Supporting Information for

Catalytic Asymmetric Synthesis of Chiral Thiohydantoins *via* Domino Cyclization Reaction of β , γ -Unsaturated α -Ketoester and *N*,*N'*-Dialkylthiourea

Meng-Cheng Zhang,^a Dong-Chao Wang,^{*b} Gui-Rong Qu,^b and Hai-Ming Guo^{*a,b}

^a School of Environment, Henan Normal University, Xinxiang, Henan Province 453007, China

^b NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Contents

1. General information	S2
2. Table Screening of the reaction conditions.	
3. General procedure for consturct chiral thiohydantoins	S3
4. Synthesis of reaction intermediates 1aa .	S4
5. Transformation of products.	S4
6. The X-ray data for thiohydantoin <i>rac</i> - 3a and 5a	S6
7. The analytical and spectral characterization data for products	S9
8. Reference	S20
9. Copies of NMR spectra for the adducts	S21
10. Copies of HPLC spectra for racemic and chiral compounds.	

1. General information

All reactions were carried out in oven-dried Schlenk, and monitored by thin layer chromatography (TLC). All reagents were reagent grade quality and purchased from commercial sources unless otherwise indicated. NMR spectra were recorded with a 600 MHz or 400 MHz spectrometer for ¹H NMR, 150 MHz or 100 MHz for ¹³C NMR. Chemical shifts δ are given in ppm relative to the residual proton signals of the deuterated solvent CDCl₃ for ¹H and ¹³C NMR. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), multiplet (m), sextex (sext). High resolution mass spectra were recorded on a 3000 mass spectrometer. For column chromatography, silica gel (200-300 mesh) was used as the stationary phase. Chiral HPLC analysis recorded on Thermo scientific Dionex Ultimate 3000. Optical rotations were reported as follows: [α]_D^T (c: g/100 mL, in solvent). Optical rotations recorded on Autopol Automatic Polarimeter. HRMS was recorded on an ABI/Sciex QStar Mass Spectrometer (ESI).

2. Screening of the reaction conditions

	Ph CO ₂ Me +	N H H	C5 solvent, T °C Ph	S N OH	vr PO OH vr
	1a	2a		3a Ar = 9-phenar C5	nthrene
Entry	Solvent	T °C	Additive	$\operatorname{Yield}^{b}(\%)$	ee^{c} (%)
1	CHCl ₃	RT		52	88
2	CH ₃ OH	RT		Trace	
3	H ₂ O	RT		NR	
4	Dioxane	RT		NR	
5	CH ₃ CN	RT		15	88
6	EtOAc	RT		23	85
7	DCM	RT	K_2CO_3	98	0
8	DCM	RT	Na ₂ CO ₃	97	0
9	DCM	RT	CF ₃ COOH	95	0
10	DCM	RT	CH ₃ COOH	93	0
11	DCM	RT	НСООН	93	0
12	DCM	RT	Citric acid	95	0
13^{d}	DCM	RT	5 Å MS	83	97
14^{e}	DCM	0 °C	5 Å MS	63	92
15 ^f	DCM	-20 °C	5 Å MS	58	92

^{*a*}Unless otherwise noted, the reaction conditions were as follows: Cat. (20 mol%), **1a** (0.1 mmol), **2a** (0.4 mmol), and additive (1 equiv) in solvent (2 mL) at room temperature for 24 h. ^{*b*}Isolated yields. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Under N₂. ^{*e*}At 0 °C. ^{*f*}At -20 °C.

3. General procedure for consturct chiral thiohydantoins

In a test tube, *N*,*N*'-dialkylthiourea **2** (0.4 mmol), **C5** (0.02 mmol, 20 mol %), 5 Å MS (40 mg) and β , γ -unsaturated *a*-ketoester **1** (0.1 mmol) were added. Then, DCM (1.0 mL) was added and the mixture was stirred at room temperature until **1** was consumed (determined by TLC). Then the solvent was removed and the mixture was purified by preparation of thin layer chromatography silica gel plate (PE/EA = 3:1) or flash column chromatography (PE/EA = 5:1) to afford the products.

4. Synthesis of reaction intermediates 1aa

1aa were synthesized from **S1** according to the literature procedure. ^[1-2]

5. Transformation of products

Compound **4a** was prepared according to the reported procedures.^[3] To a Schlenk tube equipped with a magnetic stir bar, compound **3a** (26.2 mg, 0.1 mmol, 97% ee) were added. The tube was evacuated and backfilled with N₂ for 3 times and then charged with dry THF (2.0 mL) via syringe. To above stirred solution was added methyl magnesium bromide (0.3 mL of 1.0 M solution in THF, 3.0 equiv) slowly and the reaction was stirred at room temperature for 3.0 h. After the reaction was complete (monitored by TLC). The crude product was quenched with saturated aqueous NaHCO₃, and extracted with ethyl acetate (3×10 mL). The combined organic phases were dried and concentrated. Then the residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate = 3/1) to afford product **4a** as a white solid.

Compound **5a** was prepared according to the reported procedures.^[4] LiAlH₄ (5.7 mg, 0.15 mmol) was added to a solution of **3a** (26.2 mg, 0.1 mmol, 97% ee) in anhydrous Et₂O (1.5 mL). The reaction mixture was stirred at room temperature for 1.0 h and the reaction was monitored by TLC. Upon completion, the solvents were removed in vacuo. The crude product was then purified by preparative thin layer chromatography (petroleum ether /ethyl acetate = 3/1) to afford product **5a** as a white solid.

Compound **7a** was prepared according to the reported procedures.^[3]To a solution of **3h** (29.6 mg, 0.1 mmol, 97% ee) in MeOH, NaBH₄ (11.3 mg, 0.3 mmol, 3.0 equiv) was added at the room tempreture for 2.0 h. After **3 h** was consumed (determined by TLC), saturated NH₄Cl aqueous solution (2 mL) was added. The aqueous phase was extracted with ethyl acetate (3×10 mL) and the combined organic phases were dried and concentrated. The residue was purified by column chromatography (petroleum ether /ethyl acetate = 3/1) to afford product **6a** as a white solid.

Compound **7a** was prepared according to the reported procedures.^[4] To a Schlenk tube equipped with a magnetic stir bar, compound **3h** (29.6 mg, 0.1 mmol, 97% ee) were added. The tube was evacuated and backfilled with N₂ for 3 times and then charged with dry THF (2.0 mL) via syringe. To above stirred solution was added vinyl magnesium bromide (0.3 mL of 1.0 M solution in THF, 0.3 mmol, 3.0 equiv) slowly and the reaction was stirred at room temperature for 3.0 h. After the reaction was complete (monitored by TLC). The crude product was quenched with saturated aqueous NaHCO₃, and extracted with ethyl acetate (3 × 10 mL). The combined organic phases were dried and concentrated. Then the residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate = 3/1) to afford product **7a** as a white solid.

Configurationally stability assessment of 3a and 4a in basic and acidic conditions

The configurationally stability of **3a** and **4a** were tested in basic and acidic conditions. Treated with Et_3N and 1.0 M hydrochloric acid, **3a** was almost racemic. Treated with CH_3COOH , the ee value of recovered compound **3a** was maintained. Hydrochloric acid and Et_3N all could racemize **4a**. However, the ee value of **4a** is maintained by treatment with NaBH₄.

6. The X-ray data for thiohydantoin rac-3a and 5a and 7a

Recrystallization in petroleum ether/dichloromethane/ diethyl ether afforded crystals suitable for X-ray analysis.

A single-crystal X-ray diffraction data for *rac*-**3a** was collected on a Supernova Atlas S2 CCD detector with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. The unit cell parameters and the data reduction were obtained with the CrysAlisPro software. During data processing a data scaling and empirical or multi-scan absorption corrections were also performed with CrysAlisPro software.

CCDC 2102585 (*rac-3a*) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Table 1	Crystal	data and	structure	refinement	for rac-3a
---------	---------	----------	-----------	------------	------------

Identification code	rac-3a
Empirical formula	$C_{13}H_{14}N_2O_2S$
Formula weight	262.32
Temperature/K	294.78(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	13.7357(9)
b/Å	15.0653(8)
c/Å	6.8017(4)
a/°	90
β/°	92.185(6)
$\gamma/^{\circ}$	90
Volume/Å ³	1406.47(14)
Z	4
pcalcg/cm ³	1.239
μ/mm^{-1}	0.226
F(000)	552.0

Crystal size/mm ³	$0.38 \times 0.18 \times 0.09$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/	6.576 to 59.332
Index ranges	$\text{-13} \le h \le 18, \ \text{-20} \le k \le 15, \ \text{-9} \le l \le 8$
Reflections collected	11515
Independent reflections	3451 [$R_{int} = 0.0446$, $R_{sigma} = 0.0522$]
Data/restraints/parameters	3451/0/166
Goodness-of-fit on F ²	1.026
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0805, wR_2 = 0.1854$
Final R indexes [all data]	$R_1 = 0.1505, wR_2 = 0.2240$
Largest diff. peak/hole / e Å-3	80.60/-0.24

Recrystallization in petroleum ether/dichloromethane/ diethyl ether afforded crystals suitable for X-ray analysis.

Single-crystal X-ray diffraction data for **5a** ($C_{13}H_{16}N_2O_2S$) was collected on a Supernova Atlas S2 CCD detector with graphite-monochromated Cu K α radiation ($\lambda = 1.54184$ Å) at rt. The unit cell parameters and the data reduction were obtained with the CrysAlisPro software. During data processing a data scaling and empirical or multi-scan absorption corrections were also performed with CrysAlisPro software. The structure was solved with the ShelXT structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimization.

CCDC 2131212 (**5a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Table 1	Crystal	data :	and	structure	refinement	for	5a
I able I	Ciystai	uata	unu	suucuic	rennement	101	Ju

Identification code	5a
Empirical formula	$C_{13}H_{16}N_2O_2S$
Formula weight	264.34
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P21
a/Å	7.66580(10)
b/Å	7.56550(10)

c/Å	12.02920(10)
a/°	90
β/°	94.0280(10)
$\gamma/^{\circ}$	90
Volume/Å3	695.918(14)
Z	2
pcalcg/cm3	1.261
μ/mm-1	2.041
F(000)	280.0
Crystal size/mm3	$0.13 \times 0.12 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.368 to 143.106
Index ranges	$-9 \le h \le 8, -9 \le k \le 9, -14 \le l \le 14$
Reflections collected	15527
Independent reflections	2687 [Rint = 0.0527, Rsigma = 0.0309]
Data/restraints/parameters	2687/1/167
Goodness-of-fit on F2	1.104
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0520, wR_2 = 0.1415$
Final R indexes [all data]	$R_1 = 0.0537, wR_2 = 0.1432$
Largest diff. peak/hole / e Å-3	0.29/-0.25
Flack/Hooft parameter	0.00(4)/-0.003(8)

Recrystallization in petroleum ether/dichloromethane/ diethyl ether afforded crystals suitable for X-ray analysis.

A single-crystal X-ray diffraction data for *rac*-**7a** was collected on a Supernova Atlas S2 CCD detector with graphite-monochromated Cu K α radiation ($\lambda = 1.54184$ Å) at room temperature. The unit cell parameters and the data reduction were obtained with the CrysAlisPro software. During data processing a data scaling and empirical or multi-scan absorption corrections were also performed with CrysAlisPro software.

CCDC 2164313 (*rac*-7a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via

www.ccdc.cam.ac.uk/data_request/cif

-	
Identification code	rac-7a
Empirical formula	$C_{15}H_{17}ClN_2O_2S$
Formula weight	324.81
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	14.5771(3)
b/Å	8.1384(2)
c/Å	14.3128(3)
α/°	90
β/°	109.039(2)
γ/°	90
Volume/Å ³	1605.10(6)
Z	4
$\rho_{calc}g/cm^3$	1.344
μ/mm^{-1}	3.370
F(000)	680.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/ ^c	12.632 to 142.748
Index ranges	$-17 \le h \le 15, -9 \le k \le 8, -17 \le l \le 17$
Reflections collected	7394
Independent reflections	$3060 \; [R_{int} = 0.0436, R_{sigma} = 0.0438]$
Data/restraints/parameters	3060/0/194
Goodness-of-fit on F ²	0.997
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0659, wR_2 = 0.1923$
Final R indexes [all data]	$R_1=0.0754,wR_2=0.1985$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.70

Table 1 Crystal data and structure refinement for *rac-7*a.

7. The analytical and spectral characterization data for products

(E)-N-methyl-N-(methylcarbamothioyl)-2-oxo-4-phenylbut-3-enamide (1aa)

Light yellow solid.

TLC: $R_f = 0.45$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 7.37 – 7.30 (m, 3H), 6.92 (d, *J* = 15.6 Hz, 1H), 6.04 (d, *J* = 16.2 Hz, 1H), 3.30 (s, 3H), 3.24 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.1, 172.6, 135.8, 134.6, 129.2, 128.8, 127.2, 121.0, 86.8, 29.3, 28.3.

 $(E) \hbox{-} N \hbox{-} (dimethyl carba mothioyl) \hbox{-} N \hbox{-} methyl \hbox{-} 2 \hbox{-} oxo \hbox{-} 4 \hbox{-} phenyl but \hbox{-} 3 \hbox{-} enamide (1ab)$

Yellow oil.

TLC: $R_f = 0.60$ (petroleum ether/ethyl acetate = 10:1) [UV].

¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.36 – 7.32 (m, 2H), 7.31 – 7.27 (m, 1H), 6.97 (d, J = 16.2 Hz, 1H), 6.11 (d, J = 16.2 Hz, 1H), 3.81 (s, 3H), 3.35 (s, 6H).
¹³C NMR (150 MHz, CDCl₃) δ 169.1, 135.6, 135.5, 128.8, 128.7, 127.1, 124.6, 100.8, 53.0, 50.5.

(R, E)-5-hydroxy-1,3-dimethyl-5-styryl-2-thioxoimidazolidin-4-one (3a)

White solid, m.p. = 112.8-113.2 °C. 19.6 mg, 83% yield, 97% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 95/5, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 22.501 min (major), 26.942 min (minor). [α]_D²³ = 90.3 (c = 0.48, CH₂Cl₂).

TLC: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H** NMR (600 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.35 – 7.29 (m, 3H), 6.91 (d, *J* = 15.6 Hz, 1H), 6.03 (d, *J* = 16.2 Hz, 1H), 4.32 (s, 1H), 3.29 (s, 3H), 3.23 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.1, 172.8, 135.9, 134.6, 129.2, 128.8, 127.2, 120.9, 86.9, 29.3, 28.3. HRMS (ESI): exact mass calcd for $C_{13}H_{14}N_2O_2SNa$ [M+Na]⁺ requires m/z 258.0668, found m/z 258.0673

(*R*, *E*)-1,3-diethyl-5-hydroxy-5-styryl-2-thioxoimidazolidin-4-one (3b)

White solid, m.p. = 122.8-124.2 °C. 18.1 mg, 63% yield, 91% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 95/5, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 16.712min (minor), 20.975 min (major). [α]_D²³ = 78.5 (c = 0.25, CH₂Cl₂).

TLC: $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H** NMR (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.36 – 7.29 (m, 3H), 6.96 (d, *J* = 15.6 Hz, 1H), 6.00 (d, *J* = 15.6 Hz, 1H), 4.34 (s, 1H), 3.97 – 3.84 (m, 3H), 3.63 (sext, *J* = 7.2 Hz, 1H), 1.32 (t, *J* = 6.6 Hz, 3H), 1.25 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 180.9, 172.7, 135.6, 134.8, 129.1, 128.9, 127.2, 121.6, 87.3, 38.7, 36.9,

13.9, 13.1.

HRMS (ESI): exact mass calcd for $C_{15}H_{18}N_2O_2SNa$ (M+Na)⁺ requires m/z 313.0981, found m/z 313.0980.

(R, E)-1,3-dibenzyl-5-hydroxy-5-styryl-2-thioxoimidazolidin-4-one (3c)

White solid, m.p. = 138.3-139.6 °C. 21.5 mg, 47% yield, 92% ee. HPLC CHIRALCEL IE, n-hexane/2-propanol = 95/15, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 31.601 min (minor), 36.871 min (major). [α]_D²³ = 54.2 (c = 0.21, CH₂Cl₂).

TLC: $R_f = 0.56$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (d, J = 7.2 Hz, 2H), 7.42 (d, J = 7.2 Hz, 2H), 7.32 – 7.29 (m, 3H), 7.28 – 7.24 (m, 5H), 7.23 – 7.21 (m, 1H), 7.16 – 7.15 (m, 2H), 6.89 (d, J = 15.6 Hz, 1H), 5.82 (d, J = 16.2 Hz, 1H), 5.08 (dd, J = 14.4 Hz, 22.8 Hz, 2H), 5.00 (dd, J = 15.0 Hz, 33.6 Hz, 2H), 3.64 (s, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 136.7, 135.7, 134.7, 129.0, 128.7, 128.6, 128.5, 127.9, 127.7, 127.2, 121.8, 87.2, 46.9, 45.4.

HRMS (ESI): exact mass calcd for $C_{25}H_{22}N_2O_2SNa$ (M+Na)⁺ requires m/z 437.1294, found m/z 437.1298.

(R, E)-5-(2-fluorostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3d)

Colorless oil, 21.1 mg, 75% yield, 91% ee. HPLC CHIRALCEL OJ, n-hexane/2-propanol = 90/10, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 26.924min (major), 31.687 min (minor). [α]_D²³ = 6.5 (c = 0.40, CH₂Cl₂).

TLC: $R_f = 0.45$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.41 (t, *J* = 7.8 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.11 (t, *J* = 7.8 Hz, 1H), 7.07 – 7.04 (m, 2H), 6.14 (d, *J* = 16.2, 1H), 4.71 (s, 1H), 3.28 (s, 3H), 3.22 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 182.1, 172.9, 161.5, 159.8, 130.6 (d, $J_{C-F} = 7.9$ Hz), 128.8 (d, $J_{C-F} = 3.1$ Hz), 128.5 (d, $J_{C-F} = 3.3$ Hz), 124.3 (d, $J_{C-F} = 3.3$ Hz), 123.7 (d, $J_{C-F} = 6.4$ Hz), 122.6 (d, $J_{C-F} = 11.8$ Hz), 116.1 (d, $J_{C-F} = 22.5$ Hz) 86.9, 29.3, 28.3.

HRMS (ESI): exact mass calcd for C₁₃H₁₄FN₂O₂S (M+H)⁺ requires m/z 281.0755, found m/z 281.0760

(R, E)-5-(2-chlorostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3e)

Colorless oil, 19.4 mg, 66 yield, 92% ee. HPLC CHIRALCEL ID, n-hexane/2-propanol = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 16.425 min (minor), 20.865 min (major). [α]_D²³ = 22.4 (c = 0.26, CH₂Cl₂).

TLC: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.49 – 7.48 (m, 1H), 7.37 – 7.36 (d, *J* = 15.6 Hz, 2H), 7.26 – 7.23 (m, 1H), 6.03 (d, *J* = 15.6, 1H), 4.61 (s, 1H), 3.29 (s, 3H), 3.25 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.1, 172.8, 133.9, 132.9, 132.2, 130.1, 129.9, 127.4, 127.1, 123.9, 86.8, 29.4, 28.4.

HRMS (ESI): exact mass calcd for $C_{13}H_{14}ClN_2O_2S$ (M+H)⁺ requires m/z 297.0459, found m/z 297.0468.

(R, E)-5-(4-fluorostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3f)

White solid, m.p. = 112.8-113.2 °C. 21.1 mg, 75% yield, 96% ee. HPLC CHIRALCEL AD-H, n-hexane/2-propanol = 90/10, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 14.050min (major), 18.322 min (minor). [α]_D²³ = 18.7 (c = 0.18, CH₂Cl₂).

TLC: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.03 (t, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 15.6 Hz, 1H), 5.95 (d, *J* = 15.6 Hz, 1H), 4.62 (s, 1H), 3.28 (s, 3H), 3.22 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 182.1, 173.0, 134.8, 130.9 (d, $J_{C-F} = 3.0$ Hz), 129.0 (d, $J_{C-F} = 9.2$ Hz), 120.8 (d, $J_{C-F} = 3.0$ Hz), 116.0 (d, $J_{C-F} = 31.5$ Hz), 87.0, 29.4, 28.4.

HRMS (ESI): exact mass calcd for $C_{13}H_{13}FN_2O_2SNa$ (M+Na)⁺ requires m/z 303.0574, found m/z 303.0580.

(*R*, *E*)-5-(4-chlorostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3g)

White solid, m.p. = 110.2-112.1 °C. 20.8 mg, 71% yield, 97% ee. HPLC CHIRALCEL AD-H, n-hexane/2-propanol = 95/5, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 43.483min (minor), 57.492 min (major). [α]_D²³ = 42.5 (c = 0.60, CH₂Cl₂).

TLC: $R_f = 0.58$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.34 – 7.30 (m, 4H), 6.89 (d, *J* = 15.6, 1H), 6.01 (d, *J* = 15.6, 1H), 3.75 (s, 1H), 3.30 (s, 3H), 3.23 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.2, 172.2, 135.1, 134.7, 133.1, 129.1, 128.4, 121.6, 86.6, 29.3, 28.3. HRMS (ESI): exact mass calcd for $C_{13}H_{14}ClN_2O_2S$ (M+H)⁺ requires m/z 297.0459, found m/z 297.0460. (R, E)-5-(4-bromostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3h)

White solid, m.p. = 83.7-85.6 °C. 25.4 mg, 75% yield, 93% ee. HPLC CHIRALCEL AD-H, n-hexane/2-propanol = 90/10, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 24.392min (minor), 32.170 min (major). [α]_D²³ = 77.7 (c = 0.31, CH₂Cl₂).

TLC: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.28 – 7.23 (m, 3H), 6.87 (d, *J* = 16.0 Hz, 1H), 6.02 (d, *J* = 16.0 Hz, 1H), 3.88 (s, 1H), 3.30 (s, 3H), 3.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 182.3, 172.4, 134.9, 133.6, 132.2, 128.8, 123.5, 121.9, 86.8, 29.4, 28.5. HRMS (ESI): exact mass calcd for C₁₃H₁₃BrN₂O₂SNa (M+Na)⁺ requires m/z 362.9773, found m/z 362.9779

(*R*, *E*)-5-(2-([1,1'-biphenyl]-4-yl)vinyl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3i)

White solid, m.p. = 132.8-134.2 °C. 18.5 mg, 55% yield, 93% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 13.857min (major), 18.140 min (minor). [α]_D²³ = 17.8 (c = 0.24, CH₂Cl₂).

TLC: $R_f = 0.48$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.59 – 7.57 (m, 4H), 7.47 – 7.42 (m, 4H), 7.37 – 7.34 (m, 1H), 6.96 (d, *J* = 16.2 Hz, 1H), 6.08 (d, *J* = 16.2 Hz, 1H), 4.24 (s, 1H), 3.32 (s, 3H), 3.25 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 142.1, 140.3, 135.5, 129.0, 127.8, 127.8, 127.6, 127.1, 121.1, 86.9, 29.4, 28.4.

HRMS (ESI): exact mass calcd for $C_{19}H_{19}N_2O_2S$ (M+H)⁺ requires m/z 339.1162, found m/z 339.1165

(R, E)-5-hydroxy-1,3-dimethyl-5-(4-nitrostyryl)-2-thioxoimidazolidin-4-one (3j)

White solid, m.p. = 201.1-203.5 °C. 16.2 mg, 53% yield, 90% ee. HPLC CHIRALCEL IE, n-hexane/2-propanol = 90/10, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 30.735 min (minor), 33.487 min (major). [α]_D²³ = 11.3 (c = 0.15, CH₂Cl₂).

TLC: $R_f = 0.45$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CD₃OD) δ 8.23 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 8.8 Hz, 2H), 7.11 (d, *J* = 16.0 Hz,

1H), 6.41 (d, *J* = 16.0 Hz, 1H), 3.29 (s, 3H), 3.21 (s, 3H).

¹³C NMR (150 MHz, CD₃OD) δ 183.6, 173.9, 149.2, 143.3, 134.4, 129.2, 128.5, 125.1, 88.1, 29.4, 28.5.

HRMS (ESI): exact mass calcd for $C_{13}H_{13}N_3O_4SNa$ (M+Na)⁺ requires m/z 330.0519, found m/z 330.0529.

(R, E)-5-hydroxy-5-(4-methoxystyryl)-1,3-dimethyl-2-thioxoimidazolidin-4-one (3k)

Colorless oil, 14.3 mg, 49% yield, 96% ee. HPLC CHIRALCEL IE, n-hexane/2-propanol = 90/10, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 18.665 min (major), 20.170 min (minor). [α]_D²³ = 6.4 (c = 0.17, CH₂Cl₂).

TLC: $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (150 MHz, CDCl₃) δ 7.33 – 7.32 (m, 2H), 6.86 – 6.85 (m, 2H), 6.83 (d, *J* = 16.2 Hz, 1H), 5.90 (d, *J* = 15.6 Hz, 1H), 4.21 (s, 1H), 3.82 (s, 3H), 3.28 (s, 3H), 3.23 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.1, 172.8, 160.4, 135.2, 128.6, 127.3, 118.5, 114.2, 87.0, 55.3, 29.3, 28.3.

HRMS (ESI): exact mass calcd for $C_{14}H_{16}N_2O_3SNa$ (M+Na)⁺ requires m/z 315.0774, found m/z 315.0775.

(R, E)-5-hydroxy-1,3-dimethyl-5-(4-methylstyryl)-2-thioxoimidazolidin-4-one (31)

White solid, m.p. = 102.8-104.2 °C. 19.0 mg, 69% yield, 94% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 95/5, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 19.045 min (major), 21.570 min (minor). [α]_D²³ = 54.6 (c = 0.41, CH₂Cl₂).

TLC: $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.28 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.85 (d, *J* = 16.2 Hz, 1H), 5.98 (d, *J* = 15.6 Hz, 1H), 4.54 (s, 1H), 3.27 (s, 3H), 3.21 (s, 3H), 2.35 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.0, 173.0, 139.3, 135.7, 131.9, 129.5, 127.2, 119.9, 87.1, 29.3, 28.3, 21.3.

HRMS (ESI): exact mass calcd for $C_{14}H_{16}N_2O_2SNa$ (M+Na)⁺ requires m/z 299.0825, found m/z 299.0830.

(R, E)-5-hydroxy-1,3-dimethyl-5-(3-methylstyryl)-2-thioxoimidazolidin-4-one (3m)

White solid, m.p. = 109.8-112.7 °C. 22.3 mg, 81% yield, 96% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 24.598 min (minor), 27.423 min (major). [α]_D²³ = 46.5 (c = 0.54, CH₂Cl₂).

TLC: $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.24 – 7.18 (m, 3H), 7.13 (d, *J* = 7.2 Hz, 1H), 6.86 (d, *J* = 16.2 Hz, 1H), 6.02 (d, *J* = 15.6 Hz, 1H), 4.71 (s, 1H), 3.27 (s, 3H), 3.22 (s, 3H), 2.34 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.1, 173.2, 138.5, 136.0, 134.7, 130.1, 128.8, 127.9, 124.5, 120.9, 87.2, 29.4, 28.4, 21.4.

HRMS (ESI): exact mass calcd for $C_{14}H_{16}N_2O_2SNa$ (M+Na)⁺ requires m/z 299.0825, found m/z 299.0834.

(*R*, *E*)-5-hydroxy-5-(3-methoxystyryl)-1,3-dimethyl-2-thioxoimidazolidin-4-one (3n)

White solid, m.p. = 103.5-104.7 °C.19.5 mg, 67% yield, 92% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 11.355 min (major), 15.088 min (minor). [α]_D²³ = 32.6 (c = 0.25, CH₂Cl₂).

TLC: $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.24 (t, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.92 (t, J = 1.8 Hz, 1H), 6.87 – 6.85 (m, 2H), 6.02 (d, J = 15.6 Hz, 1H), 4.58 (s, 1H), 3.80 (s, 3H), 3.27 (s, 3H), 3.22 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.0, 172.9, 159.8, 135.9, 135.7, 129.8, 121.3, 119.8, 115.0, 112.2, 86.9, 55.3, 29.3, 28.3.

HRMS (ESI): exact mass calcd for $C_{14}H_{16}N_2O_3SNa$ (M+Na)⁺ requires m/z 315.0774, found m/z 315.0778.

(R, E)-5-(3-fluorostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (30)

White solid, m.p. = 116.7-117.3 °C. 20.1 mg, 72% yield, 93% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 95/5, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 26.955 min (major), 28.860 min (minor). [α]_D²³ = 15.7 (c = 0.15, CH₂Cl₂).

TLC: $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.32 – 7.26 (m, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 9.6 Hz, 1H), 7.01 (td, *J* = 8.4, 2.4 Hz, 1H), 6.90 (d, *J* = 16.2 Hz, 1H), 6.04 (d, *J* = 15.9 Hz, 1H), 4.35 (s, 1H), 3.29 (s, 3H), 3.22 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 182.2, 172.7, 163.9, 162.3, 137.0 (d, $J_{C-F} = 7.5$ Hz), 134.9 (d, $J_{C-F} = 3.0$ Hz), 130.5 (d, $J_{C-F} = 7.5$ Hz), 123.2 (d, $J_{C-F} = 3.0$ Hz), 122.5, 116.1 (d, $J_{C-F} = 21.1$ Hz), 113.8 (d, $J_{C-F} = 22.0$ Hz), 86.8, 29.4, 28.4.

182.23, 172.70, 137.01, 136.96, 134.96, 134.94, 130.50, 130.45, 123.29, 123.27, 122.59, 116.28, 116.13, 113.85, 113.70, 86.82, 29.42, 28.47.

HRMS (ESI): exact mass calcd for $C_{13}H_{13}FN_2O_2SNa$ (M+Na)⁺ requires m/z 303.0574, found m/z 303.0579.

(*R*, *E*)-5-(3-bromostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3p)

White solid, m.p. = 122.1-123.9 °C. 25.1 mg, 74% yield, 72% ee. HPLC CHIRALCEL AD-H, n-hexane/2-propanol = 95/5, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 21.545 min (minor), 25.020 min (major). [α]_D²³ = -7.6 (c = 0.20, CH₂Cl₂).

TLC: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.56 (s, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 7.2 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.87 (d, *J* = 16.2 Hz, 1H), 6.04 (d, *J* = 15.6 Hz, 1H), 4.03 (s, 1H), 3.30 (s, 3H), 3.23 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.1, 172.4, 136.7, 134.5, 132.0, 130.3, 129.9, 125.9, 122.9, 122.6, 86.6, 29.3, 28.3.

HRMS (ESI): exact mass calcd for $C_{13}H_{13}BrN_2O_2SNa$ (M+Na)⁺ requires m/z 362.9773, found m/z 362.9780.

(*R*, *E*)-5-(3,4-dichlorostyryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3q)

White solid, m.p. = 137.8-138.8 °C. 26.9 mg, 82% yield, 97% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 95/5, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 24.438 min (minor), 28.122 min (major). [α]_D²³ = 9.6 (c = 0.10, CH₂Cl₂).

TLC: $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 2.0 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.21 (dd, J = 8.4, 2.0 Hz, 1H), 6.85 (d, J = 15.6 Hz, 1H), 6.02 (d, J = 15.6 Hz, 1H), 4.30 (s, 1H), 3.29 (s, 3H), 3.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 182.2, 172.6, 134.8, 133.8, 133.2, 130.9, 128.9, 126.4, 123.2, 86.7, 29.4, 28.5.

HRMS (ESI): exact mass calcd for $C_{13}H_{12}Cl_2N_2O_2SNa$ (M+Na)⁺ requires m/z 352.9889, found m/z 352.9897

(*R*, *E*)-5-(3,5-bis(trifluoromethyl)styryl)-5-hydroxy-1,3-dimethyl-2-thioxoimidazolidin-4-one (3r)

White solid, m.p. = 139.5-141.3 °C. 22.8 mg, 57% yield, 92% ee. HPLC CHIRALCEL OJ, n-hexane/2-propanol = 90/10, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 12.368 min (minor), 16.435 min (major). [α]_D²³ = 18.0 (c = 0.40, CH₂Cl₂).

TLC: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.90 – 7.75 (m, 3H), 7.05 (d, J = 16.2 Hz, 1H), 6.20 (d, J = 16.2 Hz, 1H), 4.26 (s, 1H), 3.31 (s, 3H), 3.24 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 182.0, 172.2, 136.7, 133.3, 132.3 (q, $J_{C-F} = 33.0$ Hz), 132.2, 127.0 (d, $J_{C-F} = 3.0$ Hz), 127.0, 123.9 (q, $J_{C-F} = 271.5$ Hz), 122.5(d, $J_{C-F} = 3.0$ Hz), 122.1, 86.5, 29.3, 28.4.

HRMS (ESI): exact mass calcd for $C_{15}H_{12}F_6N_2O_2SNa$ (M+Na)⁺ requires m/z 421.0416, found m/z 421.0420.

(R, E)-5-hydroxy-1,3-dimethyl-5-(2-(thiophen-2-yl)vinyl)-2-thioxoimidazolidin-4-one (3s)

Colorless oil, 14.7 mg, 55% yield, 96% ee. HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 98/2, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 72.015 min (major), 81.788 min (minor). [α]_D²³ = 6.4 (c = 0.20, CH₂Cl₂).

TLC: $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.28 – 7.25 (m, 1H), 7.11 – 7.08 (m, 1H), 7.06 (d, *J* = 15.6 Hz, 1H), 7.02 – 6.96 (m, 1H), 5.84 (d, *J* = 15.6 Hz, 1H), 4.04 (s, 1H), 3.29 (s, 3H), 3.23 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.0, 172.5, 139.5, 129.0, 128.6, 127.7, 126.5, 119.8, 86.6, 29.3, 28.3. HRMS (ESI): exact mass calcd for $C_{11}H_{12}N_2O_2S_2Na$ (M+Na)⁺ requires m/z 291.0232, found m/z 291.0235.

(R, E)-5-hydroxy-1,3-dimethyl-5-(2-(naphthalen-2-yl)vinyl)-2-thioxoimidazolidin-4-one (3t)

White solid, m.p. = 112.8-113.2 °C. 18.1 mg, 58% yield, 83% ee. HPLC CHIRALCEL OD-H,

n-hexane/2-propanol = 95/5, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 29.727 min (major), 38.342 min (minor). [α]_D²³ = 36.2 (c = 0.22, CH₂Cl₂).

TLC: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 7.82 – 7.75 (m, 4H), 7.55 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.08 (d, *J* = 16.2 Hz, 1H), 6.16 (d, *J* = 16.2 Hz, 1H), 4.32 (s, 1H), 3.32 (s, 3H), 3.27 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.2, 172.8, 136.0, 132.1, 128.7, 128.4, 128.3, 127.8, 126.8, 126.7, 123.4, 121.3, 87.0, 29.4, 28.4.

HRMS (ESI): exact mass calcd for $C_{17}H_{16}N_2O_2SNa$ (M+Na)⁺ requires m/z 335.0825, found m/z 335.0830.

(4R, 5R)-4,5-dihydroxy-1,3,4-trimethyl-5-((E)-styryl)imidazolidine-2-thione (4a)

White solid, m.p. = 101.8-103.2 °C. 26.5 mg, 95% yield, 99% ee. HPLC CHIRALCEL IA, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 8.773 min (major), 10.695 min (minor). [α]_D²³ = 20.1 (c = 0.16, CH₂Cl₂).

TLC: $R_f = 0.40$ (petroleum ether/ethyl acetate = 3:1) [UV].

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.52 – 7.46 (m, 2H), 7.37 (t, J = 7.2 Hz, 2H), 7.32 – 7.25 (m, 1H), 6.89 (d, J = 16.0 Hz, 1H), 6.43 – 6.35 (m, 2H), 6.14 (s, 1H), 3.03 (s, 3H), 2.92 (s, 3H), 1.37 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 191.4, 145.7, 142.0, 138.3, 137.5, 136.3, 136.1, 101.6, 101.5, 38.7, 38.0, 28.7.

HRMS (ESI): exact mass calcd for C₁₄H₁₉N₂O₂S (M+H)⁺ requires m/z 279.1162, found m/z 279.1169.

(4R, 5R)-4,5-dihydroxy-1,3-dimethyl-4-((E)-styryl)imidazolidine-2-thione (5a)

White solid, m.p. = 98.8-101.2 °C. 25.8 mg, 98% yield, 91% ee. HPLC CHIRALCEL IA, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 8.865 min (minor), 9.093 min (major). [α]_D²³ = 50.0 (c = 0.1, CH₂Cl₂).

TLC: $R_f = 0.20$ (petroleum ether/ethyl acetate = 3:1) [UV].

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.52 – 7.46 (m, 2H), 7.40 – 7.34 (m, 2H), 7.32 – 7.28 (m, 1H), 6.86 (d, J = 16.0 Hz, 1H), 6.69 (s, 1H), 6.59 (d, J = 7.2 Hz, 1H), 6.27 (d, J = 16.0 Hz, 1H), 4.80 (d, J = 7.2 Hz, 1H), 3.06 (s, 3H), 2.88 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 181.8, 136.4, 132.8, 129.2, 128.5, 127.2, 126.5, 90.9, 90.8, 31.6, 29.2.

HRMS (ESI): exact mass calcd for $C_{13}H_{16}N_2O_2SNa$ (M+Na)⁺ requires m/z 287.0825, found m/z 287.0816.

(4R, 5R)-4-((E)-4-chlorostyryl)-4,5-dihydroxy-1,3-dimethylimidazolidine-2-thione (6a)

White solid, m.p. = 91.8-93.2 °C. 28.4 mg, 97% yield, 97% ee. HPLC CHIRALCEL IA, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 10.488 min (minor), 17.005 min (major). [α]_D²³ = 42.2 (c = 0.26, CH₂Cl₂).

TLC: $R_f = 0.40$ (petroleum ether/ethyl acetate = 3:1) [UV].

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 16.2 Hz, 1H), 6.72 (s, 1H), 6.61 (d, *J* = 7.2 Hz, 1H), 6.29 (d, *J* = 16.2 Hz, 1H), 4.80 (d, *J* = 7.8 Hz, 1H), 3.06 (s, 3H), 2.87 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 138.3, 138.1, 136.7, 100.0, 99.9, 49.7, 49.5, 49.3, 49.1, 48.9, 48.7, 48.5, 38.4.

HRMS (ESI): exact mass calcd for $C_{13}H_{16}N_2O_2S$ (M+H)⁺ requires m/z 299.0616, found m/z 299.0609.

(4R, 5R)-4-((E)-4-chlorostyryl)-4,5-dihydroxy-1,3-dimethyl-5-vinylimidazolidine-2-thione (7a)

White solid, m.p. = 85.3-88.9 °C. 30.2 mg, 93% yield, 96% ee. HPLC CHIRALCEL IA, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 254 nm, retention time: 8.368 min (minor), 38.342 min (major). [α]_D²³ = 17.5 (c = 0.20, CH₂Cl₂).

TLC: $R_f = 0.40$ (petroleum ether/ethyl acetate = 3:1) [UV].

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.49 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 6.77 (d, J = 16.0 Hz, 1H), 6.56 (s, 1H), 6.45 – 6.32 (m, 2H), 5.99 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.45 (ddd, J = 30.0 Hz, 17.2 Hz, 2.0 Hz, 1H), 2.93 (s, 3H), 2.90 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 182.6, 135.4, 134.9, 132.8, 132.1, 129.2, 128.9, 127.4, 119.8, 93.1, 93.0, 29.8, 29.7.

HRMS (ESI): exact mass calcd for $C_{15}H_{18}N_2O_2S$ (M+H)⁺ requires m/z 325.0772, found m/z 325.0780.

8. Reference

(1) X.-C. Yang, M.-M. Liu, F. Mathey, H. Yang, Y.-Z. Hua and M.-C. Wang, Access to chiral 2,5-pyrrolidinyl dispirooxindoles via dinuclear Zinc-catalyzed asymmetric cascade reactions. *J. Org. Chem.* 2019, **84**, 7762–7775.

(2) R. Saito, N. Uemura, H. Ishikawa, A. Magara, Y. Yoshida, T. Mino, Y. Kasashima and M. Sakamoto, Umpolung cyclization reaction of *N*-cinnamoylthioureas in the presence of DBU. *Org. Biomol. Chem.*, 2018, **16**, 7910–7919.

(3) H.-F. Tu, C. Zheng, R.-Q. Xu, X.-J. Liu and S.-L. You, Iridium-Catalyzed Intermolecular Asymmetric Dearomatization of β -Naphthols with Allyl Alcohols or Allyl Ethers. *Angew. Chem., Int. Ed.*, 2017, **56**, 3237-3241.

(4) L. Dai, X. Li, Z. Zeng, S. Dong, Y. Zhou, X. Liu and X. Feng, Catalytic Asymmetric Acyloin Rearrangements of α-Ketols, α-Hydroxy Aldehydes, and α-Iminols by *N*,*N*'-Dioxide–Metal Complexes. *Org. Lett.*, 2020, **22**, 5041–5045.

9. Copies of NMR spectra for the adducts

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR for 3r

¹H NMR for 7a

269.712

100.00

100.00

162.408

Total:

