis of oxime ester 41

A 100 mL flame-dried schlenk tube was filled with argon, $Pd(OAc)_2$ (2.5 mol%), ligand (5 mol%), ^{*t*}BuONa (1.3 equiv.), ketone (10.0 mmol), aryl bromides (1.3 equiv) and toluene (1.0 M). The tube was then sealed and heated at 45 °C under stirring for 12 hours, and finally quenched with H₂O. The resulting mixture was extracted with EA. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. Purification of the crude product by column chromatography on silica gel provided the 2-phenylcycloheptan-1-one.

To a flask charged with hydroxylamine hydrochloride (1.2 equiv.) and sodium acetate (1.2 equiv.) was added a solution of 2-phenylcycloheptan-1-one (1.0 equiv) in MeOH (0.3 M). The reaction mixture was heated to 75 °C and stirred overnight. The resulting mixture was cooled down to room temperature, diluted with brine and extracted with EA. The organic layer was dried over Na₂SO₄ and concentrated in *vacuo*. Purification of the crude product by column chromatography on silica gel provided the 2-phenylcycloheptan-1-one oxime.

To a solution of 2-phenylcycloheptan-1-one oxime (1.0 equiv) in DCM (1.0 M) were added triethylamine (2.0 equiv) and C_6F_5COC1 (1.2 equiv) at 0 °C. After stirring for 6 h, water was added and the mixture was diluted with EA. The organic layer was washed with water and dried over anhydrous Na₂SO₄. The solvent was removed in *vacuo* and the residue was subjected to column chromatography with the indicated eluent system to obtain thietan-3-one *o*-perfluorobenzoyl oxime **4**.

2.2 Screening of reaction conditions

To a screw-cap vial equipped with a magnetic stirring bar were added catalyst (0.02 mmol), ligand (0.02 mmol) and solvent under argon. The mixture was stirred at 80 °C for 30 min. The γ , δ -unsaturated *O*-acyloxime (0.20 mmol), aryl diselenide (0.15 mmol) and base (2.00 mmol) were added sequentially under argon. After the addition, the mixture was stirred at the specified temperature for the indicated reaction time. Then, the mixture was allowed to cool down to room temperature and the solvent was removed in *vacuo*. Then, the residue was re-dissolved and flushed through a glass pipette filled with silica gel inside (approx. 4.0 cm in length) using ethyl acetate (approx. 5.0 mL) as an eluent to remove the metal salt. Yields were determined by GC using *n*-dodecane as the internal calibration standard. The results are summarized in Tables S3-S8.

Table S3 Screening of metal salts.

N ^{OBz^F}	Ph Se Ph	Cat, dtbpy (20 mol%) 1,4-dioxane (6 mL), Et ₃ N (10 equiv) 24 h 90 °C	Se Ph
1a	2a	211,00 0	3a
Entry	Cat (X mol%)	L Go	C Yield (%)
1	No Cat		N.P
2	No Cat	dtbpy	N.P
3	NiBr ₂ (20)		17
4	NiBr ₂ (20)	dtbpy	58
5	AgSbF ₆ (20)	dtbpy	40
6	CuOAc (20)	dtbpy	74
7	FeCl ₂ (20)	dtbpy	77
8	FeCl ₃ (20)	dtbpy	73
9	Pd(OAc) ₂ (20)	dtbpy	57
10	Ni(OTf) ₂ (20)	dtbpy	54
11	NiCl ₂ •glyme (20)	dtbpy	21
12	Ni(COD) ₂ (20)	dtbpy	85
13	Ni(COD) ₂ (20)		17
14	Ni(COD) ₂ (5)	dtbpy	38
15	Ni(COD) ₂ (10)	dtbpy	58
16	Ni(COD) ₂ (20)	dtbpy	64

Table S4 Screening of Ligands

Table S5 Screening of bases.

Table S6 Screening of solvents.

Table S7 Screening equivalences of the diselenide 2a

Entry	2a (X equiv)	GC Yield (%) ^b
1	0.5	58
2	1.0	80
3	1.5	90
4	2.0	92

N_OBz ^F	+ Ph ^{Se} Se ^{Ph}	Ni(COD) ₂ ((20 mol%), L1 (20 mol%)		6.5
1a	2a	1,4-dioxan	e (6 mL), Et ₃ N (10 equiv) X h, T ^o C	3a	Se Ph
Entry	Temperature (°C)	Time (h)	Conv (%)	GC Yield (%)	
1	r.t	24	1<	/	
2	40	24	17	10	
3	60	24	21	14	
4	80	24	>99	85	
5	90	24	>99	90	
6	90	6	89	86	
7	90	12	>99	90	
8	90	36	>99	89	

Table S8 Screening of reaction time and temperature

2.3 General procedure for the selenylation of oxime esters

Method A: To a screw-cap vial equipped with a magnetic stirring bar were added Ni(COD)₂ (0.04 mmol, 11.0 mg, 0.2 equiv), **L1** (0.04 mmol, 7.2 mg, 0.2 equiv) and 1,4-dioxane (6 mL) under argon. The mixture was stirred at 80 °C for 30 min. Then, oxime esters (0.20 mmol, 1.0 equiv), aryl diselenides (0.30 mmol, 1.5 equiv) and Et₃N (2.00 mmol, 202.4 mg, 10.0 equiv) were added sequentially under argon. After the addition, the reaction mixture was stirred at 90 °C for 12 h. Then, the mixture was allowed to cool down to room temperature and the solvent was removed *in vacuo*. The crude products were purified by column chromatography.

Method B: To a screw-cap vial equipped with a magnetic stirring bar were added FeCl₂ (0.04 mmol, 5.1 mg, 0.2 equiv), **L1** (0.04 mmol, 7.2 mg, 0.2 equiv) and 1,4-dioxane (6 mL) under argon. The mixture was stirred at 80 $^{\circ}$ C for 30 min. Then, the oxime esters (0.20 mmol, 1.0 equiv), aryl diselenides (0.30 mmol, 1.5 equiv) and Et₃N (2.00 mmol, 202.4 mg, 10.0 equiv) were added sequentially under argon. After

the addition, the reaction mixture was stirred at 90 $\,^{\circ}$ C for 24 h. Then, the mixture was allowed to cool down to room temperature and the solvent was removed *in vacuo*. The crude products were purified by column chromatography.

2.4 Procedure for reactions performed at a larger scale

To a screw-cap vial equipped with a magnetic stirring bar were added Ni(COD)₂ (0.16 mmol, 44.0 mg, 0.2 equiv), **L1** (0.16 mmol, 28.8 mg, 0.2 equiv) and 1,4-dioxane (24 mL) under argon. The mixture was stirred at 80 °C for 30 min. Then, γ , δ -unsaturated oxime ester **1a** (0.80 mmol, 1.0 equiv), aryl diselenide **2a** (1.20 mmol, 1.5 equiv) and Et₃N (8.00 mmol, 809.5 mg, 10.0 equiv) were added sequentially under argon. After the addition, the reaction mixture was stirred at 90 °C for 12 h. Then, the mixture was allowed to cool down to room temperature and the solvent was removed *in vacuo*. The crude products were purified by column chromatography. The isolated yield of **3a** is 76%.

To a screw-cap vial equipped with a magnetic stirring bar were added FeCl₂ (0.2 mmol, 25.4 mg, 0.2 equiv), **L1** (0.2 mmol, 36.0 mg, 0.2 equiv) and 1,4-dioxane (30 mL) under argon. The mixture was stirred at 80 °C for 30 min. Then, the cycloketoxime ester **4a** (1.0 mmol, 1.0 equiv), aryl diselenide **2a** (1.5 mmol, 1.5 equiv) and Et₃N (10.0 mmol, 1.01 g, 10.0 equiv) were added sequentially under argon. After the addition, the reaction mixture was stirred at 90 °C for 24 h. Then, the mixture was allowed to cool down to room temperature and the solvent was removed *in vacuo*.

The crude products were purified by column chromatography. The isolated yield of **5a** is 79%.

3. Trapping the radical intermediate with TEMPO

To a screw-cap vial equipped with a magnetic stirring bar were added Ni(COD)₂ (0.04 mmol, 20.0 mol%), **L1** (0.04 mmol, 20.0 mol%) and 1,4-dioxane (6.0 mL) under argon. The mixture was stirred at 80 °C for 30 min. Then, oxime ester (0.20 mmol,1.0 equiv), **2a** (0.30 mmol, 1.5 equiv), Et₃N (2.00 mmol, 10.0 equiv) and TEMPO (0.60 mmol, 3 equiv) were added sequentially under argon. After the addition, the reaction mixture was stirred at 90 °C for 12 h. Then, the mixture was allowed to cool down to room temperature and the solvent was removed in *vacuo*. The crude products were purified by column chromatography to yield **6** in 71% yield. However, compound **7** decomposed during purification. The mass of compound 7 was detected by HRMS.

4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanenitrile (7)

HRMS (ESI): m/z calcd for C₁₄H₁₃NSe [M+H]⁺ 225.1966, found 225.1958.

4. Spectral Data

1-(4-Fluorophenyl)pent-4-en-1-one O-perfluorobenzoyl oxime (1c)

1c: (59%, 2.2 g, white solid; m.p. 68-70 °C); ¹H NMR (400 MHz, Chloroform-d) δ 7.76 (dd, J = 8.9, 5.3 Hz, 2H), 7.13 (t, J = 8.6 Hz, 2H), 5.78 (td, J = 16.9, 6.6 Hz, 1H), 5.08 – 4.98 (m, 2H), 3.02 – 2.93 (m, 2H), 2.38 – 2.27 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.1, 164.6 (d, J = 251.9 Hz), 156.4, 146.5 (d, J = 27.0 Hz), 144.6(d, J

= 78.5 Hz), 142.8 (d, J = 36.1 Hz), 138.7 (d, J = 34.4 Hz), 137.0 (d, J = 34.6 Hz), 136.0, 129.7 (d, J = 8.7 Hz), 129.2 (d, J = 3.3 Hz), 116.2, 116.0 (d, J = 21.9 Hz), 107.0 (d, J = 35.9 Hz), 30.7, 28.1; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -108.65, -136.51 - -137.94 (m), -147.29 (tt, J = 21.0, 5.0 Hz), -159.59 - -159.76 (m); **HRMS** (ESI): m/z calcd for C₁₈H₁₁F₆NO₂ [M+Na]⁺ 410.0591, found 410.0590.

1-(P-tolyl)pent-4-en-1-one O-perfluorobenzoyl oxime (1d)

1d: (78%, 3.0 g, white solid; m.p. 43-45 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.62 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 5.80 (td, J = 16.9, 6.6 Hz, 1H), 5.09 – 4.97 (m, 2H), 3.01 – 2.93 (m, 2H), 2.40 (s, 3H), 2.35 – 2.28 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.9, 156.5, 146.4 (d, J = 14.7 Hz), 144.5 (d, J = 72.7

Hz), 142.6 (d, J = 26.7 Hz), 141.6, 138.7 (d, J = 34.3 Hz), 137.0 (d, J = 34.3 Hz), 136.2, 130.1, 129.5, 127.4, 115.9, 107.2 (d, J = 32.6 Hz), 30.8, 28.0, 21.3; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -136.90 - -137.58 (m), -147.65 (tt, J = 21.0, 4.9 Hz), -159.43 - -160.29 (m); **HRMS** (ESI): m/z calcd for C₁₉H₁₄F₅NO₂ [M+Na]⁺406.0842, found 406.0848.

1-(3-Chlorophenyl)pent-4-en-1-one O-perfluorobenzoyl oxime (1f)

1f: (86%, 3.4 g, white solid; m.p. 86-88 °C); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.43 – 7.34 (m, 1H), 5.78 (dtt, J = 16.7, 9.2, 4.5 Hz, 1H), 5.10 – 4.97 (m, 2H), 3.02 – 2.91 (m, 2H), 2.33 (q, J = 7.6 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.2, 156.4, 146.6 (d, J = 26.9 Hz), 144.7

(d, J = 67.7 Hz), 142.9 (d, J = 26.6 Hz), 138.8 (d, J = 34.7 Hz), 137.1 (d, J = 34.3 Hz), 135.9, 135.1, 135.0, 131.2, 130.2, 127.6, 125.7, 116.5, 106.9 (d, J = 31.4 Hz), 30.7, 28.2; ¹⁹F NMR (565 MHz, Chloroform-d) δ -136.53 - -137.08 (m), -147.05 (tt, J =

20.9, 5.0 Hz), -159.16 – -159.76 (m); **HRMS** (ESI): m/z calcd for C₁₈H₁₁ClF₅NO₂ [M+Na]⁺ 426.0296, found 426.0296.

1-(3-Methoxyphenyl)pent-4-en-1-one O-perfluorobenzoyl oxime (1g)

1g: (77%, 3.0 g, white solid; m.p. 43-44 °C) ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.34 (t, J = 9.1 Hz, 1H), 7.30 (s, 2H), 7.02 (d, J = 8.1 Hz, 1H), 5.86 – 5.72 (m, 1H), 5.02 (t, J = 13.0 Hz, 2H), 3.84 (s, 3H), 2.97 (t, J = 9.3 Hz, 2H), 2.33 (q, J = 7.6 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.2, 159.9, 156.6, 146.5 (d, J = 17.8 Hz), 144.7 (d, J = 71.1 Hz),

142.8 (d, J = 26.6 Hz), 138.8 (d, J = 34.3 Hz), 137.1 (d, J = 34.4 Hz), 136.2, 134.5, 130.0, 120.0, 117.1, 116.3, 112.8, 107.2 (d, J = 31.3 Hz), 55.5, 30.9, 28.5; ¹⁹**F** NMR (565 MHz, Chloroform-*d*) δ -136.89 - -137.21 (m), -147.50 (tt, J = 21.0, 4.9 Hz), -159.34 - -159.90 (m); **HRMS** (ESI): m/z calcd for C₁₉H₁₄F₅NO₃ [M+Na]⁺422.0792, found 422.0794.

1-(2-Chlorophenyl)pent-4-en-1-one O-perfluorobenzoyl oxime (1h)

1h: (67%, 2.7 g, white solid; m.p.42-43 °C); ¹**H** NMR (600 MHz, Chloroform-d) δ 7.39 – 7.23 (m, 4H), 5.72 – 5.62 (m, 1H), 4.98 – 4.91 (m, 2H), 2.99 – 2.93 (m, 2H), 2.17 (q, J = 8.6, 7.8 Hz, 2H); ¹³**C** NMR (151 MHz, Chloroform-*d*) δ 169.8, 156.5, 146.6 (d, *J* = 27.1 Hz), 144.7 (d, *J* = 44.0 Hz),

142.8 (d, J = 26.4 Hz), 138.8 (d, J = 29.0 Hz), 137.1 (d, J = 30.3 Hz), 136.1, 133.2, 132.7, 131.2, 131.0, 130.1, 127.0, 116.2, 106.9 (d, J = 29.4 Hz), 30.6, 29.7; ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -136.83 (dp, J = 17.5, 5.8 Hz), -147.11 – -147.37 (m), -159.47 – -160.09 (m); HRMS (ESI): m/z calcd for C₁₈H₁₁ClF₅NO₂ [M+Na]⁺ 426.0296, found 426.0288.

1-(Thiophen-2-yl)pent-4-en-1-one O-perfluorobenzoyl oxime (1k)

1k: (66%, 2.4 g, yellow solid; m.p. 103-104 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.46 (m, 2H), 7.11 (dd, *J* = 5.1, 3.7 Hz, 1H), 5.83 (td, *J* = 16.9, 6.7 Hz, 1H), 5.16 – 4.98 (m, 2H), 3.01 – 2.92 (m, 2H), 2.48 – 2.39 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.3, 156.4, 146.5 (d, *J*

= 11.3 Hz), 144.9 – 144.3 (m), 138.7 (d, J = 12.9 Hz), 137.1 (d, J = 28.2 Hz), 136.2 (d, J = 10.8 Hz), 130.4, 130.2, 127.7, 116.4, 107.0 (d, J = 33.8 Hz), 31.4, 29.0; ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -136.49 – -137.65 (m), -147.37 (tt, J = 21.2, 5.1 Hz), -159.07 – -160.23 (m); HRMS (ESI): m/z calcd for C₁₆H₁₀F₅NO₂S [M+Na]⁺ 398.0250, found 398.0255.

5-Methyl-1-phenylhex-4-en-1-one O-perfluorobenzoyl oxime (1n)

1n: (76%, 30 g, white solid; m.p. 65-66 °C); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.77 – 7.72 (m, 2H), 7.52 – 7.39 (m, 3H), 5.10 (tt, *J* = 7.4, 1.6 Hz, 1H), 2.94 – 2.89 (m, 2H), 2.27 (q, *J* = 7.7 Hz, 2H), 1.64 (s, 3H), 1.50 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.7, 156.7, 146.5

(d, J = 18.8 Hz), 144.6 (d, J = 65.9 Hz), 142.7 (d, J = 17.5 Hz), 138.8 (d, J = 28.9 Hz), 137.1 (d, J = 34.2 Hz), 133.8, 133.3, 131.1, 128.9, 127.6, 122.1, 107.3 (d, J = 32.5 Hz), 29.1, 25.7, 25.4, 17.6; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -136.67 – -137.76 (m), -147.65 (tt, J = 21.0, 4.8 Hz), -159.24 – -160.33 (m); **HRMS** (ESI): m/z calcd for C₂₀H₁₆F₅NO₂ [M+Na]⁺ 420.0999, found 420.0997.

Thietan-3-one O-perfluorobenzoyl oxime (4h)

4h: (60%, 1.7 g, yellow solid; m.p. 88-90 °C); ¹H NMR (600 MHz, Chloroform-*d*) δ 4.24 – 4.18 (m, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.9, 156.0, 146.6 (d, J = 16.4 Hz), 144.8 (d, J = 25.9 Hz), 143.0 (d, J = 26.6 Hz), 138.8 (d, J = 26.6 Hz), 148.8 (d,

28.6 Hz), 137.1 (d, J = 33.3 Hz), 106.3 (d, J = 31.4 Hz), 35.4 (d, J = 13.5 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -136.33 - -137.22 (m), -146.72 (tt, J = 20.9, 5.2 Hz), -159.23 - -159.73 (m); **HRMS** (ESI): m/z calcd for C₁₀H₄F₅NO₂S [M+Na]⁺ 319.9781, found 319.9783.

2-phenylcycloheptan-1-one O-perfluorobenzoyl oxime (41)

41: (33%,1.3g, transparent oil); ¹**H** NMR (400 MHz, Chloroform-d) δ 7.43 – 7.30 (m, 5H), 4.12 (dd, J = 10.9, 6.5 Hz, 1H), 3.10 (dd, J = 12.6, 4.5 Hz, 1H), 2.49 – 2.39 (m, 1H), 2.24 – 2.13 (m, 1H), 2.10 – 1.92 (m, 4H), 1.62 (d, J = 9.6 Hz, 1H),

1.49 (t, J = 11.3 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 174.71, 156.95, 146.27 (d, *J* = 17.8 Hz), 144.41 (d, *J* = 49.9 Hz), 142.53 (d, *J* = 9.9 Hz), 140.54, 138.63 (d, *J* = 24.1 Hz), 136.95 (d, *J* = 22.0 Hz), 128.70, 127.35, 127.12, 107.40 (d, *J* = 32.5 Hz), 48.58, 31.25, 30.73, 27.96, 26.35, 25.75.; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -136.92 – -137.48 (m), -148.08 (t, *J* = 20.9 Hz), -159.98 (dd, *J* = 20.8, 14.3 Hz); HRMS (ESI): *m*/*z* calcd for C₂₀H₁₆F₅NO₂ [M+Na]⁺ 420.0998, found 420.0996.

5-Phenyl-2-((phenylselanyl)methyl)-3,4-dihydro-2*H*-pyrrole (3a)

3a: (Method A: 90%, 56.9 mg, Method B:80%, 50.4 mg; yellow oil; NMR data are in accordance with literature values^[15]); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 –

7.75 (m, 2H), 7.60 – 7.52 (m, 2H), 7.41 (dd, J = 9.1, 6.9 Hz, 3H), 7.24 (d, J = 6.8 Hz, 3H), 4.58 – 4.47 (m, 1H), 3.47 (dd, J = 12.0, 4.7 Hz, 1H), 3.09 (dd, J = 12.1, 7.9 Hz, 2H), 2.99 – 2.85 (m, 1H), 2.29 (dt, J = 8.0, 2.5 Hz, 1H), 1.88 – 1.74 (m, 1H); ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 173.5, 134.4, 132.7, 130.7, 129.13, 128.5, 127.9, 126.9, 125.9, 73.0, 35.5, 34.5, 28.7.

5-(4-Chlorophenyl)-2-((phenylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3b)

3b: (**Method A:** 66%, 46.1 mg, yellow oil); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.6 Hz, 2H), 7.54 (dd, *J* = 7.6, 1.9 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 2H), 7.25 – 7.18 (m, 3H), 4.52 (s, 1H), 3.43 (dd, *J* = 12.1,

4.8 Hz, 1H), 3.17 - 2.98 (m, 2H), 2.96 - 2.82 (m, 1H), 2.36 - 2.22 (m, 1H), 1.88 - 1.74 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.4, 136.8, 132.9, 132.7, 130.6, 129.2, 129.2, 128.8, 126.9, 73.1, 35.5, 34.5, 28.8; **HRMS** (ESI): *m*/*z* calcd for C₁₇H₁₆ClNSe [M+H]⁺ 350.0214, found 350.0214.

5-(4-Fluorophenyl)-2-((phenylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3c)

3c: (**Method A:** 78%, 51.9 mg, yellow oil); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.79 (dd, *J* = 8.7, 5.6 Hz, 2H), 7.58 – 7.54 (m, 2H), 7.24 (d, *J* = 7.3 Hz, 3H), 7.08 (t, *J* = 8.6 Hz, 2H), 4.52 (d, *J* = 6.4 Hz, 1H), 3.45 (dd, *J*

= 12.1, 4.8 Hz, 1H), 3.16 – 3.01 (m, 2H), 2.94 – 2.85 (m, 1H), 2.34 – 2.25 (m, 1H), 1.86 – 1.77 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.2, 164.3 (d, *J* = 250.7 Hz), 132.7, 130.7 (d, *J* = 3.2 Hz), 130.7, 129.9 (d, *J* = 8.7 Hz), 129.1, 126.9, 115.5 (d, *J* = 21.7 Hz), 73.0, 35.5, 34.5, 28.8; ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -109.86 (m); HRMS (ESI): *m*/*z* calcd for C₁₇H₁₆FNSe [M+H]⁺ 334.0510, found 334.0516.

2-((Phenylselanyl)methyl)-5-(p-tolyl)-3,4-dihydro-2H-pyrrole (3d)

3d: (Method A: 85%, 55.9 mg, yellow solid; m.p. 44-45 °C); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.71 (s, 2H), 7.58 – 7.53 (m, 2H), 7.27 – 7.18 (m, 5H), 4.54 – 4.46 (m, 1H), 3.48 (dd, J = 12.1, 4.7 Hz, 1H), 3.11 –

3.01 (m, 2H), 2.90 (dt, J = 17.1, 8.7 Hz, 1H), 2.38 (s, 3H), 2.32 – 2.23 (m, 1H), 1.84 – 1.74 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 173.3, 140.9, 132.7, 131.7, 130.7, 129.2, 129.1, 127.9, 126.8, 72.8, 35.4, 34.5, 28.7, 21.6; **HRMS** (ESI): m/z calcd for C₁₈H₁₉NSe [M+H]⁺ 330.0761, found 330.0768.

5-(4-Methoxyphenyl)-2-((phenylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3e)

3e: (Method A: 81%, 56.0 mg, yellow solid; m.p. 68-69 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.1 Hz, 3H), 6.90 (d, J = 8.8 Hz, 2H),

4.54 – 4.43 (m, 1H), 3.84 (s, 3H), 3.46 (dd, J = 12.0, 4.7 Hz, 1H), 3.13 – 2.98 (m, 2H), 2.95 – 2.81 (m, 1H), 2.32 – 2.22 (m, 1H), 1.77 (d, J = 23.5 Hz, 1H); ¹³**C** NMR (151 MHz, Chloroform-*d*) δ 172.9, 161.7, 132.7, 130.7, 129.6, 129.1, 127.1, 126.8, 113.8, 72.7, 55.5, 35.4, 34.6, 28.8; **HRMS** (ESI): *m*/*z* calcd for C₁₈H₁₉NOSe [M+H]⁺ 346.0710, found 346.0711.

5-(3-Chlorophenyl)-2-((phenylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3f)

3f: (Method A: 78%, 54.4 mg, yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 7.8 Hz, 2H), 7.42 – 7.18 (m, 5H), 4.53 (t, J = 6.8 Hz, 1H), 3.43 (dd, J = 12.2, 4.9 Hz, 1H), 3.18 – 2.96 (m, 2H), 2.93 – 2.80 (m, 1H), 2.34 – 2.21 (m, 1H),

1.88 – 1.76 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.3, 136.2, 134.7, 132.8, 130.6, 130.6, 129.8, 129.2, 128.0, 127.0, 126.1, 73.2, 35.5, 34.4, 28.7; **HRMS** (ESI): *m/z* calcd for C₁₇H₁₆ClNSe [M+H]⁺ 350.0214, found 350.0224.

5-(3-Methoxyphenyl)-2-((phenylselanyl)methyl)-3,4-dihydro-2*H*-pyrrole (3g)

3g: (Method A: 80%, 55.2 mg, yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 – 7.50 (m, 2H), 7.40 (s, 1H), 7.36 – 7.27 (m, 2H), 7.23 (d, *J* = 6.6 Hz, 3H), 6.98 (d, *J* = 7.8 Hz, 1H), 4.58 – 4.47 (m, 1H), 3.84 (s, 3H), 3.47 (dd, *J* = 12.1, 4.6 Hz, 1H), 3.06 (t, *J* = 12.3 Hz, 2H),

2.98 – 2.84 (m, 1H), 2.35 – 2.22 (m, 1H), 1.83 (d, J = 16.9 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 159.8, 135.8, 132.8, 130.7, 129.5, 129.1, 126.9, 120.7, 117.2, 112.3, 73.0, 55.5, 35.6, 34.5, 28.7; **HRMS** (ESI): m/z calcd for C₁₈H₁₉NOSe [M+H]⁺ 346.0710, found 346.0713.

5-(2-Chlorophenyl)-2-((phenylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3h)

3h: (Method A: 74%, 51.6 mg, yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 6.8 Hz, 2H), 7.53 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.31 (dd, J = 16.0, 8.0 Hz, 5H), 4.47 (d, J = 13.8 Hz, 1H), 3.49 (dd, J = 12.1,

4.8 Hz, 1H), 3.20 - 2.98 (m, 3H), 2.38 - 2.25 (m, 1H), 1.90 - 1.76 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 135.3, 132.6, 132.5, 130.6, 130.6, 130.5, 130.2,

129.2, 126.9, 126.9, 72.6, 39.0, 34.0, 29.5; **HRMS** (ESI): *m*/*z* calcd for C₁₇H₁₆ClNSe [M+H]⁺ 350.0214, found 350.0214.

5-(2-Methoxyphenyl)-2-((phenylselanyl)methyl)-3,4-dihydro-2*H*-pyrrole (3i)

3i: (Method A: 68%, 47.0 mg, yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.68 (m, 1H), 7.56 (d, *J* = 9.6 Hz, 2H), 7.40 – 7.33 (m, 1H), 7.22 (d, *J* = 6.0 Hz, 2H), 6.99 – 6.88 (m, 2H), 4.46 – 4.34 (m, 1H), 3.84 (s, 3H), 3.48

(dd, J = 12.0, 4.6 Hz, 1H), 3.18 - 2.93 (m, 3H), 2.31 - 2.17 (m, 1H), 1.82 - 1.68 (m, 1H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.5, 158.3, 132.6, 131.5, 130.8, 130.3, 129.14, 126.8, 124.7, 120.8, 111.4, 71.7, 55.6, 38.9, 34.3, 29.3; **HRMS** (ESI): m/z calcd for C₁₈H₁₉NOSe [M+H]⁺ 346.0710, found 346.0713.

5-(Naphthalen-2-yl)-2-((phenylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3j)

3j: (**Method A:** 66%, 48.2 mg, yellow solid; m.p. 76-77 °C); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.18 (s, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.90 (dd, *J* = 17.1, 8.0 Hz, 3H), 7.63 – 7.52 (m, 4H), 7.31 – 7.26 (m, 3H), 4.60 (d, *J* = 13.9 Hz, 1H), 3.55 (dd, *J* = 12.1, 4.8 Hz, 1H),

3.32 – 3.01 (m, 3H), 2.38 (q, J = 13.3 Hz, 1H), 1.97 – 1.83 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 134.6, 133.1, 132.8, 132.0, 130.7, 129.2, 128.9, 128.5, 128.2, 127.9, 127.3, 126.9, 126.5, 124.8, 73.1, 35.5, 34.6, 28.8; **HRMS** (ESI): m/z calcd for C₂₁H₁₉NSe [M+H]⁺ 366.0761, found 366.0770.

2-((Phenylselanyl)methyl)-5-(thiophen-2-yl)-3,4-dihydro-2*H*-pyrrole (3k)

3k: (Method A: 54%, 34.7 mg, Method B:68%, 43.7 mg; white oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.46 (m, 2H), 7.11 (dd, J = 5.1, 3.7 Hz, 1H), 5.83 (td, J = 16.9, 6.7 Hz, 1H), 5.16 – 4.98 (m, 2H), 3.01 – 2.92 (m, 2H),

2.48 – 2.37 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.3, 156.4, 146.5 (d, *J* = 11.3 Hz), 144.7 (d, *J* = 44.2 Hz), 142.8, 138.7 (d, *J* = 12.9 Hz), 137.1 (d, *J* = 28.2 Hz), 136.2, 136.1, 130.4, 130.2, 127.70, 116.4, 107.0 (d, *J* = 33.8 Hz), 31.4, 29.0; **HRMS** (ESI): *m*/*z* calcd for C₁₅H₁₅NSSe [M+H]⁺ 322.0169, found 322.0172.

5-(Furan-2-yl)-2-((phenylselanyl)methyl)-3,4-dihydro-2*H*-pyrrole (3l)

31: (**Method A:** 44%, 26.8 mg, **Method B:**60%, 36.6 mg; yellow oil); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.50 – 7.46 (m, 3H), 7.17 (dd, *J* = 9.5, 7.0 Hz, 3H), 6.74 (d, *J* = 3.4

Hz, 1H), 6.41 (dd, J = 3.5, 1.7 Hz, 1H), 4.45 – 4.37 (m, 1H), 3.47 (dd, J = 12.2, 4.3

Hz, 1H), 2.94 (dd, J = 12.1, 8.7 Hz, 2H), 2.76 (dt, J = 19.0, 9.7 Hz, 1H), 2.25 – 2.17 (m, 1H), 1.67 (d, J = 7.2 Hz, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.1, 149.9, 144.9, 132.6, 130.5, 129.2, 126.9, 113.7, 111.7, 73.1, 35.3, 34.0, 28.5; HRMS (ESI): m/z calcd for C₁₅H₁₅NOSe [M+H]⁺ 306.0397, found 306.0399.

5-Phenyl-2-(1-(phenylselanyl)ethyl)-3,4-dihydro-2H-pyrrole (3m)

3m: (Method A: Reaction conditions: heating and stirring at 90 °C for 24 h, 53%, 34.8 mg, yellow oil, obtained in a diastereomer ratio greater than 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.77 (m, 2H), 7.60 – 7.56 (m, 2H),

7.38 (d, J = 7.7 Hz, 3H), 7.23 (dd, J = 4.1, 2.3 Hz, 3H), 4.50 – 4.40 (m, 1H), 3.85 – 3.74 (m, 1H), 3.11 – 2.83 (m, 2H), 2.22 – 2.09 (m, 1H), 1.95 (d, J = 10.3 Hz, 1H), 1.38 (d, J = 7.0 Hz, 3H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.6, 134.8, 134.5, 130.7, 129.9, 129.1, 128.5, 127.9, 127.4, 77.3, 44.4, 35.8, 25.2, 17.5; **HRMS** (ESI): m/z calcd for C₁₈H₁₉NSe [M+H]⁺ 330.0761, found 330.0765.

5-Phenyl-2-(2-(phenylselanyl)propan-2-yl)-3,4-dihydro-2*H*-pyrrole (3n)

3n: (Method A: Reaction conditions: heating and stirring at 90 °C for 24 h, 70%, 48.0 mg, yellow oil; NMR data are in accordance with literature values^[15]); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (dd, J = 7.7, 1.9 Hz, 2H), 7.56

-7.48 (m, 2H), 7.35 -7.16 (m, 4H), 7.15 -7.02 (m, 2H), 4.18 -4.08 (m, 1H), 2.95 -2.71 (m, 2H), 2.11 -1.86 (m, 2H), 1.36 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.1, 138.6, 134.7, 130.5, 128.7 -128.4 (m), 127.9 (d, *J* = 13.6 Hz), 82.5, 51.9, 35.6, 28.3, 26.4, 25.6; HRMS (ESI): *m*/*z* calcd for C₁₉H₂₁NSe [M+H]⁺ 344.0918, found 344.0921.

2-Methyl-5-phenyl-2-((phenylselanyl)methyl)-3,4-dihydro-2H-pyrrole (30)

30: (Method A: Reaction conditions: heating and stirring at 90 °C for 24 h, 53%, 34.9 mg, yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.77 (m, 2H), 7.55 (dd, J = 7.6, 2.0 Hz, 2H), 7.42 (dd, J = 9.3, 7.1 Hz, 3H), 7.23 (q,

J = 5.1 Hz, 3H), 3.35 (d, J = 10.4 Hz, 2H), 3.09 (t, J = 8.0 Hz, 2H), 2.16 (dt, J = 12.9, 8.1 Hz, 1H), 1.97 – 1.84 (m, 1H), 1.49 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.4, 134.5, 132.4, 131.8, 130.5, 129.0, 128.4, 127.9, 126.6, 76.9, 41.6, 36.0, 34.1, 27.8; **HRMS** (ESI): *m/z* calcd for C₁₈H₁₉NSe [M+H]⁺ 330.0761, found 330.0767.

2-((Phenylselanyl)methyl)-3,3a,4,5-tetrahydro-2H-benzo(g)indole (3p)

3p: (Method A: Reaction conditions: heating and stirring at 90 °C for 24 h, 51%, 34.8 mg, white oil, obtained in a 2.2:1 ratio of diastereomers, data are given for the mixture); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (dd, J = 7.7,

1.4 Hz, 2H(major isomer)), 8.03 (dd, J = 7.9, 1.4 Hz, 1H(minor isomer)), 7.65 – 7.49 (m, 6H(major isomer)), 7.34 (td, J = 7.5, 1.6 Hz, 3H(minor isomer)), 7.30 – 7.03 (m, 8H(major isomer)+4H(minor isomer)), 4.64 (td, J = 8.6, 4.2 Hz, 1H(minor isomer)), 4.28 – 4.10 (m, 2H(major isomer)), 3.63 (dd, J = 11.9, 4.9 Hz, 2H(major isomer)), 3.29 (dd, J = 12.2, 4.5 Hz, 1H(minor isomer)), 3.19 – 2.76 (m, 8H(major isomer)+4H(minor isomer)), 2.54 (ddd, J = 12.3, 7.9, 6.2 Hz, 2H(minor isomer)), 2.33 – 2.19 (m, 4H(major isomer)), 1.79 (dt, J = 13.1, 9.2 Hz, 1H(minor isomer)), 1.69 (td, J = 12.9, 4.8 Hz, 2H(major isomer)), 1.65 – 1.53 (m, 1H(minor isomer)), 1.40 – 1.23 (m, 2H(major isomer)); 1³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 174.1, 141.2, 132.6, 132.6, 131.6, 131.0, 130.9, 130.7, 130.6, 130.0, 123.0, 129.3, 129.1, 129.1, 129.0, 128.9, 126.9, 126.8, 126.5, 126.5, 126.2, 126.1, 71.1, 71.0, 47.9, 46.0, 37.8, 34.9, 34.63, 32.7, 30.1, 30.1, 30.0, 29.7; HRMS (ESI): *m*/*z* calcd for C₁₉H₁₉NSe [M+H]⁺ 342.0761, found 342.0768.

5-Phenyl-2-((p-tolylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3r)

3r: (**Method A:** 57%, 37.5 mg, **Method B:** 66%, 43.2 mg; yellow oil); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 6.7 Hz, 2H), 7.48 – 7.36 (m, 5H), 7.06 (d, *J*

= 7.8 Hz, 2H), 4.53 – 4.45 (m, 1H), 3.44 (dd, J = 12.1, 4.6 Hz, 1H), 3.12 – 2.99 (m, 2H), 2.96 – 2.87 (m, 1H), 2.31 (s, 4H), 1.85 – 1.76 (m, 1H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 173.4, 136.9, 134.4, 133.2, 130.7, 130.0, 128.5, 127.9, 126.7, 73.0, 35.4, 34.8, 28.7, 21.2; **HRMS** (ESI): *m*/*z* calcd for C₁₈H₁₉NSe [M+H]⁺ 330.0761, found 330.0772.

2-(((4-Methoxyphenyl)selanyl)methyl)-5-phenyl-3,4-dihydro-2H-pyrrole (3s)

3s: (Method A: 14%, 9.7 mg, Method B: 55%, 38.2 mg; yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.76 (m, 2H), 7.52 (d, *J* =

8.8 Hz, 2H), 7.41 (t, J = 7.7 Hz, 4H), 6.79 (d, J = 8.7 Hz, 2H), 4.52 – 4.40 (m, 1H), 3.78 (s, 3H), 3.39 (dd, J = 12.1, 4.6 Hz, 1H), 3.14 – 3.02 (m, 1H), 3.02 – 2.84 (m, 2H), 2.33 – 2.21 (m, 1H), 1.85 – 1.74 (m, 1H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.3, 159.3, 135.6, 134.5, 130.6, 128.5, 127.9, 120.3, 114.8, 73.1, 55.4, 35.5, 35.1, 28.7; **HRMS** (ESI): *m*/*z* calcd for C₁₈H₁₉NOSe [M+H]⁺ 346.0710, found 346.0718.

2-(((4-Fluorophenyl)selanyl)methyl)-5-phenyl-3,4-dihydro-2H-pyrrole (3t)

3t: (Method A: 18%, 10.0 mg, Method B: 58%, 38.9 mg; yellow oil); ¹**H** NMR (400 MHz, Chloroform-d) δ 7.84 - 7.73 (m, 2H), 7.54 (dd, J = 8.6, 5.5 Hz, 2H), 7.46 - 7.36 (m, 3H), 6.94 (t, J = 8.8 Hz, 2H), 4.55 - 4.43 (m, 1H), 3.40 (dd, J = 12.1,

4.8 Hz, 1H), 3.16 - 3.00 (m, 2H), 2.99 - 2.86 (m, 1H), 2.35 - 2.18 (m, 1H), 1.86 -1.72 (m, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 173.5, 162.4 (d, J = 246.4 Hz), 135.4 (d, J = 7.7 Hz), 130.7, 128.5, 127.9, 125.0 (d, J = 3.5 Hz), 116.3 (d, J = 21.5 Hz), 73.0, 35.5 (d, J = 1.6 Hz), 28.7; ¹⁹F NMR (376 MHz, Chloroform-d) δ -115.10; **HRMS** (ESI): m/z calcd for C₁₇H₁₆FNSe [M+H]⁺ 334.0510, found 334.0515.

5-Phenyl-2-((o-tolylselanyl)methyl)-3,4-dihydro-2H-pyrrole (3u)

3u: (Method A: 58%, 38.2 mg, Method B: 52%, 34.1 mg; yellow solid, m.p. 54-55 ℃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.19 – 7.08 (m, 3H), 4.56 –

4.48 (m, 1H), 3.46 (dd, J = 11.9, 4.7 Hz, 1H), 3.09 (d, J = 11.7 Hz, 1H), 3.04 (d, J = 8.4 Hz, 1H), 2.97 – 2.88 (m, 1H), 2.43 (s, 3H), 2.37 – 2.26 (m, 1H), 1.89 – 1.80 (m, 1H); ¹³C NMR (151 MHz, Chloroform-d) δ 173.4, 139.3, 134.4, 131.7, 131.7, 130.7, 130.0, 128.5, 127.9, 126.7 (d, *J* = 18.8 Hz), 72.8, 35.4, 33.3, 28.8, 22.5; **HRMS** (ESI): m/z calcd for C₁₈H₁₉NSe [M+H]⁺ 330.0761, found 330.0766.

2-(((2-Methoxyphenyl)selanyl)methyl)-5-phenyl-3,4-dihydro-2H-pyrrole (3v)

3v: (Method A: 54%, 37.3 mg, Method B: 43%, 29.5 mg; yellow oil); ¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.81 (d, J = 8.0 Hz, 2H), 7.45 – 7.36 (m, 3H), 7.19 – 7.09 (m, 3H), 6.76 (d, J = 7.8 Hz, 1H), 4.57 – 4.49 (m, 1H), 3.77 (s, 3H),

3.47 (dd, J = 12.1, 4.8 Hz, 1H), 3.14 - 3.03 (m, 2H), 2.96 - 2.87 (m, 1H), 2.33 - 2.24(m, 1H), 1.85 - 1.76 (m, 1H); ¹³C NMR (151 MHz, Chloroform-d) δ 173.4, 159.8, 134.4, 131.7, 130.7, 129.8, 128.5, 127.9, 124.7, 117.9, 112.6, 72.9, 55.3, 35.5, 34.4, 28.7; **HRMS** (ESI): *m/z* calcd for C₁₈H₁₉NOSe [M+H]⁺ 346.0710, found 346.0716.

2-((Naphthalen-1-ylselanyl)methyl)-5-phenyl-3,4-dihydro-2H-pyrrole (3w)

3w: (Method A: 53%, 38.7 mg, Method B: 69%, 50.5 mg; yellow oil); ¹**H** NMR (400 MHz, Chloroform-d) δ 8.43 (d, J = 8.3 Hz, 1H), 7.90 - 7.76 (m, 5H), 7.63 - 7.46 (m, 2H), 7.44 – 7.33 (m, 4H), 4.55 – 4.42 (m, 1H), 3.51 (dd, J = 11.9, 4.7 Hz, 1H), 3.09 (dd, J = 11.9, 8.2 Hz, 2H),

2.97 - 2.84 (m, 1H), 2.35 - 2.22 (m, 1H), 1.91 - 1.78 (m, 1H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 173.5, 134.5, 134.4, 134.1, 132.6, 130.7, 129.9, 128.7, 128.5, 128.4, 127.9, 127.8, 126.7, 126.3, 125.9, 73.1, 35.5, 34.8, 28.8; **HRMS** (ESI): *m*/*z* calcd for C₂₁H₁₉NSe [M+H]⁺ 366.0761, found 366.0765.

2-((Benzylselanyl)methyl)-5-phenyl-3,4-dihydro-2*H*-pyrrole (3x)

3x: (Method A: 58%, 38.2 mg, Method B: 73%, 48.0 mg; yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (dd, *J* = 7.8, 1.9 Hz, 2H), 7.42 (d, *J* = 2.1 Hz, 3H), 7.29 (dd, *J* = 9.2, 6.7 Hz, 4H), 7.22 – 7.16 (m, 1H), 4.57

-4.46 (m, 1H), 3.87 (s, 2H), 3.12 -3.01 (m, 1H), 2.98 -2.88 (m, 2H), 2.83 (dd, J = 12.3, 6.9 Hz, 1H), 2.29 -2.16 (m, 1H), 1.77 -1.68 (m, 1H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.2, 139.8, 134.5, 130.7, 129.2, 129.1, 128.6, 127.9, 126.8, 73.5, 35.5, 30.7, 28.8, 28.1; **HRMS** (ESI): m/z calcd for C₁₈H₁₉NSe [M+H]⁺ 330.0761, found 330.0765.

2-((Methylselanyl)methyl)-5-phenyl-3,4-dihydro-2H-pyrrole (3y)

3y: (Method A: 47%, 23.8 mg, Method B: 54%, 27.1 mg; light yellow oil); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 6.5 Hz, 2H), 7.49 – 7.37 (m, 3H), 4.57 – 4.49 (m,

1H), 3.13 - 3.05 (m, 1H), 3.02 (dd, J = 12.4, 4.8 Hz, 1H), 2.97 - 2.89 (m, 1H), 2.80 (dd, J = 12.4, 7.4 Hz, 1H), 2.33 - 2.22 (m, 1H), 2.06 (s, 3H), 1.84 - 1.75 (m, 1H); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 173.3, 134.5, 130.7, 128.6, 127.9, 73.4, 35.5, 32.3, 28.7, 5.4; **HRMS** (ESI): m/z calcd for C₁₂H₁₅NSe [M+H]⁺ 254.0448, found 254.0450.

4-(Phenylselanyl)butanenitrile (5a)

5a: (Method A: 86%, 38.7 mg; Method B:98%, 44.1 mg; light yellow oil; NMR data are in accordance with literature values^[16]); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.46 (m, 2H), 7.34 – 7.24 (m, 3H), 2.99 (t, *J* = 7.0 Hz, 2H), 2.49 (t,

J = 7.0 Hz, 2H), 2.07 – 1.93 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 133.4, 129.4, 128.8, 127.6, 119.2, 26.2, 25.8, 17.1.

3-Phenyl-4-(phenylselanyl)butanenitrile (5b)

5b: (Method A: 76%, 45.8 mg, yellow oil; NMR data are in accordance with literature values^[16]); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.42 (m, 2H), 7.39 – 7.21 (m, 6H), 7.18 (d, *J* = 7.9 Hz, 2H), 3.29 (dd, *J* = 12.3, 6.2 Hz, 1H), 3.26 – 3.07 (m, 2H), 2.86 (dd, *J* = 16.8, 5.3 Hz, 1H), 2.75 (dd, *J* =

16.8, 7.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 140.7, 133.2, 129.5, 129.1,

129.1, 128.0, 127.6, 127.2, 118.2, 42.3, 32.7, 24.2.

3-(Benzyloxy)-4-(phenylselanyl)butanenitrile (5c)

5c: (Method A:60%, 38.0 mg, yellow oil; NMR data are in accordance with literature values^[16]); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.44 (m, 2H), 7.31 (dd, J = 16.7, 8.5 Hz, 8H), 4.57 (d, J = 3.4 Hz, 2H), 3.81 (p, J = 5.5 Hz, 1H), 3.21 (dd, J = 13.2, 4.9 Hz, 1H), 3.03 (dd, J = 13.2, 7.6 Hz,

1H), 2.79 – 2.64 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.1, 133.2, 129.5, 129.1, 128.7, 128.2, 128.1, 127.7, 117.3, 74.3, 72.2, 30.9, 23.1.

Ethyl 3-cyano-2-((phenylselanyl)methyl)propanoate (5d)

5d: (Method A: 50%, 29.7 mg, yellow oil; NMR data are in accordance with literature values^[16]); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.57 – 7.51 (m, 2H), 7.33 – 7.26 (m, 3H), 4.11 (ddq, *J* = 41.3, 10.7, 7.1 Hz, 2H), 3.33 (dd, *J* = 13.1, 5.6 Hz, 1H), 3.13 (dd, *J* = 13.2, 7.4 Hz, 1H), 2.98 – 2.91 (m, 1H),

2.80 (dd, J = 6.5, 0.9 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 171.0, 133.8, 129.6, 128.4, 128.1, 117.5, 62.0, 42.2, 28.2, 19.4, 14.2.

4-(Phenylselanyl)pentanenitrile (5e)

5e: (Method A: 74%, 35.4 mg, yellow oil);¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.43 (m, 2H), 7.21 (p, *J* = 7.6, 7.2 Hz, 3H), 3.21 (h, *J* = 6.9 Hz, 1H), 2.45 (td, *J* = 7.3, 5.1 Hz, 2H), 1.82 (t, *J* = 7.2 Hz, 2H), 1.36 (d, *J* = 6.9 Hz, 3H);

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 135.6, 129.2, 128.2, 127.6, 119.4, 37.9, 32.96, 22.0, 15.9; **HRMS** (ESI): *m*/*z* calcd for C₁₀H₁₁NSe [M+H]⁺ 240.0291, found 240.0287.

5-Phenyl-4-(phenylselanyl)pentanenitrile (5f)

5f: (Method A:83%, 52.3 mg, yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.53 (m, 2H), 7.40 – 7.26 (m, 6H), 7.19 (d, J = 6.8 Hz, 2H), 3.48 – 3.37 (m, 1H), 3.18 (dd, J = 14.1, 6.3 Hz, 1H), 2.89 (dd, J = 14.1, 8.8 Hz, 1H), 2.67 –

2.54 (m, 2H), 2.11 – 1.95 (m, 1H), 1.86 – 1.72 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.8, 135.6, 129.4, 129.1, 128.7, 128.3, 127.7, 126.9, 119.3, 45.5, 42.5, 30.0, 16.0; **HRMS** (ESI): *m*/*z* calcd for C₁₇H₁₇NSe [M+H]⁺ 316.0604, found 316.0608.

2-((Phenylselanyl)methoxy)acetonitrile (5g)

5g: (Method A:78%, 35.4 mg, yellow oil; NMR data are in accordance with literature values^[16]); ¹H NMR (400 MHz, Chloroform-d) δ 7.61 – 7.53 (m, 2H), 7.36 – 7.27 (m, 3H), 5.35 (s, 2H), 4.45 (s, 2H); ¹³C NMR (101 MHz,

Chloroform-*d*) & 133.1, 129.5, 129.1, 128.0, 115.3, 71.8, 53.3.

2-(((Phenylselanyl)methyl)thio)acetonitrile (5h)

5h: (Method A: 62%, 30.1 mg, yellow oil); ¹H NMR (400 MHz, Chloroform-d) δ 7.62 – 7.55 (m, 2H), 7.39 – 7.27 (m, 3H), 4.13 (s, 2H), 3.49 (s, 2H); ¹³C NMR (101 MHz, Chloroform-d) § 134.1, 129.5, 128.5, 128.4, 116.7, 29.9, 17.7; HRMS (ESI): m/z calcd for C₉H₉NSSe [M+H]⁺ 243.9699, found 243.9703.

5-(Phenylselanyl)hexanenitrile (5i)

5i: (Method A:, 79%, 38.5 mg; light yellow oil); ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.59 – 7.52 (m, 2H), 7.30 (t, J = 5.3 Hz, 3H), 3.25 (h, J = 6.7 Hz, 1H), 2.33 (t, J= 6.9 Hz, 2H), 1.83 (p, J = 6.5, 6.0 Hz, 2H), 1.78 - 1.69

(m, 2H), 1.43 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 135.3, 129.1, 128.5, 127.8, 119.5, 38.6, 36.4, 23.8, 22.3, 17.0; HRMS (ESI): m/z calcd for C₁₂H₁₅NSSe [M+H]⁺ 254.0448, found 254.0446.

6-Phenyl-6-(phenylselanyl)hexanenitrile (5k)

5k: (Method A:, 77%, 50.7 mg; yellow oil); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.27 (d, J = 3.2 Hz, 1H), 7.26 – 7.22 (m, 3H), 7.20 (dt, J = 5.4, 2.4 Hz, 2H), 7.16 (dd, J = 5.3, 3.1 Hz, 2H), 4.23 – 4.17 (m, 1H), 2.29 – 2.21 (m, 2H), 2.14 – 1.97 (m, 2H), 1.69 –

1.56 (m, 2H), 1.53 – 1.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 135.5, 129.3, 128.8, 128.4, 127.9, 127.6, 127.1, 119.4, 47.9, 35.2, 27.5, 25.0, 17.0; HRMS (ESI): m/z calcd for C₁₈H₁₉NSe [M+Na]⁺ 352.0576, found 352.0587.

7-phenyl-7-(phenylselanyl)heptanenitrile (5l)

51: (Method A:, 78%, 53.2 mg; yellow oil); ¹H NMR (400 MHz, Chloroform-d) δ 7.43 – 7.37 (m, 2H), 7.30 – 7.16 (m, 8H), 4.23 (dd, J = 9.0, 6.4 Hz, 1H), 2.27 (t, J =

7.1 Hz, 2H), 2.13 – 1.99 (m, 2H), 1.62 – 1.55 (m, 2H), 1.43 (dd, J = 14.1, 6.4 Hz, 2H), 1.37 – 1.27 (m, 2H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 142.26, 135.56, 129.54, 128.90, 128.45, 127.92, 127.76, 127.06, 119.74, 48.37, 35.77, 28.27, 27.59, 25.21, 17.11; **HRMS** (ESI): *m/z* calcd for C₁₁H₁₃NSe [M+Na]⁺ 366.0736, found 366.0733.

4-(P-tolylselanyl)butanenitrile (5m)

5m: (Method A: 30%, 14.3 mg, Method B: 84%, 40.2 mg; yellow oil); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 2.94 (t, J = 7.0 Hz, 2H), 2.49 (t, J = 7.1 Hz, 2H), 2.33 (s, 3H), 1.97

(p, J = 7.0 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 137.9, 133.9, 130.3, 124.9, 119.2, 26.5, 25.8, 21.3, 17.1; **HRMS** (ESI): m/z calcd for C₁₁H₁₃NSe [M+H]⁺ 240.0291, found 240.0292.

4-((4-Methoxyphenyl)selanyl)butanenitrile (5n)

5n: (Method A: 94%, 47.9 mg, Method B: 54%, 27.6 mg; yellow oil; NMR data are in accordance with literature values^[17]); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.51 – 7.43 (m, 2H), 6.85 – 6.78 (m,

2H), 3.79 (s, 3H), 2.88 (t, *J* = 7.0 Hz, 2H), 2.48 (t, *J* = 7.1 Hz, 2H), 1.93 (p, *J* = 7.1 Hz, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 159.8, 136.2, 119.2, 118.5, 115.1, 55.4, 27.1, 25.7, 17.0.

4-((4-Fluorophenyl)selanyl)butanenitrile (50)

50: (Method A:45%, 21.9 mg, Method B: 54%, 26.0 mg; yellow oil); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 – 7.46 (m, 2H), 7.04 – 6.94 (m, 2H), 2.94 (t, *J* = 7.0 Hz, 2H), 2.50 (t, *J* = 7.0 Hz, 2H), 1.97 (p, *J* = 7.0 Hz, 2H); ¹³C

NMR (151 MHz, Chloroform-*d*) δ 162.8 (d, J = 247.9 Hz), 136.1 (d, J = 7.9 Hz), 123.2 (d, J = 3.3 Hz), 119.1, 116.7 (d, J = 21.5 Hz), 27.0, 25.8, 17.1; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.70; **HRMS** (ESI): m/z calcd for C₁₀H₁₀FNSe [M+H]⁺ 244.0040, found 244.0042.

4-(O-tolylselanyl)butanenitrile (5p)

5p: (Method A: 64%, 30.6 mg, Method B: 54%, 25.8 mg; yellow oil; NMR data are in accordance with literature values^[17]); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.43 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.12 (t, *J* = 7.5 Hz,

1H), 2.97 (t, J = 7.0 Hz, 2H), 2.50 (t, J = 7.0 Hz, 2H), 2.43 (s, 3H), 2.00 (p, J = 7.0 Hz,

2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 140.0, 132.3, 130.4, 129.9, 127.5, 126.8, 119.1, 25.7, 24.9, 22.5, 17.3.

4-((2-Methoxyphenyl)selanyl)butanenitrile (5q)

5q: (Method A: 20%, 10.2 mg, Method B: 34%, 17.3 mg; yellow oil); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.22 – 7.15 (m, 1H), 7.09 – 7.02 (m, 2H), 6.81 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 3.80 (s, 3H), 2.99 (t, J = 7.0 Hz, 2H), 2.49 (t, J = 7.0 Hz, 2H), 2.05 – 1.93 (m, 2H); ¹³C NMR (151 MHz,

Chloroform-*d*) δ 160.0, 130.2, 129.8, 125.2, 119.2, 118.6, 113.2, 55.4, 26.0, 25.8, 17.1; **HRMS** (ESI): *m*/*z* calcd for C₁₁H₁₃NOSe [M+H]⁺ 256.0240, found 256.0244.

4-(Naphthalen-1-ylselanyl)butanenitrile (5r)

5r: (Method A: 55%, 30.3 mg, Method B: 74%, 40.6 mg; yellow oil); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 (d, J = 8.3 Hz, 1H), 7.89 – 7.76 (m, 3H), 7.61 – 7.49 (m, 2H), 7.39 (t, J = 7.7 Hz, 1H), 3.02 (t, J = 7.0 Hz, 2H), 2.48 (t, J = 7.1 Hz, 2H), 1.92 (q, J = 7.0 Hz, 2H); ¹³C NMR (101

MHz, Chloroform-*d*) δ 134.5, 134.2, 133.5, 129.2, 128.9, 128.0, 127.6, 127.1, 126.5, 125.9, 119.1, 26.3, 25.8, 17.2; **HRMS** (ESI): *m*/*z* calcd for C₁₄H₁₃NSe [M+Na]⁺ 298.0110, found 298.0110.

4-(Methylselanyl)butanenitrile (5s)

5s: (Method A: 41%, 13.4 mg, Method B: 56%, 18.1 mg; light yellow oil; NMR data are in accordance with literature values^[18]); ¹H NMR (600 MHz, Chloroform-*d*) δ 2.66 (t, *J* =

7.0 Hz, 2H), 2.52 (t, J = 7.0 Hz, 2H), 2.07 – 1.96 (m, 5H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 119.3, 25.7, 23.6, 17.2, 4.4.

4-(Benzylselanyl)butanenitrile (5t)

5t: (Method A: 58%, 27.7 mg, Method B: 64%, 30.4 mg; yellow oil; NMR data are in accordance with literature values^[19]); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.28 (dt,

J = 10.6, 7.2 Hz, 4H), 7.21 (t, J = 6.9 Hz, 1H), 3.77 (s, 2H), 2.57 (t, J = 7.0 Hz, 2H), 2.39 (d, J = 14.1 Hz, 2H), 1.87 (p, J = 7.1 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 138.9, 128.9, 128.8, 127.1, 119.2, 27.4, 25.9, 22.1, 17.2.

2,2,6,6-Tetramethyl-1-((5-phenyl-3,4-dihydro-2*H*-pyrrol-2-yl)methoxy)piperidine (6)

6: (71%, 44.6 mg, yellow oil; NMR data are in accordance with literature values^[3]); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.81 (m, 2H), 7.46 – 7.33 (m, 3H), 4.44 (d, *J* = 13.9 Hz, 1H), 4.08 (d, *J* = 12.9 Hz, 1H), 3.96 (d, *J* = 13.9 Hz, 1H), 3.12 – 2.84 (m, 2H), 2.18 – 1.99 (m, 2H), 1.59 – 1.32 (m, 6H),

1.21 (s, 3H), 1.15 (s, 3H), 1.10 (s, 3H), 0.94 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 134.9, 130.4, 128.5, 127.8, 79.2, 72.5, 60.0, 39.7, 35.5, 33.3, 33.1, 26.0, 20.4, 20.1, 17.2.

4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanenitrile (7)

7: (61%; yield was determined by ¹H NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard) ¹H NMR (400 MHz, Chloroform-*d*) δ 3.82 (t, *J* = 5.8 Hz, 2H), 2.47 (t, *J* = 7.2 Hz, 2H), 1.87 (p, *J* =

6.6 Hz, 2H), 1.42 (d, J = 4.8 Hz, 4H), 1.36 (s, 2H), 1.10 (d, J = 23.8 Hz, 12H); **HRMS** (ESI): m/z calcd for C₁₄H₁₃NSe [M+H]⁺ 225.1966, found 225.1958.

5. References

- [1]. Cai, S.-H.; Xie, J.-H.; Song, S.; Ye, L.; Feng, C.; Loh, T.-P. ACS Catal. **2016**, *6* (8), 5571-5574.
- [2]. Zhang, X.; Qi, D.; Jiao, C.; Zhang, Z.; Liu, X.; Zhang, G. Org. Chem. Front. 2021, 8 (23), 6522-6529.
- [3]. Yang, H.-B.; Pathipati, S. R.; Selander, N. ACS Catal. 2017, 7 (12), 8441-8445.
- [4]. Guven, S.; Kundu, G.; Weßels, A.; Ward, J. S.; Rissanen, K.; Schoenebeck, F. J. Am. Chem. Soc. 2021, 143 (22), 8375-8380.
- [5]. Zhang, M.; Liu, S.; Li, H.; Guo, Y.; Li, N.; Guan, M.; Mehfooz, H.; Zhao, J.; Zhang, Q. Chemistry 2019, 25 (54), 12620-12627.
- [6]. Usami, K.; Yamaguchi, E.; Tada, N.; Itoh, A. Org. Lett. **2018**, 20 (18), 5714-5717.
- [7]. Zhao, B.; Kong, X.; Xu, B. Tetrahedron Lett. 2019, 60 (31), 2063-2066.
- [8]. Yang, D.; Huang, H.; Li, M. H.; Si, X. J.; Zhang, H.; Niu, J. L.; Song, M. P. Org. Lett. 2020, 22 (11), 4333-4338.
- [9]. Tian, L.; Gao, S.; Wang, R.; Li, Y.; Tang, C.; Shi, L.; Fu, J. Chem. Commun (Camb). 2019, 55 (37), 5347-5350.
- [10].Gu, Y. R.; Duan, X. H.; Yang, L.; Guo, L. N. Org. Lett. 2017, 19 (21), 5908-5911.
- [11]. Zheng, M.; Li, G.; Lu, H. Org. Lett. 2019, 21 (4), 1216-1220.
- [12]. Tang, Y. Q.; Yang, J. C.; Wang, L.; Fan, M.; Guo, L. N. Org. Lett. 2019, 21 (13), 5178-5182.
- [13].Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues,
 O. E. D.; Braga, A. L. Org. Lett. 2010, 12 (15), 3288-3291.
- [14].Liu, M.; Yang, Y.; Zhao, S.; Leng, T.; Huang, X.; Gao, W.; Wu, H. CN2018-10082883, 108047107, 20180129, 2018.
- [15].Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem. Int. Ed. Engl. 2017, 56 (43), 13361-13365.
- [16]. Anand, D.; He, Y.; Li, L.; Zhou, L. Org. Biomol. Chem. 2019, 17 (3), 533-540.
- [17]. Ji, L.; Qiao, J.; Liu, J.; Tian, M.; Lu, K.; Zhao, X. Tetrahedron Lett. 2021, 75.
- [18]. Matich, A. J.; McKenzie, M. J.; Lill, R. E.; Brummell, D. A.; McGhie, T. K.; Chen, R. K. Y.; Rowan, D. D. *Phytochemistry (Elsevier)* 2012, 75, 140-152.
- [19].Li, J.; Wang, S. Y.; Ji, S. J. J. Org. Chem. 2019, 84 (24), 16147-16156.

6. ¹H, ¹³C, and ¹⁹F NMR Spectra

-135.95 -136.97 -137.01 -137.01 -147.11 -147.12 -147.20 -147.20 -147.20 -147.20 -147.20 -159.67

 $\begin{array}{c} 3.00\\ 2.97\\ 2.97\\ 2.97\\ 2.97\\ 2.01\\ 1.99\\ 1.97\\$

S-78

S-79

 $-\frac{7.47}{7.45}$

S-86

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 гі (дряв)

Created by: waters, waters Created on: May 05, 2022 Created time: 14:47:08 China Standard Time

Item name: MS-20220505

UNIF

Analysis Information							
Item name: MS-20		220505	Analysis Me name:	thod Item	MS-NOPDA-0929		
Version: 2 Modified date: May 0 Time Modified by: waters			Analysis Me	thod Version:	1		
		5, 2022 14:44:46 China Standard	Sample Set Created date: Sample Set Instrument system name:		May 05, 2022 14:27:02 China Standard Time Vion UPLC		
		waters					
Folder:	lder: Company/Sample/2022						
MS Instrument Type: Wa Experiment Settings:	ters Vio	n® IMS QTof					
Experiment type:		ESI+	Scan Mode:	MS			
Capillary voltage:		3.0kv	Low mass:	50m/z			
Soure temperature:		120°C	High mass:	2000m/z			
Desolvation temper	rature:	450°C	Scan time:	0.200s			
Cone gas:		50L/h					
Desolvation gas:		800L/h					

Item name: 20220505-CXZ-2, Sample position: 1:E,8, Replicate number: 1

	Formula	Neutral mass (Da)	Observed m/z	Mass error (mDa)	Mass error (ppm)	Response	Adducts	Identification status
1	C13H24N2O	224.18886	225.19586	-0.3	-1.3	657026	+H	Identified

