Electronic Supplementary Information

Copper-iodine Co-catalyzed C-H Aminoalkenylation of Indoles via Temperature-Controlled Selectivity Switch: facile synthesis of 2-azolyl-3-alkenylindoles

Xiaoxiang Zhang, Wenhua Yu, Yiyu Nie, Yingying Zhang, Xiaoting Gu, Wanxing Wei, Zhuan Zhang, and Taoyuan Liang*

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.

*E-mail: taoyuanliang@gxu.edu.cn

Table of contents

1.	General information.	S2
2.	Substrates preparation.	S2-S3
3.	Optimization of reaction conditions.	S3-S4
4.	Typical procedure for the synthesis of 4aaa.	S4-S5
5.	Synthetic utility.	S5
6.	Control experiments.	S5-S7
7.	Single crystal X-ray diffraction of 4jaa.	S7-S13
8.	References.	S13-S14
9.	Analytical data of the obtained compounds.	S14-S29
10.	NMR spectra of the obtained compounds.	S30-S59

1. General information.

All the obtained products were characterized by melting points (m.p.), ¹H-NMR, ¹³C-NMR. Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected; the ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectroscopic data were recorded with CDCl₃ or [D6] DMSO as the solvent and TMS as the internal standard. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization effected at 254 nm; Unless otherwise stated, all the reagents were purchased from commercial sources, used without further purification.

All the reagents were purchased from Bide Pharmatech Ltd and Energy Chemical. All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification. All reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com). Column chromatography was performed on silica gel (200-300 mesh). Reactions were monitored by using thin layer chromatography (TLC) (Qingdao Jiyida silica gel reagent factory GF254).

2. Substrates preparation.

General Procedure for the preparation of *N*-substituted indole derivatives (1b-1n)¹:

Procedure for 4-chloro-1-methyl-1*H*-indole (**1j**): To a suspended solution of NaH (0.55 g, 65% dispersion in mineral oil, 15.0 mmol) in DMF (5.0 mL), 4-chloro-1*H*-indole (1.51 g, 10.0 mmol) in DMF (5.0 mL) was added dropwise at 0 °C. The heterogeneous mixture was stirred at 0 °C for 15 min and 1 h at room temperature. The mixture was then cooled to 0 °C, treated with iodomethane (0.83 mL, 13.0 mmol), and allowed to warm to room temperature. After 30 min, the reaction mixture was cooled to 0 °C, quenched with saturated NH₄Cl (20.0 mL), and extracted with ether (3×20.0 mL). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄ and

concentrated in vacuo. The resulting oil was purified by column chromatography on silica gel (petroleum ether) afforded **1j** as a yellow oil. Similarly, the other *N*-substituted indole derivatives were prepared from their corresponding indoles and halides.

3. Optimization of reaction conditions.

Table S1. Optimization of the reaction conditions.^a

Catalyst	Solvent	Additive	4aaa , Yield (%) ^b
CuI	CH ₃ CN	-	63
$CuBr_2$	CH ₃ CN	-	19
Cu(OTf) ₂	CH ₃ CN	-	trace
CuCl	CH ₃ CN	-	59
CuBr	CH ₃ CN	-	62
CuCl ₂	CH ₃ CN	-	31
CuI	THF	-	26
CuI	DCE	-	39
CuI	DMF	-	55
CuI	DMSO	-	17
CuI	1,4-dioxane	-	69
CuI	1,4-dioxane/CH ₃ CN	-	(61, 75, 68) ^c
CuI	1,4-dioxane/CH ₃ CN	-	$(41, 65)^d$
CuI	1,4-dioxane/CH ₃ CN	-	(65, 73) ^e
CuI	1,4-dioxane/CH ₃ CN	-	(15, 19, 54) ^f
CuI	1,4-dioxane/CH ₃ CN	AlCl ₃	51
CuI	1,4-dioxane/CH ₃ CN	ZnCl ₂	46
CuI	1,4-dioxane/CH ₃ CN	BF ₃ OEt ₂	73
CuI	1,4-dioxane/CH ₃ CN	NaOTf	42
CuI	1,4-dioxane/CH ₃ CN	Zn(OTf) ₂	(79, 83, 71) ^g
CuI	1,4-dioxane/CH ₃ CN	Zn(OTf) ₂	27^{h}
	Catalyst CuBr2 Cu(OTf)2 CuCl CuCl CuCl CuCl CuCl CuCl CuI CuI	Catalyst Solvent CuI CH ₃ CN CuBr ₂ CH ₃ CN Cu(OTf) ₂ CH ₃ CN CuCl CH ₃ CN CuGT CH ₃ CN CuG1 CH ₃ CN CuBr CH ₃ CN CuG2 CH ₃ CN CuG2 CH ₃ CN CuG2 CH ₃ CN CuG2 CH ₃ CN CuG1 DCE CuI DVF CuI DMF CuI JA-dioxane/CH ₃ CN CuI 1,4-dioxane/CH ₃ CN	Catalyst Solvent Additive Cul CH ₃ CN - CuBr ₂ CH ₃ CN - Cu(OTf) ₂ CH ₃ CN - CuCl CH ₃ CN - CuSr CH ₃ CN - CuGl CH ₃ CN - CuBr CH ₃ CN - CuGl DH ₃ CN - CuI DDE - CuI DMF - CuI 1,4-dioxane/CH ₃ CN SnCl ₂ CuI 1,4-dioxane/CH ₃ CN SnCl ₂ CuI 1,4-dioxane/CH ₃ CN SnCl ₂ CuI 1,4-dioxane/CH ₃

^{*a*}Reaction conditions, unless specified otherwise: 1a (0.25 mmol), 2a (0.75 mmol), 3a (0.375 mmol), and catalyst (20 mol%), I₂ (20 mol%), additive (20 mol%), solvent (3.0 mL) were stirred at 60 °C under O₂ for 12 h; then, the reaction mixture was heated to 100 °C for another 12 h; ^{*b*}isolated yield; cthe mixed solutions of 1,4-dioxane and CH₃CN (v/v = 1/1, 2/1, 1/2); ^{*d*}yields are with respect to the use of 10 mol% and 30 mol% of catalyst, respectively; ^{*e*}yields are with respect to the use of 10 mol% and 30 mol% of I₂, respectively; ^{*f*}yields are with respect to the use of 10 mol%, 20 mol% and 30 mol% of additive, respectively; ^{*b*}uields are with respect to the use of 10 mol%, 20 mol% and 30 mol% of additive, respectively; ^{*h*}under air.

4. Typical procedure for the synthesis of 4aaa.

The mixture of 1-methylindole **1a** (32.8 mg, 0.25 mmol), **2a** (51.0 mg, 0.75 mmol), **3a** (54.0 mg, 0.375 mmol), and CuI (20 mol%), I_2 (20 mol%), $Zn(OTf)_2$ (20 mol%), 1,4-dioxane (2.0 mL) and CH₃CN (1.0 mL) were stirred at 60 °C under O₂ for 12 h; then, the reaction mixture was heated to 100 °C for another 12 h. The resulting mixture was

concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether/dichloromethane (1:1) as the eluent to give **4aaa** as a red solid (73.7 mg, 83% yield).

5. Synthetic utility.

The mixture of 1*H*-indole **1p** (29.3 mg, 0.25 mmol), **2a** (51.0 mg, 0.75 mmol), **3a** (54.0 mg, 0.375 mmol), and CuI (20 mol%), I₂ (20 mol%), Zn(OTf)₂ (20 mol%), 1,4-dioxane (2.0 mL) and CH₃CN (1.0 mL) were stirred at 60 °C under O₂ for 12 h; then, the reaction mixture was heated to 100 °C for another 12 h. The resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether/dichloromethane (1:1) as the eluent to give **4paa** as a red solid (48.3 mg, 57% yield).

6. Control experiments.

(1) Conditions 1: 1-naphthol 3a (36.0 mg, 0.25 mmol) and CuI (20 mol%), 1,4-dioxane (2.0 mL) and CH₃CN (1.0 mL) were stirred at 60 °C under O₂ for 12 h, then, the reaction mixture was heated to 100 °C for another 12 h. The reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (1:1) to give product 3a-1 (20.5 mg, 52% yield). Conditions 2: 1-naphthol 3a (36.0 mg, 0.25 mmol) and CuI (20 mol%), I₂ (20 mol%), 1,4-dioxane (2.0 mL) and CH₃CN (1.0 mL) were stirred at 60 °C under O₂ for 12 h, then, the reaction mixture was heated to 100 °C for another 12 h. The reaction mixture was heated to 100 °C for another 12 h. The reaction mixture was heated to 100 °C for another 12 h. The reaction mixture was heated to 100 °C for another 12 h. The reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (1:1) to give product 3a-1 (34.0 mg, 86% yield).

(2) The preparation of **1a-1** was similar to the literature procedures.² Under the optimized reaction conditions, the reaction of **1a-1** (49.3 mg, 0.25 mmol) and **3a-1** (39.5 mg, 0.25 mmol) were carried. Then, the reaction mixture was purified by preparative

TLC on silica eluting with petroleum ether/dichloromethane (1:1) to give product **4aaa** as red solid (78.6 mg, 89% yield).

(3) The preparation of **1a-2** was similar to the literature procedures.³ Under the optimized reaction conditions, the reaction of **1a-2** (71.8 mg, 0.25 mmol) and **2a** (51.0 mg, 0.75 mmol) were carried. Then, the crude reaction mixture was analyzed by TLC, and **4aaa** was not observed.

(4) Conditions 1: 1a-1 (49.3 mg, 0.25 mmol), 3a-1 (39.5 mg, 0.25 mmol), and $Zn(OTf)_2$ (20 mol%), 1,4-dioxane (2.0 mL) and CH_3CN (1.0 mL) were stirred at 100 °C under O₂ for 12 h. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (1:1) to give product 4aaa (58.2 mg, 66% yield). Conditions 2: 1a-1 (49.3 mg, 0.25 mmol), 3a-1 (39.5 mg, 0.25 mmol) and CuI (20 mol%), 1,4-dioxane (2.0 mL) and CH₃CN (1.0 mL) were stirred at 100 °C under O₂ for 12 h. Then, the crude reaction mixture was analyzed by TLC, and only a trace of 4aaa was observed.

(5) 1a-1 (49.3 mg, 0.25 mmol), 3a-1 (39.5 mg, 0.25 mmol), and HI (20 mol%), 1,4dioxane (2.0 mL) and CH₃CN (1.0 mL) were stirred at 100 °C under O₂ for 12 h. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (1:1) to give product 4aaa (37.9 mg, 43% yield).

(6) Under the optimized reaction conditions, the reaction of **1a-3** (36.3 mg, 0.25 mmol) and **3a-1** (39.5 mg, 0.25 mmol) were carried. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (1:1) to give product **1a-3**' as purple solid (68.5 mg, 91% yield).

(7) Under the optimized reaction conditions, the reaction of **1a** (33.3 mg, 0.25 mmol) and **2a** (51.0 mg, 0.75 mmol), **3a** (54.0 mg, 0.375 mmol) and **TEMPO** (117.2 mg, 0.75 mmol) were carried. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (1:1) to give product **4aaa** as red solid (50.3 mg, 57% yield).

 1a + 2a + 3a
 Standard conditions
 → 4aaa, 57%

 TEMPO (3.0 equiv)

7. Single crystal X-ray diffraction of 4jaa.

Red block-like single crystals of **4jaa** were grown by layering a dichlormethane solution with *n*-hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a R-AXIS SPIDER diffractometer. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 153(2) K, using the ω - and φ - scans to a maximum θ value of 25.242°. The data were refined by full-matrix least-squares techniques on F² with SHELXTL-2014. And the structures were solved by direct methods SHELXS-2014. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. And an ORTEP representation of the structure is shown below.

Figure S1. ORTEP drawing of 4jaa with the numbering scheme.

	J				
Identification code	4jaa				
Empirical formula	$C_{22}H_{14}ClN_3O_2$				
Formula weight	387.81				
Temperature	153(2) K				
Crystal system	Monoclinic				
Space group	P21/n				
Unit cell dimensions	a = 12.4017(8) Å	$\alpha = 90^{\circ}$.			
	b = 10.1700(9) Å	$\beta = 101.867(6)^{\circ}.$			
	c = 14.9975(10) Å	$\gamma = 90^{\circ}.$			
Volume	1851.1(2) Å ³				
Z	4				
F(000)	800.0				
Crystal size	0.15x 0.11 x 0.08 mm ³				
2^{Θ} range for data collection	1.945 to 29.544°				
Index ranges	-16<=h<=9, -12<=k<=10, -14<=l<=19				
Reflections collected	9344				
Independent reflections	4308 [R(int) = 0.0261]				
Data / restraints / parameters	4308 / 0 / 254				
Goodness-of-fit on F ²	1.045				
Final R indices $[I \ge 2^{\sigma}(I)]$	R1 = 0.0571, $wR2 = 0.1150$				
Final R indices (all data)	R1 = 0.0910, $wR2 = 0.1330$				
Largest diff. peak and hole	0.240 and -0.290 e.Å ⁻³				

Table S2. Crystal data and structure refinement for 4jaa

Table S3. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4jaa**. U(eq) is defined as 1/3 of of the trace of the orthogonalised U^{ij} tensor.

Atom	x	У	Ζ	U(eq)
Cl(01)	8100(1)	2518(1)	4345(1)	56(1)
O(002)	7817(1)	5893(2)	4261(1)	67(1)
O(003)	8068(2)	4250(2)	939(1)	64(1)
N(004)	4332(1)	4401(2)	3652(1)	46(1)
N(005)	4561(2)	5753(2)	2376(1)	48(1)
C(006)	8891(2)	5802(2)	3132(1)	38(1)
C(007)	6982(2)	4760(2)	2926(1)	37(1)
C(008)	8932(2)	5438(2)	2240(1)	37(1)
C(009)	6046(2)	3584(2)	4113(1)	39(1)
C(00A)	6039(2)	4418(2)	3343(1)	39(1)
C(00B)	8005(2)	4697(2)	1680(1)	41(1)
C(00C)	7902(2)	5505(2)	3513(1)	40(1)
C(00D)	4984(2)	4875(2)	3085(1)	41(1)
N(00E)	3734(2)	5374(3)	1675(2)	72(1)
C(00F)	7031(2)	4452(2)	2068(1)	42(1)
C(00G)	4971(2)	3606(2)	4290(1)	43(1)
C(00H)	9851(2)	5765(2)	1887(2)	46(1)
C(00I)	6812(2)	2731(2)	4626(1)	44(1)
C(00J)	4926(2)	6968(3)	2241(2)	56(1)
C(00K)	10716(2)	6435(3)	2416(2)	56(1)
C(00L)	9772(2)	6476(3)	3656(2)	54(1)
C(00M)	4681(2)	2871(3)	4991(2)	55(1)
C(00N)	6538(2)	1989(3)	5313(2)	53(1)
C(00O)	10677(2)	6788(3)	3295(2)	61(1)
C(00P)	3170(2)	4705(3)	3605(2)	62(1)
C(00Q)	5484(2)	2091(3)	5493(2)	60(1)
C(00R)	4338(2)	7415(3)	1440(2)	67(1)
C(00S)	3619(3)	6398(4)	1121(2)	77(1)

Table S4. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4jaa**. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl(01)	39(1)	68(1)	58(1)	5(1)	7(1)	3(1)
O(002)	59(1)	94(2)	51(1)	-29(1)	22(1)	-26(1)

O(003)	66(1)	80(1)	50(1)	-21(1)	21(1)	-8(1)
N(004)	32(1)	52(1)	56(1)	-10(1)	14(1)	-5(1)
N(005)	38(1)	52(1)	50(1)	-2(1)	1(1)	-1(1)
C(006)	31(1)	40(1)	41(1)	3(1)	6(1)	0(1)
C(007)	32(1)	39(1)	39(1)	3(1)	6(1)	-1(1)
C(008)	34(1)	36(1)	40(1)	8(1)	9(1)	5(1)
C(009)	35(1)	43(1)	39(1)	-5(1)	9(1)	-9(1)
C(00A)	33(1)	44(1)	40(1)	-3(1)	8(1)	-7(1)
C(00B)	44(1)	42(1)	38(1)	-1(1)	9(1)	1(1)
C(00C)	35(1)	46(2)	40(1)	-3(1)	8(1)	-5(1)
C(00D)	35(1)	43(2)	44(1)	-5(1)	6(1)	-5(1)
N(00E)	61(1)	71(2)	70(2)	-4(1)	-18(1)	-5(1)
C(00F)	36(1)	49(2)	41(1)	-3(1)	4(1)	-7(1)
C(00G)	40(1)	46(2)	47(1)	-10(1)	14(1)	-7(1)
C(00H)	42(1)	50(2)	50(1)	13(1)	16(1)	10(1)
C(00I)	40(1)	50(2)	42(1)	-6(1)	7(1)	-7(1)
C(00J)	52(2)	54(2)	63(2)	2(1)	10(1)	-4(1)
C(00K)	33(1)	69(2)	67(2)	21(1)	13(1)	1(1)
C(00L)	41(1)	67(2)	52(1)	-3(1)	5(1)	-9(1)
C(00M)	54(2)	58(2)	59(2)	-9(1)	29(1)	-16(1)
C(00N)	59(2)	51(2)	50(1)	2(1)	10(1)	-8(1)
C(00O)	35(1)	75(2)	70(2)	5(1)	1(1)	-14(1)
C(00P)	35(1)	72(2)	83(2)	-12(2)	19(1)	-1(1)
C(00Q)	76(2)	59(2)	50(1)	2(1)	26(1)	-15(2)
C(00R)	64(2)	68(2)	71(2)	18(2)	18(1)	10(2)
C(00S)	70(2)	92(3)	61(2)	10(2)	-6(1)	18(2)

 Table S5. Bond Lengths for 4jaa.

lengu	13 101 Ja a	•		
tom	Atom	Length/Å	Atom Atom	Length/Å
l(01)	C(00I)	1.748(2)	C(00F) H(00F)	0.9500
(002)	C(00C)	1.214(2)	C(00G) C(00M)	1.395(3)
(003)	C(00B)	1.219(2)	C(00H) H(00H)	0.9500
(004)	C(00D)	1.376(3)	C(00H) C(00K)	1.377(3)
(004)	C(00G)	1.373(3)	C(00I) C(00N)	1.376(3)
(004)	C(00P)	1.461(3)	C(00J) H(00J)	0.9500
	<u>tom</u> 1(01) (002) (003) (004) (004) (004)	Atom Atom 1(01) C(001) (002) C(00C) (003) C(00B) (004) C(00D) (004) C(00P)	tomAtomLength/Å (001) $C(001)$ $1.748(2)$ (002) $C(00C)$ $1.214(2)$ (003) $C(00B)$ $1.219(2)$ (004) $C(00D)$ $1.376(3)$ (004) $C(00G)$ $1.373(3)$ (004) $C(00P)$ $1.461(3)$	Atom Length/Å Atom Atom 1(01) C(001) 1.748(2) C(00F) H(00F) (002) C(00C) 1.214(2) C(00G) C(00M) (003) C(00B) 1.219(2) C(00H) H(00H) (004) C(00G) 1.376(3) C(00H) C(00N) (004) C(00P) 1.461(3) C(00J) H(00J)

_

N(005) C(00D)	1.405(3)	C(00J) C(00R)	1.349(4)	
N(005) N(00E)	1.365(3)	C(00K) H(00K)	0.9500	
N(005) C(00J)	1.345(3)	C(00K) C(00O)	1.376(4)	
C(006) C(008)	1.400(3)	C(00L) H(00L)	0.9500	
C(006) C(00C)	1.486(3)	C(00L) C(00O)	1.379(3)	
C(006) C(00L)	1.389(3)	C(00M) C(00M)	0.9500	
C(007) C(00A)	1.477(3)	C(00M) C(00M)	1.371(4)	
C(007) C(00C)	1.496(3)	C(00N) C(00N)	0.9500	
C(007) C(00F)	1.338(3)	C(00N) C(00N)	1.392(4)	
C(008) C(00B)	1.482(3)	C(00O) C(00O)	0.9500	
C(008) C(00H)	1.391(3)	C(00P) C(00P)	0.9800	
C(009) C(00A)	1.431(3)	C(00P) C(00P)	0.9800	
C(009) C(00G)	1.412(3)	C(00P) C(00P)	0.9800	
C(009) C(00I)	1.395(3)	C(00Q) C(00Q)	0.9500	
C(00A) C(00D)	1.367(3)	C(00R) C(00R)	0.9500	
C(00B) C(00F)	1.466(3)	C(00R) C(00R)	1.385(4)	
N(00E) C(00S)	1.322(4)	C(00S) C(00S)	0.9500	

Table S6. Bond Angles for 4jaa.

Atom	Atom	Atom	Angle/°	Atom Atom Atom	Angle/°
C(00D)	-N(004)	C(00P)	126.5(2)	C(00K) C(00H) C(008)	120.1(2)
C(00G)	N(004)	C(00D)	107.98(18)	C(00K) C(00H) H(00H)	120.0
C(00G)	N(004)	C(00P)	125.5(2)	C(009) C(00I) Cl(01)	119.82(17)
N(00E)	N(005)	C(00D)	120.5(2)	C(00N) C(00I) Cl(01)	119.41(19)
C(00J)	N(005)	C(00D)	127.8(2)	C(00N) C(00I) C(009)	120.6(2)
C(00J)	N(005)	N(00E)	111.5(2)	N(005) C(00J) H(00J)	126.1
C(008)	C(006)	C(00C)	120.60(18)	N(005) C(00J) C(00R)	107.9(2)
C(00L)	C(006)	C(008)	119.47(19)	C(00R) C(00J) H(00J)	126.1
C(00L)	C(006)	C(00C)	119.91(19)	C(00H) C(00K) H(00K)	119.9
C(00A)	C(007)	C(00C)	116.46(17)	C(00O) C(00K) C(00H)	120.3(2)
C(00F)	C(007)	C(00A)	123.26(19)	C(00O) C(00K) H(00K)	119.9
C(00F)	C(007)	C(00C)	120.27(19)	C(006) C(00L) H(00L)	120.0
C(006)	C(008)	C(00B)	119.95(18)	C(00O) C(00L) C(006)	120.0(2)
C(00H)	C(008)	C(006)	119.6(2)	C(00O) C(00L) H(00L)	120.0
C(00H)	C(008)	C(00B)	120.41(19)	C(00G) C(00M) H(00M)	121.5
C(00G)	C(009)	C(00A)	107.07(19)	C(00Q) C(00M) C(00G)	117.0(2)
C(00I)	C(009)	C(00A)	134.69(19)	C(00Q) C(00M) H(00M)	121.5
C(00I)	C(009)	C(00G)	117.9(2)	C(00I) C(00N) H(00N)	120.3

C(009) C(00A) C(007)	127.40(19)	C(00I) C(00N) C(00Q)	119.4(2)
C(00D) C(00A) C(007)	126.5(2)	C(00Q) C(00N) H(00N)	120.3
C(00D) C(00A) C(009)	106.02(18)	C(00K) C(00O) C(00L)	120.5(2)
O(003) C(00B) C(008)	121.3(2)	C(00K) C(00O) H(00O)	119.7
O(003) C(00B) C(00F)	120.7(2)	C(00L) C(00O) H(00O)	119.7
C(00F) C(00B) C(008)	117.91(18)	N(004) C(00P) H(00A)	109.5
O(002) C(00C) C(006)	121.63(19)	N(004) C(00P) H(00B)	109.5
O(002) C(00C) C(007)	120.47(19)	N(004) C(00P) H(00C)	109.5
C(006) C(00C) C(007)	117.84(18)	H(00A) C(00P) H(00B)	109.5
N(004) C(00D) N(005)	121.0(2)	H(00A) C(00P) H(00C)	109.5
C(00A) C(00D) N(004)	110.9(2)	H(00B) C(00P) H(00C)	109.5
C(00A) C(00D) N(005)	128.1(2)	C(00M) C(00Q) C(00N)	122.8(2)
C(00S) N(00E) N(005)	103.2(2)	C(00M) C(00Q) H(00Q)	118.6
C(007) C(00F) C(00B)	123.1(2)	C(00N) C(00Q) H(00Q)	118.6
C(007) C(00F) H(00F)	118.5	C(00J) C(00R) H(00R)	127.8
C(00B) C(00F) H(00F)	118.5	C(00J) C(00R) C(00S)	104.3(3)
N(004) C(00G) C(009)	108.05(19)	C(00S) C(00R) H(00R)	127.8
N(004) C(00G) C(00M)	129.7(2)	N(00E) C(00S) C(00R)	113.1(3)
C(00M) C(00G) C(009)	122.2(2)	N(00E) C(00S) H(00S)	123.4
C(008) C(00H) H(00H)	120.0	C(00R) C(00S) H(00S)	123.4

Table S7. Torsion Angles for 4jaa.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Cl(01)	C(00I)	C(00N)	C(00Q)	175.42(19)	C(00D)	N(005)	N(00E)	C(00S)	175.4(2)
O(003)	C(00B)	C(00F)	C(007)	170.4(2)	C(00D)	N(005)	C(00J)	C(00R)	175.0(2)
N(004)	C(00G)	C(00M)	C(00Q)	175.8(2)	N(00E)	N(005)	C(00D)	N(004)	63.6(3)
N(005)	N(00E)	C(00S)	C(00R)	0.0(3)	N(00E)	N(005)	C(00D)	C(00A)	119.3(3)
N(005)	C(00J)	C(00R)	C(00S)	0.1(3)	N(00E)	N(005)	C(00J)	C(00R)	0.1(3)
C(006)	C(008)	C(00B)	O(003)	172.3(2)	C(00F)	C(007)	C(00A)	C(009)	117.9(3)
C(006)	C(008)	C(00B)	C(00F)	4.3(3)	C(00F)	C(007)	C(00A)	C(00D)	64.5(3)
C(006)	C(008)	C(00H)	C(00K)	0.4(3)	C(00F)	C(007)	C(00C)	O(002)	173.1(2)
C(006)	C(00L)	C(00O)	C(00K)	0.0(4)	C(00F)	C(007)	C(00C)	C(006)	4.2(3)
C(007)	C(00A)	C(00D)	N(004)	177.0(2)	C(00G)	N(004)	C(00D)	N(005)	178.1(2)
C(007)	C(00A)	C(00D)	N(005)	0.3(4)	C(00G)	N(004)	C(00D)	C(00A)	0.6(3)
C(008)	C(006)	C(00C)	O(002)	174.7(2)	C(00G)	C(009)	C(00A)	C(007)	176.9(2)
C(008)	C(006)	C(00C)	C(007)	2.5(3)	C(00G)	C(009)	C(00A)	C(00D)	1.1(2)
C(008)	C(006)	C(00L)	C(00O)	0.3(4)	C(00G)	C(009)	C(00I)	Cl(01)	172.32(17)
C(008)	C(00B)	C(00F)	C(007)	6.2(3)	C(00G)	C(009)	C(00I)	C(00N)	3.3(3)
C(008)	C(00H)	C(00K)	C(00O)	0.1(4)	C(00G)	C(00M)	C(00Q)	C(00N)	1.7(4)
C(009)	C(00A)	C(00D)	N(004)	1.0(3)	C(00H)	C(008)	C(00B)	O(003)	7.1(3)

C(009)	C(00A)	C(00D)	N(005)	178.4(2)	C(00H)	C(008)	C(00B)	C(00F)	176.3(2)
C(009)	C(00G)	C(00M)	C(00Q)	1.6(4)	C(00H)	C(00K)	C(00O)	C(00L)	0.1(4)
C(009)	C(00I)	C(00N)	C(00Q)	0.3(4)	C(00I)	C(009)	C(00A)	C(007)	9.8(4)
C(00A)	C(007)	C(00C)	O(002)	6.0(3)	C(00I)	C(009)	C(00A)	C(00D)	172.2(2)
C(00A)	C(007)	C(00C)	C(006)	176.75(19)	C(00I)	C(009)	C(00G)	N(004)	173.84(19)
C(00A)	C(007)	C(00F)	C(00B)	174.8(2)	C(00I)	C(009)	C(00G)	C(00M)	4.1(3)
C(00A)	C(009)	C(00G)	N(004)	0.7(3)	C(00I)	C(00N)	C(00Q)	C(00M)	2.4(4)
C(00A)	C(009)	C(00G)	C(00M)	178.6(2)	C(00J)	N(005)	C(00D)	N(004)	121.9(3)
C(00A)	C(009)	C(00I)	Cl(01)	0.4(4)	C(00J)	N(005)	C(00D)	C(00A)	55.1(4)
C(00A)	C(009)	C(00I)	C(00N)	176.0(2)	C(00J)	N(005)	N(00E)	C(00S)	0.1(3)
C(00B)	C(008)	C(00H)	C(00K)	179.0(2)	C(00J)	C(00R)	C(00S)	N(00E)	0.0(4)
C(00C)	C(006)	C(008)	C(00B)	2.8(3)	C(00L)	C(006)	C(008)	C(00B)	178.9(2)
C(00C)	C(006)	C(008)	C(00H)	177.9(2)	C(00L)	C(006)	C(008)	C(00H)	0.5(3)
C(00C)	C(006)	C(00L)	C(00O)	178.1(2)	C(00L)	C(006)	C(00C)	O(002)	3.6(4)
C(00C)	C(007)	C(00A)	C(009)	63.1(3)	C(00L)	C(006)	C(00C)	C(007)	179.1(2)
C(00C)	C(007)	C(00A)	C(00D)	114.5(2)	C(00P)	N(004)	C(00D)	N(005)	0.6(3)
C(00C)	C(007)	C(00F)	C(00B)	6.1(4)	C(00P)	N(004)	C(00D)	C(00A)	178.2(2)
C(00D)	N(004)	C(00G)	C(009)	0.1(3)	C(00P)	N(004)	C(00G)	C(009)	178.9(2)
C(00D)	N(004)	C(00G)	C(00M)	177.8(2)	C(00P)	N(004)	C(00G)	C(00M)	3.4(4)

 Table S8. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for

 4jaa.

Atom	x	у	Z	U(eq)
H(00F)	6405	4056	1693	51
H(00H)	9881	5525	1280	56
H(00J)	5496	7429	2638	68
H(00K)	11342	6656	2174	68
H(00L)	9752	6723	4263	65
H(00M)	3960	2909	5114	66
H(00N)	7064	1412	5662	64
H(00O)	11278	7248	3656	74
H(00A)	3017	5603	3378	93
H(00B)	3003	4630	4214	93
H(00C)	2711	4086	3191	93
H(00Q)	5313	1599	5985	71
H(00R)	4403	8240	1158	81
H(00S)	3096	6433	561	93

8. Reference.

1. S. K. Banjare, T. Nanda, B. V. Pati, G. K. D. Adhikari, J. Dutta and P. C. Ravikumar,

ACS Catal., 2021, 11, 11579–11587.

 D. Beukeaw, K. Udomsasporn and S. Yotphan, *J. Org. Chem.*, 2015, **80**, 3447–3454.
 J. Jiang, S. S. K. Boominathan, W. Hu, C. Chen, J. K. Vandavasi, Y. Lin and J. Wang, *Eur. J. Org. Chem.*, 2016, **2016**, 2284–2289.

9. Analytic data of the obtained compounds.

(1) naphthalene-1,4-dione (3a-1)

Known compound, ¹H NMR (500 MHz, Chloroform-d) δ 7.94–7.92 (m, 2H), 7.66–7.63 (m, 2H), 6.88 (d, *J* = 1.0 Hz, 2H).

(2) 1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (1a-1)

Known compound, ¹H NMR (500 MHz, Chloroform-d) δ 7.90 (d, J = 1.6 Hz, 1H), 7.79 (d, J = 2.3 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 8.1 Hz, 1H), 7.39 (t, J = 8.1 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 6.60 (s, 1H), 6.54 (t, J = 8.0 Hz, 1H), 3.75 (s, 3H).

(3) 2-(1-methyl-1*H*-indol-3-yl)naphthalene-1,4-dione (1a-2)

Known compound, ¹H NMR (500 MHz, Chloroform-d) δ 8.18–8.15 (m, 2H), 8.13 (d, *J* = 8.7 Hz, 1H), 8.01 (d, *J* = 6.5 Hz, 1H), 7.76–7.74 (m, 2H), 7.43 (s, 1H), 7.41 (d, *J* = 7.4 Hz, 1H), 7.35–7.31 (m, 2H), 3.89 (s, 3H).

(4) 2-(1,2-dimethyl-1*H*-indol-3-yl)naphthalene-1,4-dione (1a-3')

Known compound, ¹H NMR (500 MHz, Chloroform-d) δ 8.21 (d, *J* = 8.7 Hz, 1H), 8.16 (d, *J* = 8.6 Hz, 1H), 7.80 – 7.77 (m, 2H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.25 (t, *J* = 7.1 Hz, 1H), 7.19 (t, *J* = 7.0 Hz, 1H), 7.10 (s, 1H), 3.75 (s, 3H), 2.46 (s, 3H).

(5) 2-(1-methyl-2-(1H-pyrazol-1-yl)-1H-indol-3-yl)naphthalene-1,4-dione (4aaa)

Red solid, (73.3 mg, 83% yield); m.p.: 148-150 °C; ¹H NMR (500 MHz, Chloroform-d) δ 8.09 (d, J = 8.7 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 1.6 Hz, 1H), 7.73–7.65 (m, 4H), 7.43 (d, J = 8.1 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 6.98 (s, 1H), 6.46–6.43 (m, 1H), 3.68 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.87, 183.49, 142.70, 142.34, 135.30, 135.07, 135.05, 133.65, 133.48, 133.19, 132.57, 132.20, 126.87, 125.97, 125.12, 123.91, 121.89, 120.55, 110.23, 107.67, 104.04, 30.03. HRMS (ESI): Calcd. for C₂₂H₁₅N₃O₂ [M+H]⁺: 354.1237; found: 354.1232.

(6) 2-(1-ethyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4baa)

Red solid, (72.5 mg, 79% yield); m.p.: 153-155 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.09 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 1.6 Hz, 1H), 7.75– 7.69 (m, 3H), 7.67 (d, J = 2.3 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.39 (t, J = 8.2 Hz, 1H), 7.31–7.28 (m, 1H), 6.97 (s, 1H), 6.47–6.43 (m, 1H), 4.14 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.86, 183.49, 142.66, 142.27, 135.04, 134.51, 134.24, 133.66, 133.49, 133.19, 132.57, 132.18, 126.87, 125.95, 125.32, 123.84, 121.75, 120.79, 110.34, 107.60, 104.31, 38.71, 15.30. HRMS (ESI): Calcd. for C₂₃H₁₇N₃O₂ [M+H]⁺: 368.1393; found: 368.1389.

(7) 2-(1-phenyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4caa)

Red solid, (74.7 mg, 72% yield), m.p.: 184-186 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.14 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.79–7.74 (m, 2H), 7.72 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 1.6 Hz, 1H), 7.49–7.44 (m, 3H), 7.39 (d, J = 2.3 Hz, 1H), 7.36– 7.33 (m, 4H), 7.32 (d, J = 1.2 Hz, 1H), 7.25 (s, 1H), 6.27–6.25 (m, 1H). ¹³C NMR (125 MHz, Chloroform-d) δ 138.18, 136.83, 136.43, 135.98, 129.50, 128.88, 128.62, 127.84, 127.71, 127.18, 126.91, 126.04, 122.56, 122.52, 120.66, 120.53, 120.35, 118.10, 110.40, 110.19, 104.28, 50.34, 48.06. HRMS (ESI): Calcd. for C₂₇H₁₇N₃O₂ [M+H]⁺: 416.1393; found: 416.1388.

(8) 2-(1-benzyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4daa) S16

Red solid, (62.2 mg, 58% yield), m.p.: 148-150 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.11 (d, J = 7.0 Hz, 1H), 8.00 (d, J = 7.0 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.75– 7.73 (m, 2H), 7.70 (d, J = 7.1 Hz, 1H), 7.52 (d, J = 2.3 Hz, 1H), 7.39 (d, J = 7.7 Hz, 1H), 7.35 (d, J = 6.3 Hz, 1H), 7.30–7.25 (m, 4H), 7.10 (d, J = 6.9 Hz, 2H), 7.06 (s, 1H), 6.39–6.37 (m, 1H), 5.35 (s, 2H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.86, 183.36, 142.62, 142.35, 136.40, 135.29, 134.97, 133.67, 133.52, 133.26, 132.56, 132.20, 128.86, 127.77, 126.87, 126.64, 125.99, 125.37, 124.11, 122.02, 120.63, 110.97, 107.69, 47.20. HRMS (ESI): Calcd. for C₂₈H₁₉N₃O₂ [M+H]⁺: 430.1550; found: 430.1546.

(9) 2-(1-allyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4eaa)

Red solid, (57.8 mg, 61% yield); m.p.: 136-138 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.10 (d, J = 7.2 Hz, 1H), 7.99 (d, J = 7.1 Hz, 1H), 7.78 (d, J = 1.1 Hz, 1H), 7.75– 7.67 (m, 4H), 7.45–7.28 (m, 3H), 7.03 (s, 1H), 6.47–6.41 (m, 1H), 6.01–5.91 (m, 1H), 5.14 (d, J = 79.6 Hz, 2H), 4.70 (d, J = 10.0 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.85, 183.37, 142.67, 142.27, 135.14, 134.74, 133.65, 133.50, 133.27, 132.56, 132.55, 132.18, 126.84, 125.96, 125.29, 123.96, 121.94, 120.61, 117.62, 110.78, 107.62, 104.39, 46.06. HRMS (ESI): Calcd. for C₂₄H₁₇N₃O₂ [M+H]⁺: 380.1393; found: 380.1390.

(10) 2-(1,5-dimethyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4faa)

Red solid, (69.7 mg, 76% yield), m.p.: 211-214 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.09 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.80 (d, J = 1.7 Hz, 1H), 7.75– 7.68 (m, 3H), 7.49 (s, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.21 (d, J = 9.6 Hz, 1H), 7.01 (s, 1H), 6.45 (t, J = 2.1 Hz, 1H), 3.66 (s, 3H), 2.50 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.93, 183.45, 142.93, 142.21, 135.08, 134.76, 133.69, 133.59, 133.43, 133.21, 132.60, 132.21, 131.40, 126.84, 125.92, 125.53, 125.24, 120.03, 109.96, 107.57, 30.06, 21.69. HRMS (ESI): Calcd. for C₂₃H₁₇N₃O₂ [M+H]⁺: 368.1393; found: 368.1387.

(11) 2-(5-methoxy-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4gaa)

Red solid, (70.9 mg, 74% yield), m.p.: 192-194 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.09 (d, J = 7.3 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.75– 7.69 (m, 2H), 7.67 (d, J = 2.3 Hz, 1H), 7.33 (d, J = 8.9 Hz, 1H), 7.13 (d, J = 2.4 Hz, 1H), 7.04 (d, J = 11.4 Hz, 1H), 6.98 (s, 1H), 6.46–6.44 (m, 1H), 3.88 (s, 3H), 3.66 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.89, 183.46, 155.72, 142.93, 142.24, 135.30, 134.60, 133.62, 133.44, 133.15, 132.58, 132.20, 130.40, 126.85, 125.93, 125.56, 114.19, 111.17, 107.61, 103.78, 102.18, 55.95, 30.14. HRMS (ESI): Calcd. for C₂₃H₁₇N₃O₃ [M+H]⁺: 384.1342; found: 384.1338.

(12) 2-(2-(1*H*-pyrazol-1-yl)-5,6-dihydro-4*H*-pyrrolo[3,2,1-*ij*]quinolin-1yl)naphthalene-1,4-dione (4haa)

Red solid, (80.5 mg, 85% yield); m.p.: 167-169 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.10 (d, J = 7.3 Hz, 1H), 7.98 (d, J = 6.0 Hz, 1H), 7.79 (s, 1H), 7.76 –7.67 (m, 3H), 7.54 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.9 Hz, 1H), 7.09 (d, J = 6.0 Hz, 1H), 7.03 (s, 1H), 6.47–6.43 (m, 1H), 4.14 (t, J = 20.0 Hz, 2H), 3.05 (t, J = 20.0 Hz, 2H), 2.30–2.23 (m, 2H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.90, 183.64, 143.28, 142.14, 134.29, 134.09, 133.58, 133.39, 132.68, 132.56, 132.26, 126.83, 125.90, 123.46, 122.59, 122.03, 120.88, 117.89, 107.67, 102.81, 42.60, 24.66, 22.45. HRMS (ESI): Calcd. for C₂₄H₁₇N₃O₂ [M+H]⁺: 380.1393; found: 380.1389.

(13) 2-(6-fluoro-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4iaa)

Red solid, (59.4 mg, 64% yield), m.p.: 225-227 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.09 (d, J = 7.2 Hz, 1H), 8.02 (d, J = 7.3 Hz, 1H), 7.82 (d, J = 1.7 Hz, 1H), 7.77– 7.71 (m, 2H), 7.66 (d, J = 2.4 Hz, 1H), 7.61 (dd, J = 8.8, 5.2 Hz, 1H), 7.10 (d, J = 9.3 Hz, 1H), 7.07–7.02 (m, 1H), 6.91 (s, 1H), 6.46 (t, J = 2.1 Hz, 1H), 3.63 (s, 3H). ¹³C S19 NMR (125 MHz, Chloroform-d) δ 184.75, 183.49, 142.47, 142.24, 135.39 (d, J = 12.5 Hz,), 135.29, 135.14 (d, J = 3.75 Hz), 133.77, 133.58, 133.17, 132.45, 132.11, 126.89, 126.01, 122.02 (d, J = 10.0 Hz), 121.48, 110.74, 110.55, 107.77, 104.38, 96.71 (d, J = 26.3 Hz), 30.14. ¹⁹F NMR (470 MHz, Chloroform-d) δ -116.96. HRMS (ESI): Calcd. for C₂₂H₁₄FN₃O₂ [M+H]⁺: 372.1142; found: 372.1139.

(14) 2-(4-chloro-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4jaa)

Red solid, (52.2 mg, 54% yield), m.p.: 216-218 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.16 (d, J = 9.0 Hz, 1H), 8.10 (d, J = 9.0 Hz, 1H), 7.82 (d, J = 1.7 Hz, 1H), 7.78– 7.75 (m, 2H), 7.56 (d, J = 2.4 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 6.81 (s, 1H), 6.42 (t, J = 2.1 Hz, 1H), 3.64 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 185.05, 184.73, 143.24, 142.56, 137.14, 136.02, 134.60, 133.74, 133.72, 133.06, 132.41, 132.27, 127.02, 126.42, 126.13, 124.24, 123.13, 122.26, 109.00, 107.63, 104.49, 30.11. HRMS (ESI): Calcd. for C₂₂H₁₄ClN₃O₂ [M+H]⁺: 388.0847; found: 388.0844.

(15) 2-(5-bromo-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4laa)

Red solid, (48.5 mg, 45% yield), m.p.: 242-244 °C; ¹H NMR (500 MHz, Chloroform-d) δ 8.09 (d, J = 7.4 Hz, 1H), 8.00 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 1.7 Hz, 1H), 7.80 (d, J = 1.8 Hz, 1H), 7.76–7.70 (m, 2H), 7.68 (d, J = 2.4 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 6.91 (s, 1H), 6.47 (t, J = 2.1 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.70, 183.29, 142.56, 142.04, 135.72, 135.33, 133.88, 133.79, 133.60, 133.12, 132.36, 132.09, 126.93, 126.84, 126.61, 126.01, 123.11, 115.13, 111.76, 107.92, 103.53, 30.23. HRMS (ESI): Calcd. for C₂₂H₁₄BrN₃O₂ [M+H]⁺: 432.0342; found: 432.0340.

(16) methyl3-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indole-7-carboxylate (4maa)

Red solid, (44.2 mg, 43% yield), m.p.: 205-207 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.09 (d, J = 8.7 Hz, 1H), 7.98 (d, J = 7.1 Hz, 1H), 7.84–7.80 (m, 2H), 7.77 (d, J = 1.8 Hz, 1H), 7.76 (d, J = 2.5 Hz, 1H), 7.75–7.68 (m, 2H), 7.31–7.28 (m, 1H), 7.01 (s, 1H), 6.49 (t, J = 2.7 Hz, 1H), 4.01 (s, 3H), 3.62 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.74, 183.21, 167.41, 142.47, 142.25, 136.99, 135.64, 133.73, 133.57, 133.38, 133.19, 132.42, 132.12, 127.30, 126.91, 126.87, 126.02, 124.62, 120.90, 117.26, 107.98, 104.66, 52.43, 34.02. HRMS (ESI): Calcd. for C₂₄H₁₇N₃O₄ [M+H]⁺: 412.1291; found: 412.1286.

(17) 3-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*indole-5-carbonitrile (4naa)

Red solid, (24.6 mg, 26% yield), m.p.: 267-268 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.11 (d, J = 9.0 Hz, 1H), 8.07 (d, J = 9.0 Hz, 1H), 8.02–8.00 (m, 1H), 7.87 (d, J =1.4 Hz, 1H), 7.80–7.76 (m, 2H), 7.67 (s, 1H), 7.63 (d, J = 10.0 Hz, 1H), 7.52 (d, J = 8.6Hz, 1H), 6.84 (s, 1H), 6.50 (s, 1H), 3.74 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.48, 183.36, 142.98, 141.21, 136.70, 136.64, 136.08, 134.04, 133.83, 133.07, 132.20, 132.03, 127.04, 126.57, 126.51, 126.16, 125.04, 119.92, 111.21, 108.29, 105.09, 104.85, 30.38. HRMS (ESI): Calcd. for C₂₃H₁₄N₄O₂ [M+H]⁺: 379.1189; found: 379.1186.

(18) 2-(1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-pyrrol-3-yl)naphthalene-1,4-dione (40aa)

Black solid, (37.9 mg, 50% yield); m.p.: 234-236 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.19 (d, J = 8.9 Hz, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.81–7.79 (m, 3H), 7.69 (d, J = 2.1 Hz, 1H), 6.97 (s, 1H), 6.68 (d, J = 4.0 Hz, 1H), 6.49–6.48 (m, 1H), 6.35 (d, J = 4.0 Hz, 1H), 3.48 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.64, 184.10, 141.88, 139.43, 135.06, 133.99, 133.73, 132.77, 132.41, 132.30, 132.13, 127.07, 126.09, 126.02, 115.16, 106.96, 104.89, 33.50. HRMS (ESI): Calcd. for C₁₈H₁₃N₃O₂ [M+H]⁺: 304.1080; found: 304.1076.

(19) 2-(1-methyl-2-(4-methyl-1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4aba)

Red solid, (66.1 mg, 72% yield), m.p.: 190-192 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.10 (d, J = 7.1 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.76–7.71 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.62 (s, 1H), 7.42 (d, J = 11.4 Hz, 2H), 7.38 (t, J = 7.0 Hz, 1H), 7.29 (t, J = 6.8 Hz, 1H), 6.99 (s, 1H), 3.69 (s, 3H), 2.13 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.92, 183.57, 143.25, 142.92, 135.45, 135.25, 134.79, 133.60, 133.45, 132.69, 132.24, 131.37, 126.82, 125.94, 125.16, 123.75, 121.80, 120.54, 118.23, 110.20, 103.76, 30.03, 8.86. HRMS (ESI): Calcd. for C₂₃H₁₇N₃O₂ [M+H]⁺: 368.1393; found: 368.1390.

(20) 2-(1-methyl-2-(3-phenyl-1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4aca)

Red solid, (67.6 mg, 63% yield), m.p.: 198-203 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.11 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.85 (d, J = 7.1 Hz, 2H), 7.76– 7.70 (m, 3H), 7.67–7.63 (m, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.42 (t, J = 8.0 Hz, 3H), 7.37 (d, J = 7.3 Hz, 1H), 7.32 (t, J = 7.0 Hz, 1H), 7.11 (s, 1H), 6.78 (d, J = 2.5 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.91, 183.56, 154.14, 142.98, 135.42, 135.17, 134.93, 134.56, 133.59, 133.45, 132.68, 132.39, 132.19, 128.68, 128.44, 126.92, 126.02, 125.92, 125.16, 123.91, 121.90, 120.45, 110.24, 105.10, 30.21. HRMS (ESI): Calcd. for C₂₈H₁₉N₃O₂ [M+H]⁺: 429.1550; found: 429.1481. (21) ethyl1-(3-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)-1-methyl-1*H*-indol-2-yl)-1*H*-pyrazole-4-carboxylate (4ada)

Red solid, (66.9 mg, 63% yield), m.p.: 179-182 °C; ¹H NMR (500 MHz,) δ 8.20 (s, 1H), 8.17 (s, 1H), 8.07 (d, J = 7.4 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.74–7.67 (m, 3H), 7.42–7.36 (m, 2H), 7.28 (t, J = 8.0 Hz, 1H), 7.06 (s, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.66 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.72, 183.30, 162.35, 143.05, 142.01, 136.45, 135.53, 135.27, 133.77, 133.69, 133.59, 132.37, 132.11, 126.92, 125.98, 124.88, 124.32, 122.11, 120.55, 117.08, 110.36, 104.43, 60.65, 30.10, 14.35. HRMS (ESI): Calcd. for C₂₅H₁₉N₃O₄ [M+H]⁺: 426.1448; found: 426.1445.

(22) 2-(2-(4-chloro-1*H*-pyrazol-1-yl)-1-methyl-1*H*-indol-3-yl)naphthalene-1,4dione (4afa)

Red solid, (54.2 mg, 56% yield), m.p.: 157-159 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.11 (d, J = 5.2 Hz, 1H), 8.02 (d, J = 6.0 Hz, 1H), 7.78–7.69 (m, 5H), 7.45–7.40 (m, 2H), 7.31 (t, J = 6.4 Hz, 1H), 7.08 (s, 1H), 3.68 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.78, 183.40, 142.23, 140.89, 135.42, 135.24, 134.08, 133.78, 133.62, 132.48, 132.17, 130.86, 126.93, 126.03, 124.92, 124.24, 122.07, 120.52, 112.48, 110.31, 104.29, 30.03. HRMS (ESI): Calcd. for C₂₂H₁₄ClN₃O₂ [M+H]⁺: 388.0847; found: 388.0843. (23) 2-(2-(4-bromo-1*H*-pyrazol-1-yl)-1-methyl-1*H*-indol-3-yl)naphthalene-1,4dione (4aga)

Red solid, (60.3 mg, 56% yield), m.p.: 137-139 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.12 (d, J = 6.0 Hz, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.79–7.72 (m, 4H), 7.71 (d, J = 8.1 Hz, 1H), 7.46–7.40 (m, 2H), 7.32 (t, J = 6.5 Hz, 1H), 7.08 (s, 1H), 3.69 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.79, 183.41, 142.94, 142.23, 135.44, 135.26, 133.98, 133.78, 133.63, 133.01, 132.49, 132.18, 126.95, 126.04, 124.92, 124.25, 122.08, 120.52, 110.30, 104.33, 95.71, 30.04. HRMS (ESI): Calcd. for C₂₂H₁₄BrN₃O₂ [M+H]⁺: 432.0342; found: 432.0337.

(24) 2-(2-(4-iodo-1*H*-pyrazol-1-yl)-1-methyl-1*H*-indol-3-yl)naphthalene-1,4-dione (4aha)

Red solid, (70.7 mg, 59% yield), m.p.: 141-143 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.11 (d, J = 7.3 Hz, 1H), 8.00 (d, J = 7.7 Hz, 1H), 7.80 (s, 1H), 7.79 –7.71 (m, 3H), 7.70 (d, J = 8.1 Hz, 1H), 7.46–7.37 (m, 2H), 7.33–7.28 (m, 1H), 7.07 (s, 1H), 3.67 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.80, 183.43, 147.28, 142.28, 137.27, 135.40, 135.28, 133.84, 133.77, 133.63, 132.52, 132.19, 126.96, 126.05, 124.92, 124.24, 122.07, 120.52, 110.29, 104.33, 58.95, 30.06. HRMS (ESI): Calcd. for C₂₂H₁₄IN₃O₂ [M+H]⁺: 480.0203; found: 480.0199. (25) 2-(1-methyl-2-(1*H*-1,2,3-triazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4aia)

Red solid, (58.4 mg, 66% yield), m.p.: 212-214 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.07 (d, J = 7.5 Hz, 1H), 8.02 (s, 1H), 7.91 (d, J = 7.4 Hz, 1H), 7.86 (s, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.44 (q, J = 8.3 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.14 (s, 1H), 3.63 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.60, 183.13, 141.53, 136.06, 135.52, 133.89, 133.78, 133.66, 132.22, 132.05, 130.66, 127.62, 126.89, 126.03, 124.88, 124.64, 122.30, 120.44, 110.48, 105.09, 30.04. HRMS (ESI): Calcd. for C₂₁H₁₄N₄O₂ [M+H]⁺: 355.1189; found: 355.1184.

(26) 2-(2-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)-1-methyl-1*H*-indol-3-yl)naphthalene-1,4-dione (4aja)

Red solid, (72.7 mg, 72% yield), m.p.: 176-178 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.15 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.70– 7.64 (m, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 7.44 (td, J = 13.3, 12.7, 7.5 Hz, 3H), 7.36 (t, J = 7.5 Hz, 1H), 7.13 (s, 1H), 3.66 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.69, 182.92, 145.33, 142.00, 135.92, 135.25, 134.90, 133.71, 133.53, 132.12, 131.87, 130.09, 129.33, 126.72, 125.88, 125.26, 124.80, 124.56, 122.28, 120.58, 120.50, 110.57, 109.98, 105.55, 30.38. HRMS (ESI): Calcd. for $C_{25}H_{16}N_4O_2$ [M+H]⁺: 405.1346; found: 405.1342.

(27) 2-(1-methyl-2-(1*H*-1,2,4-triazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4aka)

Red solid, (61.1 mg, 69% yield), m.p.: 207-209 °C; ¹H NMR (500 MHz, Chloroformd) δ 8.43 (s, 1H), 8.20 (s, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 6.6 Hz, 1H), 7.76– 7.72 (m, 1H), 7.70 (t, J = 7.6 Hz, 2H), 7.46–7.40 (m, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.12 (s, 1H), 3.67 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.59, 183.25, 141.49, 136.14, 135.50, 133.94, 133.72, 132.18, 132.03, 130.64, 127.03, 126.04, 124.81, 124.60, 122.25, 120.43, 110.40, 105.00, 30.04. HRMS (ESI): Calcd. for C₂₁H₁₄N₄O₂ [M+H]⁺: 355.1189; found: 355.1184.

(28) 8-hydroxy-2-(1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4aab)

Red solid, (65.5 mg, 71% yield), m.p.: 253-255 °C; ¹H NMR (500 MHz, Chloroformd) δ 11.79 (s, 1H), 7.83 (d, *J* = 1.5 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 2.4 Hz, 1H), 7.64 (q, *J* = 4.0, 3.6 Hz, 2H), 7.45 (d, *J* = 8.1 Hz, 1H), 7.41 (t, *J* = 7.0 Hz, 1H), 7.31 (t, *J* = 6.9 Hz, 1H), 7.25 (dd, *J* = 6.6, 3.0 Hz, 1H), 6.99 (s, 1H), 6.49 –6.46 (m, 1H), 3.72 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 188.62, 184.09, 161.56, 142.48, 142.43, 136.44, 136.03, 135.30, 135.15, 133.13, 132.28, 125.02, 124.05, 124.01, 121.99, 120.37, 118.62, 115.32, 110.31, 107.79, 103.00, 30.12. HRMS (ESI): Calcd. for C₂₂H₁₅N₃O₃ [M+H]⁺: 370.1186; found: 370.1183.

(29) 6-hydroxy-2-(1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4dione (4aac)

Red solid, (58.1 mg, 63% yield), m.p.: 272-274 °C; ¹H NMR (500 MHz, DMSO-d6) δ 8.19 (d, J = 2.3 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 2.3 Hz, 1H), 7.66–7.63 (m, 2H), 7.37 (t, J = 7.7 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.18 (s, 1H), 7.16 (d, J = 2.2 Hz, 1H), 6.70 (s, 1H), 6.56–6.55 (m, 1H), 3.67 (s, 3H). ¹³C NMR (125 MHz, DMSO-d6) δ 183.59, 183.51, 163.03, 142.49, 142.29, 135.40, 135.08, 134.99, 134.72, 134.66, 128.87, 125.00, 124.28, 123.83, 121.80, 121.21, 120.91, 112.67, 111.27, 108.08, 103.65, 30.38. HRMS (ESI): Calcd. for C₂₂H₁₅N₃O₃ [M+H]⁺: 370.1186; found: 370.1183.

(30) 2-(1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)cyclohexa-2,5-diene-1,4dione(4aad)

Black solid, (43.2 mg, 57% yield), m.p.: 153-156 °C; ¹H NMR (500 MHz, Chloroformd) δ 10.19 (s, 1H), 8.18 (d, *J* = 7.5 Hz, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.81 –7.74 (m, 2H), 7.72 (d, *J* = 1.5 Hz, 1H), 7.65–7.62 (m, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.28 (s, 1H), 7.28–7.22 (m, 2H), 6.37 (t, *J* = 10 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-d) δ 187.36, 185.35, 142.31, 140.61, 136.75, 136.48, 135.28, 134.98, 133.17, 132.59, 124.86, 124.01, 121.97, 120.24, 110.28, 107.72, 103.42, 30.00. HRMS (ESI): Calcd. for C₁₈H₁₃N₃O₂ [M+H]⁺: 304.1080; found: 304.1076.

(31) 2-(2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)naphthalene-1,4-dione (4paa)

Red solid, (48.3 mg, 57% yield), m.p.: 149-151 °C; ¹H NMR (500 MHz, Chloroformd) δ 7.76 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.32– 7.27 (m, 4H), 7.24 (d, J = 7.1 Hz, 1H), 7.12–7.09 (m, 3H), 7.05–7.01 (m, 2H), 6.91– 6.84 (m, 4H), 5.31 (s, 4H). ¹³C NMR (125 MHz, Chloroform-d) δ 184.95, 183.51, 143.18, 141.67, 136.07, 134.50, 133.91, 133.71, 133.47, 132.61, 132.28, 130.37, 127.13, 126.68, 126.14, 123.54, 121.76, 119.26, 111.74, 108.19, 97.70. HRMS (ESI): Calcd. for C₂₁H₁₃N₃O₂ [M+H]⁺: 340.1080; found: 340.1077.

10. NMR spectra of the obtained compounds.

(1) ¹H-NMR (500 MHz, CDCl₃) spectrum of 3a-1

(2) ¹H-NMR (500 MHz, CDCl₃) spectrum of 1a-1

(3) ¹H-NMR (500 MHz, CDCl₃) spectrum of 1a-2

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

(4) ¹H-NMR (500 MHz, CDCl₃) spectrum of 1a-3'

(6) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4baa

(7) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4baa

(8) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4baa

(9) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4caa

(10) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4caa

(11) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4daa

(12) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4daa

(13) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4eaa

 $\begin{array}{c} 888\\ 8800\\$

(14) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4eaa

(15) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4faa

(16) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4faa

(17) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4gaa

8.10 8.09 8.09 8.09 7.75 7.75 7.77 7.70

(18) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4gaa

0 190 180 170 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Ċ 160

(19) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4haa

(20) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4haa

(21) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4iaa

(22) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4iaa

(23) ¹⁹F-NMR (470 MHz, CDCl₃) spectrum of 4iaa

$-10 \quad -20 \quad -30 \quad -40 \quad -50 \quad -60 \quad -70 \quad -80 \quad -90 \quad -100 \quad -110 \quad -120 \quad -130 \quad -140 \quad -150 \quad -160 \quad -170 \quad -180 \quad -190 \quad -200 \quad -210 \quad -100 \quad -1$

(24) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4jaa

(25) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4jaa

(26) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4laa

(27) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4laa

(28) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4maa

(31) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4naa

(33) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 40aa

(34) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aba

(35) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4aba

(37) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4aca

(38) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ada

(39) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4ada

(40) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4afa

(42) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aga

(43) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4aga

(44) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aha

(46) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aia

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

(49) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4aja

(51) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4aka

(52) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aab

(53) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4aab

(54) ¹H-NMR (500 MHz, DMSO) spectrum of 4aac

(55) ¹³C-NMR (125 MHz, DMSO) spectrum of 4aac

(56) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aad

(57) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4aad

(58) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4paa

 $\begin{array}{c} -10.19\\ 8.18\\ 8.17\\ 8.05\\ 8.05\\ 8.05\\ 8.05\\ 8.05\\ 8.05\\ 8.05\\ 8.05\\ 7.77\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.72\\ 7.7$

(59) ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4paa