Supporting Information for

Nickel-catalysed SET-reduction-based access to functionalized

allenes via 1,4-carbohydrogenation of 1,3-enynes with alkyl bromides

Wan Lei, Hong Liu, Yan Li and Yewen Fang

Table of contents

1 General Information	S1
1.1 Solvents, Reagents, and Starting Materials	
1.2 Instruments	
2 Synthesis of 1,3-enynes 6, 8, and 14	
3 General procedure for the preparation of 1,3-allenes 3, 5, 7	', 10, 11, 13, and 15
•••••	
4 Deuteration study	S20
5 Transformation of 1,2-allenyl ketones	S22
6 Reference	S23
7 NMR spectra of new compound	

1 General Information

1.1 Solvents, Reagents, and Starting Materials

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. 2-(1-Alkynyl)-2-alken-1-ones 1, 4, and 12 were reported in our previous works.^{1, 2} Tertiary alkyl bromides 2 and 9 were prepared according to the published procedures.³ Dried solvents were obtained from commercial sources and used without further purification unless otherwise noted.

1.2 Instruments

NMR spectra were recorded on a Bruker Avance 500 spectrometer (500 MHz) (500 MHz for ¹H NMR and 126 MHz for ¹³C NMR). Chemical shifts were reported in ppm downfield from tetramethylsilane and calibrated using residue undeuterated solvent (CDCl₃ at 7.26 ppm ¹H NMR; 77.0 ppm ¹³C NMR). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). Coupling constants are reported in Hertz where available. High resolution mass spectra (HRMS) were recorded on Waters Premier GC-TOF MS. Analytical thin layer chromatography was performed on Polygram SIL G/UV₂₅₄ plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions. Flash column chromatography was performed using silica gel (300-400 mesh) with solvents to use.

2 Synthesis of 1,3-enynes 6, 8, and 14

To a solution of (*E*)-chalcone (15.0 mmol, 1.0 equiv) in DCM (50 mL), pyridinium tribromide (9.6 g, 30.0 mmol, 1.0 equiv) and potassium carbonate (4.2 g, 30.0 mmol, 2.0 equiv) was added, and the mixture was stirred for 2 h at room temperature. Then, the saturated $Na_2S_2O_3$ solution was added, the mixture was filtered and extracted with ethyl acetate (3x25 mL), dried over MgSO₄, the solvent was evaporated in vacuum.

The product was recrystallized from DCM/hexane to afford the desired product **S-6-1** with good yield.

To a solution of 2,3-dibromopropan-1-one **S-6-1** (10.0 mmol, 1.0 equiv) in DCM (30 mL), triethylamine (7 mL, 50.0 mmol, 5.0 equiv) was added and the reaction mixture was stirred at room temperature for 12-36 h. Then, the saturated NH₄Cl solution (20 mL) was added, phases were separated, water phase was extracted by ethyl acetate (3x15 mL). Combined organic phase was washed with 1M HCl (4x15 mL), dried over MgSO₄ and evaporated in vacuo. The mixture was purified by flash column chromatography to afford **S-6-2**.

A solution of (*Z*)-2-bromoprop-2-en-1-one **S-6-2** (5.0 mmol, 1.0 equiv) in THF (25 mL) was treated with $PdCl_2(PPh_3)_2$ (105.3 mg, 0.15 mmol, 3 mol%) and CuI (95.2 mg, 0.5 mmol, 10 mol%) and cooled down to 0°C in the dark. After 10 min of stirring, 3,3-dimethylbut-1-yne (1.2 mL, 10.0 mmol, 2.0 equiv) and diisopropylamine (2.1 mL, 15.0 mmol, 3.0 equiv) were added, and the resulting dark brown solution was stirred at 0 ° C for 1 h. The reaction mixture was partitioned between ethyl acetate (3x10 mL) and the combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography to yield the corresponding 2-(1-alkynyl)-2-alken-1-one **6, 8 (6b-S-1)**. Additional reaction of **6b-S-1** with acetyl chloride (1.1 equiv) and trimethylamine (2.7 equiv) in DCM is required to obtain **6b**.

(*E*)-2-Benzylidene-1-phenyloct-3-yn-1-one (6a). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.06-8.03 (m, 2H), 7.93-7.91 (m, 2H), 7.57-7.54 (m, 1H), 7.47-7.40 (m, 6H), 2.46 (t, *J* = 7.0 Hz, 2H), 1.58-1.52 (m, 2H), 1.42-1.37 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.3, 144.0, 137.3, 134.9, 132.3, 130.2, 130.0, 129.7, 128.4, 128.0, 121.8, 103.2, 78.0, 30.2, 21.9, 19.7, 13.6. These data are consistent with the published literature.⁴

(*E*)-5-Benzoyl-6-phenylhex-5-en-3-yn-1-yl acetate (6b). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.92-7.90 (m, 2H), 7.58-7.55 (m, 1H), 7.49-7.40 (m, 6H), 4.21 (t, *J* = 6.6 Hz, 2H), 2.81 (t, *J* = 6.7 Hz, 2H), 2.04 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.9, 170.8, 145.2, 137.1, 134.6, 132.4, 130.5, 130.1, 129.7, 128.5, 128.0, 121.1, 97.9, 79.2, 61.9, 20.8, 20.5. HRMS (ESI) [M+Na]⁺: calculated for C₂₁H₁₈O₃Na: 341.1154, found 341.1152.

(*E*)-2-Benzylidene-4-cyclopropyl-1-phenylbut-3-yn-1-one (6c). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.91-7.89 (m, 2H), 7.57-7.54 (m, 1H), 7.47-7.39 (m, 6H), 1.52-1.47 (m, 1H), 0.89-0.85 (m, 2H), 0.77-0.74 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 194.1, 144.0, 137.3, 134.9, 132.3, 130.2, 129.9, 129.7, 128.4, 127.9, 121.6, 106.1, 73.3, 8.7, 0.9. These data are consistent with the published literature.⁵

(*E*)-2-Benzylidene-1,4-diphenylbut-3-yn-1-one (6d). Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.14-8.12 (m, 2H), 8.02-8.00 (m, 2H), 7.64 (s, 1H), 7.61-7.57 (m, 1H), 7.51-7.44 (m, 5H), 7.41-7.39 (m, 2H), 7.36-7.32 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 145.1, 137.1, 134.8, 132.5, 131.3, 130.6, 130.4, 129.7, 128.8, 128.6, 128.4, 128.1, 122.8, 120.9, 100.8, 87.1. These data are consistent with the published literature.⁶

(*E*)-2-Benzylidene-1-phenyl-4-(p-tolyl)but-3-yn-1-one (6e). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.14-8.12 (m, 2H), 8.02-8.00 (m, 2H), 7.61 (s, 1H), 7.60-7.57 (m, 1H), 7.50-7.43 (m, 4H), 7.31-7.29 (m, 2H), 7.15-7.11 (m, 2H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 144.6, 139.1, 137.2, 134.9, 132.5, 131.2, 130.5, 130.3, 129.7, 129.2, 128.5, 128.0, 121.0, 119.8, 101.2, 86.6, 21.6. These data are consistent with the published literature.⁵

(*E*)-2-Benzylidene-4-(4-methoxyphenyl)-1-phenylbut-3-yn-1-one (6f). Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.13-8.11 (m, 2H), 8.01-7.99 (m, 2H), 7.60-7.56 (m, 2H), 7.50-7.42 (m, 5H), 7.35-7.32 (m, 2H), 6.91-6.84 (m, 2H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.6, 160.1, 144.1, 137.2, 135.0, 132.9, 132.4, 130.4,

130.3, 129.7, 128.5, 128.0, 121.1, 115.0, 114.1, 101.1, 86.1, 55.3. These data are consistent with the published literature.⁶

2-(3,3-Dimethylbut-1-yn-1-yl)cyclopent-2-en-1-one (12a). Pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 3.1 Hz, 1H), 2.67-2.65 (m, 2H), 2.44-2.42 (m, 2H), 1.28 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 206.0, 163.8, 130.5, 105.4, 69.7, 33.9, 30.8, 28.1, 27.0. HRMS (ESI) [M+H]⁺: calculated for C₁₁H₁₅O: 163.1123, found 163.1121.

Ethyl 2-benzylidene-5,5-dimethylhex-3-ynoate (8): E/Z isomer (1:1 based on ¹H NMR). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.04 (m, 1H), 7.80 (s, 0.5H), 7.41-7.27 (m, 4H), 7.07 (s, 0.5H), [4.29 (q, J = 7.1 Hz, 1H), 4.20 (q, J = 7.1 Hz, 1H)], [1.36 (s, 4.5H), 1.29 (s, 4.5H)], [1.38-1.35 (t, J = 7.2 Hz, 1.5H), 1.20 (t, J = 7.1 Hz, 1.5H)]. ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 166.1, 143.7, 141.5, 135.0, 134.7, 130.2, 130.1, 128.6, 128.4, 128.2(2), 128.1(8), 117.4, 113.8, 107.8, 101.1, 76.7, 75.1, 61.5, 61.4, 30.8, 30.6, 28.6, 28.1, 14.1, 13.7. HRMS (ESI) [M+H]⁺: calculated for C₁₇H₂₁O₂: 257.1542, found 257.1546.

(*E*)-2-benzylidene-1,4-diphenylbut-3-yn-1-one (14). Pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.11-8.09 (m, 2H), 7.83 (s, 1H), 7.57-7.55 (m, 2H), 7.45-7.40 (m, 6H), 2.62 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.2, 142.9, 134.5, 131.4, 130.7, 128.9, 128.6, 122.8, 120.0, 99.1, 87.0, 28.2. These data are consistent with the published literature.⁷

3 General procedure for the preparation of 1,3allenes 3, 5, 7, 10, 11, 13, and 15

To an oven-dried Schlenk tube was charged with 2-(1-alkynyl)-2-alken-1-one (0.2 mmol, 1.0 equiv), NiBr₂(dme) (10 mol%), 2,2'-bipyridine (15 mol%), Zn (0.6 mmol, 3.0 equiv). The tube was capped with a rubber septum, evacuated and back-filled with nitrogen three times, at which point DMA (2 mL) was added via a syringe prior to the addition of alkyl halide (0.4 mmol, 2.0 equiv). The reaction mixture was allowed to stir at room temperature for 24 h, 3 mL of H₂O was added to quench the reaction and the mixture was extracted by ethyl acetate. The combined organic layer was dried over MgSO₄. After filtration and concentration, the residue was purified by column chromatography on silica gel. The ratio of diastereoisomers was determined by ¹H NMR analysis.

5-Benzoyl-3,3,8,8-tetramethyl-4-phenylnona-5,6-dien-1-yl benzoate (3). Flash column chromatography to afford product **3** as a white solid (85.5 mg, 89% yield, dr = 49:51). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.00 (m, 2H), 7.65-7.63 (m, 1H), 7.56-7.51 (m, 2H), 7.47-7.39 (m, 5H), 7.36-7.25 (m, 4H), 7.24-7.20 (m, 1H), [5.47 (d, J = 0.9 Hz, 0.45H), 5.46 (d, J = 1.0 Hz, 0.55H)], 4.49-4.39 (m, 2H), [4.26 (s, 0.45H), 4.23 (s, 0.55H)], 2.05-1.80 (m, 2H), 1.16-1.13 (m, 6H), [0.95 (s, 4.95H), 0.69 (s, 4.05H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.4, 212.5, 196.2, 195.5, 166.6(0), 166.5(8), 141.0, 140.9, 138.5(2), 138.4(7), 132.8, 131.2, 131.0, 130.5, 130.4(5), 130.4(1), 129.5, 128.7, 128.5, 128.3(1), 128.2(6), 127.6(3), 127.5(5), 127.4(6), 126.5(2), 126.5(0), 111.5, 111.3, 108.7, 108.5, 62.3, 52.4, 51.7, 38.7, 38.3, 38.0, 36.8, 33.6, 33.3, 29.5, 29.1, 25.8, 25.4, 25.1, 24.9. HRMS (ESI) [M+H]⁺: calculated for

C₃₃H₃₇O₃: 481.2743, found 481.2733.

5-Benzoyl-3,3,8,8-tetramethyl-4-(*p***-tolyl)nona-5,6-dien-1-yl benzoate (5a).** Flash column chromatography to afford product **5a** as a white solid (79.1 mg, 80% yield, dr = 30:70). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.04-8.01 (m, 2H), 7.65-7.52 (m, 3H), 7.44-7.39 (m, 3H), 7.37-7.30 (m, 4H), 7.12-7.08 (m, 2H), [5.48 (d, *J* = 0.9 Hz, 0.24H), 5.46 (d, *J* = 1.0 Hz, 0.76H)], 4.50-4.41 (m, 2H), [4.22 (s, 0.24H), 4.18 (s,0.76H)], [2.33 (s, 2.28H), 2.32 (s, 0.72H)], 2.06-1.82 (m, 2H), 1.17-1.13 (m, 6H), [0.95 (s, 6.84H), 0.73 (s, 2.16H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.3, 212.5, 196.2, 195.6, 166.6, 166.5, 138.5, 137.7, 136.0, 135.9, 132.7, 131.1, 131.0, 130.4(2), 130.4(0), 130.3(4), 130.2(8), 129.5, 128.6, 128.5, 128.3(4), 128.2(7), 128.2(3), 127.5, 127.4, 111.7, 111.4, 108.5, 108.3, 62.3, 52.0, 51.2, 38.6, 38.3, 37.9, 36.8, 33.6, 33.3, 29.5, 29.1, 25.7, 25.3, 25.0, 24.9, 20.9(6), 20.9(5). HRMS (ESI) [M+H]⁺: calculated for C₃₄H₃₉O₃: 495.2899, found 495.2899.

5-Benzoyl-4-(4-methoxyphenyl)-3,3,8,8-tetramethylnona-5,6-dien-1-yl benzoate (**5b**). Flash column chromatography to afford product **5b** as a white solid (86.7 mg, 85% yield, dr = 24:76). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.00 (m, 2H), 7.64-7.51 (m, 3H), 7.44-7.29 (m, 7H), 6.85-6.81 (m, 2H), [5.47 (d, *J* = 0.9 Hz, 0.22H), 5.45 (d, *J* = 1.0 Hz, 0.78H)], 4.49-4.39 (m, 2H), [4.20 (s, 0.22H), 4.10 (s, 0.78H)], [3.79 (s, 2.34H), 3.79 (s, 0.66)], 2.25-1.80 (m, 2H), 1.15-1.12 (m, 6H), [0.94 (s, 7.02H), 0.71 (s, 1.98H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.3, 212.3, 196.2, 195.6, 166.5(9), 166.5(7), 158.1(8), 158.1(5), 138.5(5), 138.5(1), 133.0, 132.9, 132.7, 131.4, 131.3, 131.2, 131.0, 130.4(3), 130.4(2), 129.5, 128.7, 128.5, 128.3, 127.5, 127.4, 113.0, 112.9, 111.8, 111.5, 108.6, 108.4, 62.3, 55.2, 55.1, 51.6, 50.8, 38.6, 38.3, 38.0, 36.8, 33.6, 33.3, 29.5, 29.1, 25.7, 25.3, 25.0, 24.9. HRMS (ESI) [M+H]⁺: calculated for C₃₄H₃₉O₄: 511.2848, found 511.2844.

5-Benzoyl-4-(4-chlorophenyl)-3,3,8,8-tetramethylnona-5,6-dien-1-yl benzoate (**5c**). Flash column chromatography to afford product **5c** as a pale yellow solid (69.9 mg, 68% yield, dr = 40:60). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.05-7.97 (m, 2H), 7.64-7.50 (m, 3H), 7.44-7.30 (m, 7H), 7.28-7.25 (m, 2H), [5.50 (d, *J* = 1.0 Hz, 0.26H), 5.47 (d, *J* = 1.0 Hz, 0.74H)], 4.49-4.41 (m, 2H), [4.25 (s, 0.26H), 4.19 (s, 0.74H)], 2.03-1.77 (m, 2H), 1.15-1.12 (m, 6H), [0.95 (s, 6.66H), 0.71 (s, 2.34H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.1, 212.3, 195.9, 195.3, 166.5(3), 166.5(1), 139.5, 139.4, 138.2(8), 138.2(5), 132.8, 132.4, 132.3, 131.7, 131.6, 131.3, 131.1, 130.3(2), 130.3(0), 129.5, 128.6, 128.5, 128.3, 127.8, 127.7, 127.6, 127.5, 111.1, 111.0, 109.0, 108.7, 62.1, 51.7, 50.9, 38.6, 38.3, 37.9, 36.7, 33.7, 33.3, 29.5, 29.1, 25.6, 25.3, 24.9, 24.8. HRMS (ESI) [M+H]⁺: calculated for C₃₃H₃₆O₃Cl: 515.2353, found 515.2346.

5-Benzoyl-3,3,8,8-tetramethyl-4-(naphthalen-2-yl)nona-5,6-dien-1-yl benzoate (**5d**). Flash column chromatography to afford product **5d** as a white solid (89.1 mg, 84% yield, dr = 44:56). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.04-8.01 (m, 2H), 7.95-7.86 (m, 1H), 7.85-7.77 (m, 3H), 7.68-7.62 (m, 2H), 7.56-7.52 (m, 2H), 7.49-7.39 (m, 5H), 7.37-7.29 (m, 2H), [5.56 (s, 0.32H), 5.52 (s, 0.68H)], 4.54-4.41 (m, 3H), 2.12-1.88 (m, 2H), 1.24-1.21 (m, 6H), [1.00 (s, 6.12H), 0.71 (s, 2.88H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.4, 212.5, 196.1, 195.6, 166.6, 138.5(4), 138.4(9), 138.5, 138.4, 133.0, 132.7, 132.3, 131.2, 131.1, 130.3(9), 130.3(6), 129.5, 129.3, 129.0, 128.7, 128.6, 128.5, 128.2, 127.9, 127.8, 127.5(5), 127.4(5), 127.4(1), 127.4(0), 127.0(1), 126.9(6), 125.8, 125.7, 125.5, 125.4, 111.5, 111.3, 108.8, 108.6, 62.2, 52.5, 51.7, 38.8, 38.5, 38.3, 37.1, 33.7, 33.3, 29.5, 29.1, 25.8, 25.5, 25.2, 25.1. HRMS (ESI) [M+H]⁺: calculated for C₃₇H₃₉O₃: 531.2899, found 531.2892.

3,3,8,8-Tetramethyl-5-(4-methylbenzoyl)-4-phenylnona-5,6-dien-1-yl benzoate

(5e). Flash column chromatography to afford product **5e** as a white solid (67.2 mg, 68% yield, dr = 26:74). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.00 (m, 2H), 7.62-7.40 (m, 7H), 7.30-7.26 (m, 2H), 7.24-7.20 (m, 1H), 7.16-7.11 (m, 2H), [5.48 (d, *J* = 1.0 Hz, 0.25H), 5.46 (d, *J* = 1.1 Hz, 0.75H)], 4.49-4.39 (m, 2H), [4.26 (s, 0.25H), 4.19 (s, 0.75H)], [2.37 (s, 0.75H), 2.35 (s, 2.25H)], 2.05-1.80 (m, 2H), 1.17-1.10 (m, 6H), [0.99 (s, 6.75H), 0.72 (s, 2.25H)]. ¹³C NMR (126 MHz, CDCl₃) δ 212.6, 211.6, 195.6, 194.9, 166.6, 142.0, 141.7, 141.0, 140.9, 135.5, 135.4, 132.8, 132.7, 130.5, 130.4(4), 130.4(1), 130.3(9), 129.5, 129.1, 128.9, 128.3, 128.2(3), 128.2(2), 128.1, 127.6, 126.5, 126.4, 111.3, 111.0, 108.4, 108.2, 62.3, 62.2, 52.7, 52.0, 38.7, 38.3, 38.0, 36.8, 33.6, 33.3, 29.6, 29.1, 25.9, 25.4, 25.1, 24.9, 21.4(9), 21.4(6). HRMS (ESI) [M+H]⁺: calculated for C₃₄H₃₉O₃: 495.2899, found 495.2896.

5-(4-Methoxybenzoyl)-3,3,8,8-tetramethyl-4-phenylnona-5,6-dien-1-yl benzoate (**5f**). Flash column chromatography to afford product **5f** as a white solid (66.3 mg, 65% yield, dr = 43:57). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.76-7.60 (m, 2H), 7.55-7.51 (m, 1H), 7.47-7.39 (m, 4H), 7.29-7.19 (m, 3H), 6.87-6.80 (m, 2H), [5.48 (d, *J* = 0.9 Hz, 0.43H), 5.47 (d, *J* = 1.0 Hz, 0.57H)], 4.49-4.38 (m, 2H), [4.23 (s, 0.43H), 4.14 (s, 0.57H)], [3.83 (s, 1.29H), 3.81 (s, 1.71H)], 2.06-1.79 (m, 2H), 1.16-1.11 (m, 6H), [1.01 (s, 5.13H), 0.72 (s, 3.87H)]. ¹³C NMR (126 MHz, CDCl₃) δ 211.7, 210.7, 194.4, 193.7, 166.6, 162.5, 162.3, 141.1, 140.9, 132.7, 131.4, 131.3, 130.6, 130.5(3), 130.4(9), 130.4(5), 130.4(1), 129.5, 128.2, 127.6(1), 127.5(9), 126.5, 126.4, 112.8, 112.7, 111.0, 110.7, 108.3, 108.1, 62.2(8), 62.2(5), 55.4, 55.3, 53.2, 52.4, 38.7, 38.4, 38.0, 36.8, 33.6, 33.3, 29.7, 29.2, 26.0, 25.5, 25.1, 25.0. HRMS (ESI) [M+H]⁺: calculated for C₃₄H₃₉O₄: 511.2848, found 511.2850.

5-(4-chlorobenzoyl)-3,3,8,8-tetramethyl-4-phenylnona-5,6-dien-1-yl benzoate (5g). Flash column chromatography to afford product 5g as a white solid (60.7 mg, 59% yield, dr = 53:47). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.62-7.59 (m, 1H), 7.56-7.52 (m, 1H), 7.49-7.38 (m, 5H), 7.34-7.20 (m, 5H), [5.51 (d, *J* = 1.0 Hz, 0.53H), 5.50 (d, *J* = 1.0 Hz, 0.47H)], 4.48-4.38 (m, 2H), [4.23 (s, 0.53H), 4.16(s, 0.47H)], 2.04-1.79 (m, 2H), 1.15-1.11 (m, 6H), [0.98 (s, 4.23H), 0.72 (s, 0.52H)]

4.77H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.1, 212.2, 194.8, 194.1, 166.5(8), 166.5(6), 140.8, 140.7, 137.6, 137.3, 136.6(3), 136.5(9), 132.7(9), 132.7(8), 130.4(3), 130.4(0), 130.3(8), 130.2, 130.1, 129.5, 128.3, 127.9, 127.8, 127.7(0), 127.6(9), 126.6(2), 126.5(9), 111.4, 111.2, 108.9, 108.7, 62.2, 52.5, 51.8, 38.7, 38.3, 38.0, 36.8, 33.8, 33.4, 29.6, 29.1, 25.9, 25.4, 25.0(3), 24.9(8). HRMS (ESI) [M+H]⁺: calculated for C₃₃H₃₆O₃Cl: 515.2353, found 515.2350.

3,3,8,8-Tetramethyl-4-phenyl-5-(thiophene-3-carbonyl)nona-5,6-dien-1-yl

benzoate (5h). Flash column chromatography to afford product **5h** as a white solid (65.2 mg, 67% yield, dr = 59:41). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.96-7.81 (m, 1H), 7.56-7.52 (m, 1H), 7.46-7.33 (m, 5H), 7.29-7.17 (m, 4H), [5.61 (d, *J* = 1.0 Hz, 0.58H), 5.60 (d, *J* = 0.9 Hz, 0.42H)], 4.48-4.38 (m, 2H), [4.23 (s, 0.42H), 4.16 (s, 0.58H)], 2.05-1.78 (m, 2H), 1.15-1.07 (m, 6H), [1.07 (s, 5.22H), 0.78 (s, 3.78H)]. ¹³C NMR (126 MHz, CDCl₃) δ 212.1, 211.2, 188.8, 188.0, 166.6, 141.0, 140.9, 140.8(2), 140.7(7), 132.7, 131.5, 131.3, 130.5, 130.4(3), 130.4(1), 129.5, 128.3(2), 128.2(8), 128.2(6), 127.6(5), 127.6(3), 126.5(2), 126.4(9), 124.8, 124.7, 112.0, 111.8, 108.9, 108.6, 62.3, 62.2, 52.7, 52.0, 38.7, 38.3, 38.0, 36.8, 33.8, 33.4, 29.6, 29.2, 26.0, 25.4, 25.0, 24.9. HRMS (ESI) [M+H]⁺: calculated for C₃₁H₃₅O₃: 487.2307, found 487.2306.

5-Acetyl-3,3,8,8-tetramethyl-4-phenylnona-5,6-dien-1-yl benzoate (5i). Flash column chromatography to afford product **5i** as a white solid (77.8 mg, 93% yield, dr = 62:38). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.56-7.52 (m, 1H), 7.44-7.41 (m, 2H), 7.39-7.33 (m, 2H), 7.27-7.23 (m, 2H), 7.22-7.19 (m, 1H), [5.75 (s, 0.79H), 5.74 (d, *J* = 1.0 Hz, 0.21H)], 4.43-4.05 (m, 2H), [4.09 (s, 0.79H), 4.06 (s, 0.21H)], [2.26 (s, 2.37H), 2.25 (s, 0.63H)], 1.94-1.73 (m, 2H), [1.27 (s, 7.11H), 1.09 (s, 1.89H)], 1.07-1.02 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 211.6, 211.5, 198.3(4), 198.3(2), 166.6, 166.5, 141.3, 140.9, 132.7, 130.4(3), 130.4(1), 130.3, 129.5, 128.2, 127.6, 127.5, 126.4, 112.5, 112.4, 108.1, 107.7, 62.3, 62.2, 50.3, 50.1, 38.6, 38.2, 37.4, 36.6, 34.0, 33.7, 29.9, 29.5, 26.5, 26.4, 25.2, 25.1, 24.8. HRMS (ESI) [M+H]⁺: calculated for C₂₈H₃₅O₃: 419.2586, found 419.2586.

5-Benzoyl-3,3-dimethyl-4-phenylundeca-5,6-dien-1-yl benzoate (7a). Flash column chromatography to afford product 7a as a pale yellow solid (78.8 mg, 82% yield, dr =36:64). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.03-7.99 (m, 2H), 7.64-7.60 (m, 2H), 7.56-7.53 (m, 1H), 7.46-7.41 (m, 5H), 7.35-7.28 (m, 4H), 7.24-7.21 (m, 1H), [5.50 (t, J = t)]7.4 Hz, 0.41H), 5.46 (t, J = 7.6 Hz, 0.59H)], 4.48-4.39 (m, 2H), [4.16 (s, 0.41H), 4.15 (s, 0.59H)], 2.28-2.03 (m, 2H), 2.02-1.82 (m, 2H), 1.37-1.16 (m, 4H), 1.14-1.12 (m, 6H), 0.83-0.77 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 214.6, 214.5, 195.6(5), 195.5(8), 166.6, 166.5, 140.9, 140.7, 138.5(2), 138.4(6), 132.8, 131.5, 130.4(2), 130.4(1), 130.3(3), 130.2(9), 129.5, 128.9, 128.3, 127.6(7), 127.6(5), 127.6(0), 126.5(0), 126.4(8), 108.8, 108.3, 97.2, 96.8, 62.3, 62.2, 52.1(0), 52.0(7), 38.5(1), 38.4(8), 37.4, 37.0, 30.9, 30.7, 28.6, 28.4, 25.4, 25.3, 25.2, 22.1, 13.7. HRMS (ESI) $[M+Na]^+$: calculated for C₃₃H₃₆O₃Na: 503.2562, found 503.2561. PhOC

CH₂CH₂OOCCH₃

Ph Н CH₂CH₂OBz Me Me

9-Acetoxy-5-benzoyl-3,3-dimethyl-4-phenylnona-5,6-dien-1-yl benzoate (7b). Flash column chromatography to afford product 7b a pale vellow oil (74.5 mg, 73%) yield, dr = 34:66). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.66-7.64 (m, 2H), 7.56-7.52 (m, 1H), 7.47-7.40 (m, 5H), 7.37-7.34 (m, 2H), 7.32-7.28 (m, 2H), 7.26-7.21 (m, 1H), [5.54 (t, J = 7.3 Hz, 0.41H), 5.49 (t, J = 7.5 Hz, 0.59H)]4.49-4.40 (m, 2H), [4.16 (s, 0.41H), 4.15 (s, 0.59H)], 4.12-3.88 (m, 2H), 2.61-2.35 (m, 2H), 2.10-1.83 (m, 5H), 1.15-1.12 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 214.7, 214.6, 195.0, 194.9, 170.7, 166.4(7), 166.4(5), 140.5, 140.4, 138.1, 138.0, 132.7(3), 132.7(1), 131.8(2), 131.8(1), 130.3(2), 130.3(0), 130.2, 129.4, 128.8(8), 128.8(6), 128.2, 127.6(9), 127.6(7), 127.7, 126.6(0), 126.5(8), 109.1, 108.7, 93.2, 92.9, 62.7, 62.6, 62.1(2), 62.0(9), 52.3, 52.2, 38.6, 38.5, 37.4, 37.0, 28.4, 28.2, 25.3, 25.2(2), 25.2(0), 25.1, 20.6(9), 20.6(6). HRMS (ESI) [M+Na]⁺: calculated for C₃₃H₃₄O₅Na: 533.2304, found 533.2299.

5-Benzoyl-7-cyclopropyl-3,3-dimethyl-4-phenylhepta-5,6-dien-1-yl benzoate (7c).

Flash column chromatography to afford product **7c** as a pale yellow oil (60.4 mg, 65% yield, dr = 33:67). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.69-7.66 (m, 2H), 7.56-7.53 (m, 1H), 7.48-7.41 (m, 5H), 7.37-7.28 (m, 4H), 7.24-7.21 (m, 1H), [5.27 (d, *J* = 8.2 Hz, 0.35H), 5.19 (d, *J* = 8.3 Hz, 0.65H)], 4.50-4.40 (m, 2H), [4.19 (s, 0.35H), 4.18 (s, 0.65H)], 2.04-1.83 (m, 2H), 1.53-1.37 (m, 1H), 1.17-1.12 (m, 6H), 0.81-0.67 (m, 2H), 0.35-0.22 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 215.1, 214.9, 195.1(4), 195.0(9), 166.5(4), 166.5(2), 140.9, 140.6, 138.2(3), 138.1(8), 132.7(3), 132.7(1), 131.5(9), 131.5(8), 130.4, 130.3, 129.4(7), 129.4(6), 129.0(1), 129.0(0), 128.2, 127.6(5), 127.6(3), 127.5(7), 126.5, 110.1, 109.7, 101.3, 101.0, 62.3, 52.2(9), 52.2(5), 38.5(3), 38.4(9), 37.4, 37.1, 25.4, 25.3, 25.2, 25.1, 9.8, 9.6, 6.4, 6.3, 5.9, 5.8. HRMS (ESI) [M+Na]⁺: calculated for C₃₂H₃₂O₃Na: 487.2249, found 487.2245.

5-Benzoyl-3,3-dimethyl-4,7-diphenylhepta-5,6-dien-1-yl benzoate (7d). Flash column chromatography to afford product 7d as a pale yellow solid (63.0 mg, 63% yield, dr = 43:57). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.02-7.96 (m, 2H), 7.72-7.68 (m, 2H), 7.56-7.46 (m, 3H), 7.44-7.36 (m, 3H), 7.33-7.22 (m, 9H), 7.15-7.13 (m, 1H), [6.63 (s, 0.54H), 6.59 (s, 0.46H)], 4.49-4.39 (m, 2H), 4.30 (s, 1H), 2.03-1.87 (m, 2H), 1.18-1.12 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 216.4, 215.1, 194.3, 194.2, 166.6, 166.5, 140.4, 140.3, 137.9, 137.8, 132.8, 132.7, 132.2, 132.1(2), 132.0(6), 132.0(4), 130.3(8), 130.3(7), 130.3(5), 129.5, 128.9(4), 128.8(8), 128.8(2), 128.7(6), 128.3, 128.2, 127.9(0), 127.8(7), 127.8(1), 127.8(0), 127.7(7), 127.5, 127.4, 126.7(4), 126.7(0), 112.4, 111.8, 100.6, 100.2, 62.2, 62.1, 53.9, 53.6, 38.7, 38.6, 37.7, 37.1, 25.5, 25.3, 25.2(5), 25.2(0). HRMS (ESI) [M+ Na]⁺: calculated for C₃₅H₃₂O₃Na: 523.2249, found 523.2247.

5-Benzoyl-3,3-dimethyl-4-phenyl-7-(*p***-tolyl)hepta-5,6-dien-1-yl benzoate (7e).** Flash column chromatography to afford product 7e as a pale yellow solid (60.1 mg, 59% yield, dr = 52:48). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.03-7.97 (m, 2H), 7.72-7.68 (m, 2H), 7.56-7.53 (m, 1H), 7.49-7.46 (m, 2H), 7.44-7.36 (m, 3H), 7.33-7.30 (m, 1H), 7.28-7.20 (m, 5H), 7.14-7.10 (m, 2H), 7.06-7.04 (m, 1H), [6.61(s, 0.49H), 6.57 (s, 0.51H)], 4.48-4.41 (m, 2H), 4.30 (s, 1H), [2.34 (s, 1.47H), 2.31(s, 1.53H)], 2.03-1.87 (m, 2H), 1.18-1.12 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 216.4, 215.1, 194.4, 194.3, 166.6, 166.5, 140.5, 140.4, 137.8(5), 137.8(3), 137.7(5), 132.7(5), 132.7(1), 132.0(2), 131.9(7), 130.4(2), 130.3(9), 130.3(7), 129.7, 129.5, 129.2, 129.0, 128.9, 128.8, 128.3, 128.2, 127.9, 127.7(7), 127.7(6), 127.7(3), 127.4, 127.3, 126.6(9), 126.6(5), 112.4, 111.8, 100.4, 100.1, 62.2, 62.1, 53.8, 53.5, 38.6, 37.7, 37.0, 25.6, 25.4, 25.2(0), 25.1(6), 21.2(3), 21.1(9). HRMS (ESI) [M+H]⁺: calculated for C₃₆H₃₅O₃: 515.2586, found 515.2582.

5-Benzoyl-7-(4-methoxyphenyl)-3,3-dimethyl-4-phenylhepta-5,6-dien-1-yl

benzoate (7f). Flash column chromatography to afford product **7f** as a white solid (75.3 mg, 71% yield, dr = 45:55). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.03-7.98 (m, 2H), 7.72-7.68 (m, 2H), 7.56-7.53 (m, 1H), 7.49-7.47 (m, 2H), 7.44-7.37 (m, 3H), 7.34-7.30 (m, 1H), 7.28-7.23 (m, 5H), 7.09-7.08 (m, 1H), 6.88-6.83 (m, 2H), [6.60 (d, *J* = 1.0 Hz, 0.42H), 6.56 (d, *J* = 1.0 Hz, 0.58H)], 4.50-4.41 (m, 2H), 4.30 (s, 1H), [3.81 (s, 1.26H), 3.76 (s, 1.74H)], 2.03-1.88 (m, 2H), 1.18-1.13 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 216.3, 214.9, 194.5, 194.4, 166.6, 166.5, 159.4, 159.3, 140.6, 140.4, 138.0, 137.9, 132.7(4), 132.7(2), 132.0, 131.9, 130.3(9), 130.3(7), 130.3(6), 129.5, 128.8(5), 128.7(9), 128.7(4), 128.6, 128.3, 128.2, 127.9, 127.8, 127.7(5), 127.7(4), 126.7, 126.6, 124.4, 124.2, 114.5, 114.3, 112.4, 111.8, 100.0, 99.7, 62.2(3), 62.1(5), 55.3, 55.2, 53.7, 53.4, 38.6(3), 38.6(1), 37.7, 37.0, 25.6, 25.3, 25.2(2), 25.1(6). HRMS (ESI) [M+H]⁺: calculated for C₃₆H₃₅O₄: 531.2535, found 531.2544

2-(1-(4-Methoxyphenyl)-2,2-dimethylpropyl)-5,5-dimethyl-1-phenylhexa-2,3dien-1-one (10e). Flash column chromatography to afford product **10a** as a white solid (60.2 mg, 80% yield, dr = 14:86). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.51 (m, 2H), 7.43-7.38 (m, 1H), 7.37-7.29 (m, 4H), 6.83-6.78 (m, 2H), [5.43 (d, *J* = 0.9 Hz, 0.38H), 5.40 (d, *J* = 1.1 Hz, 0.62H)], [4.08 (s, 0.38H), 4.03 (s, 0.62H)], [3.79 (s, 1.86H), 3.78 (s, 1.14H)], [1.03 (s, 5.58H), 1.00 (s, 3.42H), 0.95 (s, 5.58H), 0.70 (s, 3.42H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.2, 212.4, 196.5, 195.8, 157.98, 157.96, 138.8, 138.7, 134.0, 133.9, 131.2, 131.1(1), 131.0(9), 130.9, 128.7, 128.5, 127.5, 127.4, 112.8, 112.7, 112.3, 112.2, 108.4, 108.1, 55.1(3), 55.1(2), 51.8, 51.2, 36.1, 34.9, 33.6, 33.2, 29.5, 29.1, 28.4, 28.3. HRMS (ESI) [M+H]⁺: calculated for C₂₆H₃₃O₂: 377.2481, found 377.2486.

2-(1-(4-methoxyphenyl)-2,2-dimethyl-3-phenylpropyl)-5,5-dimethyl-1-

phenylhexa-2,3-dien-1-one (10b). Flash column chromatography to afford product **10b** as a pale yellow solid (73.3 mg, 81% yield, dr = 38:62). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.54 (m, 2H), 7.46-7.31 (m, 5H), 7.27-7.17 (m, 3H), 7.12-7.09 (m, 2H), 6.86-6.83 (m, 2H), [5.50 (s, 0.62H), 5.48 (d, *J* = 1.0 Hz, 0.38H)], [4.23 (s, 0.62H), 4.19 (s, 0.38H)], 3.81 (s, 3H), 2.81-2.65 (m, 2H), [1.01-0.91 (m, 9.42H), 0.76 (s, 5.58H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.3, 212.5, 196.4, 195.7, 158.1(0), 158.0(9), 139.1, 139.0, 138.7, 138.6, 133.4, 133.3, 131.6, 131.5, 131.2, 130.9(5), 130.9(0), 130.8(8), 128.7, 128.5, 127.6, 127.5, 127.4, 125.7, 112.9(5), 112.8(7), 112.1, 111.9, 108.5, 108.3, 55.1(5), 55.1(3), 52.3, 51.7, 46.4, 46.1, 39.7, 38.6, 33.6, 33.3, 29.6, 29.1, 24.7, 24.6, 24.3, 23.9. HRMS (ESI) [M+H]⁺: calculated for C₃₂H₃₇O₂: 453.2794, found 453.2788.

2-(1-(4-Methoxyphenyl)-2,2-dimethyl-4-phenylbutyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (10c). Flash column chromatography to afford product **10c** as a pale yellow solid (69.0 mg, 74% yield, dr = 25:75). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.51 (m, 2H), 7.46-7.39 (m, 2H), 7.37-7.30 (m, 3H), 7.27-7.22 (m, 2H), 7.17-7.09 (m, 3H), 6.84-6.81 (m, 2H), [5.43 (d, *J* = 0.9 Hz, 0.45H), 5.42 (d, *J* = 1.0 Hz, 0.55H)], [4.28 (s, 0.45H), 4.22 (s, 0.55H)], 3.80 (s, 3H), 2.73-2.58 (m, 2H), 1.83-1.55 (m, 2H), 1.14-1.09 (m, 6H), [0.93 (s, 4.95H), 0.72 (s, 4.05H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.3, 212.5, 196.4, 195.7, 158.0(4), 158.0(2), 143.3, 143.3, 138.7, 138.6, 133.5, 133.4, 131.3(4), 131.2(7), 131.2, 130.9, 128.7, 128.5, 128.4, 128.3, 128.2, 127.5, 127.4, 125.4, 112.9, 112.8, 112.1, 111.9, 108.4, 108.2, 55.1(4), 55.1(1), 50.6, 49.5, 43.4, 42.8, 38.7, 37.6, 33.6, 33.2, 30.6(3), 30.5(6), 29.5, 29.1, 25.6, 25.4, 25.1, 24.9. HRMS (ESI) [M+H]⁺: calculated for C₃₃H₃₉O₂: 467.2950, found 467.2947.

5-Benzoyl-4-(4-methoxyphenyl)-3,3,8,8-tetramethylnona-5,6-dien-1-yl 4-chlorobenzoate (10d). Flash column chromatography to afford product **10d** as a white solid (66.4 mg, 61% yield, dr = 33:67). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.95-7.92 (m, 2H), 7.63-7.50 (m, 2H), 7.44-7.29 (m, 7H), 6.85-6.80 (m, 2H), [5.46 (s, 0.37H), 5.45 (d, *J* = 0.9 Hz, 0.63H)], 4.47-4.38 (m, 2H), [4.20 (s, 0.37), 4.14 (s, 0.63H)], [3.79 (s, 1.89H), 3.78 (s, 1.11H)], 2.01-1.78 (m, 2H), 1.16-1.09 (m, 6H), [0.94 (s, 5.67H), 0.71 (s, 3.33H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.3, 212.3, 196.2, 195.6, 165.7(2), 165.7(0), 158.2(0), 158.1(7), 139.2, 138.4(9), 138.4(8), 133.0, 132.8, 131.4, 131.3, 131.2, 131.0, 130.9, 128.8(7), 128.8(5), 128.7, 128.6, 128.5, 127.5(4), 127.4(5), 113.0(4), 112.9(6), 111.7, 111.5, 108.6, 108.4, 62.6, 55.2, 55.1, 51.5, 50.6, 38.7, 38.3, 38.0, 36.8, 33.6, 33.3, 29.5, 29.1, 25.7, 25.3, 25.0, 24.9. HRMS (ESI) [M+Na]⁺: calculated for C₃₄H₃₇ClO₄Na: 567.2278, found 567.2279.

5-Benzoyl-4-(4-methoxyphenyl)-3,3,8,8-tetramethylnona-5,6-dien-1-yl 4-methoxybenzoate (10e). Flash column chromatography to afford product **10e** as a pale yellow solid (97.3 mg, 90% yield, dr = 38:62). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.95 (m, 2H), 7.64-7.51 (m, 2H), 7.43-7.29 (m, 5H), 6.91-6.80 (m, 2H), 6.85-6.79 (m, 2H), [5.46 (s, 0.40H), 5.44 (s, 0.60H)], 4.45-4.36 (m, 2H), [4.20 (s, 0.40H), 4.14 (s, 0.60H)], 3.84-3.76 (m, 6H), 1.99-1.80 (m, 2H), 1.14-1.11 (m, 6H), [0.94 (s, 5.40H), 0.71 (s, 3.60H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.2, 212.3, 196.2, 195.6, 166.3(1), 166.2(9), 163.2, 158.2, 158.1, 138.5(5), 138.5(1), 133.1, 132.9, 131.5, 131.4, 131.3, 131.2, 131.0, 128.7, 128.5, 127.5, 127.4, 122.8(8), 122.8(6), 113.5(3), 113.4(8), 113.0, 112.9, 111.8, 111.5, 108.6, 108.4, 61.9, 55.3, 55.1(2), 55.1(0), 51.6, 50.8, 38.7, 38.3, 38.0, 36.8, 33.6, 33.2, 29.5, 29.1, 25.7, 25.3, 25.0, 24.9. HRMS (ESI) [M+Na]⁺: calculated for C₃₅H₄₀O₅Na: 563.2773, found 563.2772.

2-(5-Benzoyl-4-(4-methoxyphenyl)-3,3,8,8-tetramethylnona-5,6-dien-1-yl)

isoindoline-1,3-dione (10f). Flash column chromatography to afford product **10f** as a white solid (92.1 mg, 86% yield, dr = 62:38). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.77 (m, 2H), 7.67-7.64 (m, 2H), 7.62-7.50 (m, 2H), 7.43-7.28 (m, 5H), 6.82-6.79 (m, 2H), [5.48 (d, *J* = 1.1 Hz, 0.62H), 5.43 (s, 0.38H)], [4.18 (s, 0.62H), 4.15 (s, 0.38H)], 3.82-3.66 (m, 5H), 1.83-1.60 (m, 2H), 1.15-1.11 (m, 6H), [0.93 (s, 3.42H), 0.73 (s, 5.58H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.2, 212.6, 196.2, 195.7, 168.1, 168.0, 158.1(0), 158.0(7), 138.6(4), 138.6(0), 133.7, 132.8(3), 132.7(5), 132.2(0), 132.1(8), 131.4, 131.2, 131.0, 130.8, 128.6, 128.5, 127.4, 127.3, 122.9(7), 122.9(6), 113.0, 112.9, 111.7, 111.5, 108.5, 108.4, 55.0(6), 55.0(5), 50.8, 50.1, 38.6, 38.5, 37.9, 36.9, 34.3, 34.2, 33.6, 33.2, 29.5, 29.1, 25.0, 24.9, 24.5. HRMS (ESI) [M+H]⁺: calculated for C₃₅H₃₈NO₄: 536.2801, found 536.2796.

2-(1-(4-Methoxyphenyl)-2,2-dimethyl-4-phenoxybutyl)-5,5-dimethyl-1-

phenylhexa-2,3-dien-1-one (10g). Flash column chromatography to afford product **10g** as a colorless oil (76.2 mg, 79% yield, dr = 39:61). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.53 (m, 2H), 7.45-7.26 (m, 7H), 6.95-6.83 (m, 5H), 5.47 (s, 1H), [4.24 (s, 0.67H), 4.18 (s, 0.33H)], 4.12-4.03 (m, 2H), 3.80 (s, 3H), 2.10-1.85 (m, 2H), 1.16-1.09 (m, 6H), [0.97 (s, 2.97H), 0.74 (s, 6.03H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.2, 212.3, 196.2, 195.6, 159.0, 158.9, 158.1(5), 158.1(3), 138.6, 138.5, 133.1, 133.0, 131.4, 131.3, 131.2, 131.0, 129.3, 128.7, 128.5, 127.5, 127.4, 120.4(0), 120.3(7), 114.5, 113.0, 112.9, 111.8, 111.6, 108.5, 108.3, 64.8, 64.7, 55.1(2), 55.1(0), 51.3, 50.6, 39.1, 38.9, 37.9, 36.8, 33.6, 33.2, 29.5, 29.1, 25.8, 25.6, 25.2(4), 25.1(8). HRMS (ESI) [M+H]⁺: calculated for C₃₃H₃₉O₃: 483.2899, found 483.2896.

tert-Butyl 4-benzoyl-3-(4-methoxyphenyl)-2,2,7,7-tetramethylocta-4,5-dienoate (10h). Flash column chromatography to afford product 10h as a pale yellow oil (84.1 mg, 91% yield, dr = 25:75). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.62-7.52 (m, 2H), 7.43-7.29 (m, 5H), 6.82-6.79 (m, 2H), [5.44 (s, 0.32H), 5.40 (d, *J* = 1.6 Hz, 0.68H)], [4.65 (s, 0.32H), 4.58 (s, 0.68H)], [3.77 (s, 0.96H), 3.76 (s, 2.04H)], [1.40 (s, 2.88H), 1.36 (s, 6.12H)], 1.21-1.18 (m, 6H), [0.96 (s, 2.88H), 0.80 (s, 6.12H)]. ¹³C NMR (126 MHz, CDCl₃) δ 212.5, 212.3, 195.3, 194.9, 176.1, 176.0, 158.2(8), 158.2(7), 138.7, 138.6, 132.3, 132.0, 131.3(7), 131.3(5), 131.1, 130.9, 128.6, 128.5, 127.4(4), 127.3(7), 112.9(4), 112.9(1), 111.7, 111.6, 108.8, 108.5, 80.1, 80.0, 55.1(3), 55.1(0), 47.9, 47.4, 47.3, 47.1, 33.4, 33.2, 29.4, 29.2, 28.0, 27.9, 25.5, 25.2, 22.2, 21.9. HRMS (ESI) [M+Na]⁺: calculated for C₃₀H₃₈O₄Na: 485.2668, found 485.2663.

2-((4-Methoxyphenyl)(1-methylcyclohexyl)methyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (10i). Flash column chromatography to afford product **10i** (76.6 mg, 92% yield, dr = 42:58).

The first fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.63 (m, 2H), 7.45-7.41 (m, 1H), 7.38-7.33 (m, 4H), 6.80-6.77 (m, 2H), 5.41 (d, *J* = 0.8 Hz, 1H), 4.15 (s, 1H), 3.78 (s, 3H), 1.55-1.40 (m, 6H), 1.36-1.26 (m, 2H), 1.22-1.17 (m, 2H), 1.06 (s, 3H), 0.68 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 213.6, 195.7, 157.9, 138.6, 133.5, 131.5, 131.1, 128.8, 127.5, 112.7, 111.9, 108.3, 55.1, 51.2, 38.7, 37.0, 36.2, 33.2, 29.1, 26.2, 22.0, 20.4. HRMS (ESI) [M+H]⁺: calculated for C₂₉H₃₇O₂: 417.2794, found 417.2789.

The second fraction: white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.53-7.51 (m, 2H), 7.42-7.38 (m, 1H), 7.32-7.29 (m, 4H), 6.83-6.80 (m, 2H), 5.37 (s, 1H), 4.11 (s, 1H), 3.79 (s, 3H), 1.60-1.49 (m, 6H), 1.43-1.34 (m, 2H), 1.29-1.20 (m, 2H), 1.05 (s, 3H), 0.95 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 212.6, 196.5, 158.0, 138.9, 133.4, 131.4, 130.9, 128.6, 127.4, 112.8, 111.7, 107.7, 55.1, 51.9, 37.4, 36.7, 35.7, 33.5, 29.6, 26.2, 21.9(2), 21.8(7), 20.4. HRMS (ESI) [M+H]⁺: calculated for C₂₉H₃₇O₂: 417.2794, found 417.2790.

2-((4-Methoxyphenyl)(1-methylcyclopentyl)methyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (10j). Flash column chromatography to afford product **10j** as a pale yellow oil (59.5 mg, 74% yield, dr = 60:40). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.62 (m, 2H), 7.45-7.39 (m, 1H), 7.37-7.29 (m, 4H), 6.82-6.78 (m, 2H), 5.40 (s, 1H), [4.20 (s, 0.62H), 4.15 (s, 0.38)], 3.78 (s, 3H), 1.79-1.21 (m, 8H), [1.07 (s, 1.14H), 1.04 (s, 1.86H)], [0.92 (s, 3.42H), 0.71 (s, 5.58H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.1, 212.1, 196.4, 195.8, 157.9, 157.9, 138.8, 138.7, 134.7, 134.4, 131.2, 131.0, 130.9(2), 130.8(7), 128.7, 128.6, 127.5, 127.4, 112.9(3), 112.8(8), 112.7, 112.5, 108.2(5), 108.1(7), 55.2, 55.1, 51.2, 50.6, 47.6, 46.7, 39.0, 38.9, 38.0, 37.3, 33.5, 33.2, 29.5, 29.2, 24.3, 24.2, 24.0, 23.9, 23.8. HRMS (ESI) [M+H]⁺: calculated for C₂₈H₃₅O₂: 403.2637, found 403.2637.

1-(4-Chlorophenyl)-2-(1,2-diphenylethyl)-5,5-dimethylhexa-2,3-dien-1-one (10k). Flash column chromatography to afford product **10k** as a white solid (44.7 mg, 54% yield, dr = 41:59). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.50 (m, 2H), 7.35-7.25 (m, 5H), 7.23-7.12 (m, 6H), 7.07-7.05 (m, 1H), [5.59 (d, *J* = 1.9 Hz, 0.40H), 5.48 (d, *J* = 1.8 Hz, 0.60H)], 4.51-4.42 (m, 1H), 3.24-3.01 (m, 2H), [0.95 (s, 3.6H), 0.83 (s, 5.4H)]. ¹³C NMR (126 MHz, CDCl₃) δ 211.1, 210.6, 193.2, 193.0, 142.8, 142.4, 139.9, 139.7, 137.7, 137.6, 137.0, 136.8, 130.2, 130.1, 129.0(3), 128.9(9), 128.2, 128.1(2), 128.0(9), 128.0(6), 128.0, 127.8(3), 127.7(7), 126.4(4), 126.4(1), 126.0, 125.9, 114.0, 113.9, 109.3, 109.2, 44.4(5), 44.4(0), 41.5, 40.8, 33.3, 33.2, 29.7, 29.5. These data are consistent with the published literature.¹

Ethyl 2-(2,2-dimethyl-1-phenylpropyl)-5,5-dimethylhexa-2,3-dienoate (11). Flash column chromatography to afford product 11 as a colorless oil (44.0 mg, 70% yield, dr = 51:49). Two diastereoisomers are hard to be separated by column

chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.31 (m, 2H), 7.26-7.22 (m, 2H), 7.21-7.17 (m, 1H), 5.63 (s, 1H), 4.20-3.98 (m, 2H), [3.80 (s, 0.52H), 3.78 (s, 0.48H)], 1.22 (s, 4.68H), 1.20 (m, 3H), 1.07 (s, 4.32H), [1.00 (s, 4.68H), 0.96 (s, 4.32H)]. ¹³C NMR (126 MHz, CDCl₃) δ 209.2, 209.1, 168.4, 168.3, 142.1, 141.6, 130.3, 130.1, 127.3(1), 127.2(8), 126.2, 126.1, 107.5, 107.2, 103.9, 60.8, 53.5, 53.4, 35.6, 34.9, 33.7, 33.4, 29.9, 29.6, 28.2(2), 28.1(9), 14.1. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₃₁O₂: 315.2324, found 315.2323.

3-(*tert*-**Butyl**)-**2**-(**3**,**3**-dimethylbut-1-en-1-ylidene)cyclohexan-1-one (**13a**). Flash column chromatography to afford product **13a** as a pale yellow oil (29.0 mg, 62% yield, dr = 48:52). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [5.45 (d, *J* = 3.1 Hz, 0.60H), 5.41 (d, *J* = 2.6 Hz, 0.40H)], 2.51-2.37 (m, 2H), 2.29-2.17 (m, 1H), 2.01-1.94 (m, 1H), 1.93-1.87 (m, 1H), 1.73-1.61 (m, 1H), 1.54-1.41 (m, 1H), [1.11 (s, 5.4H), 1.05 (s, 3.6H), 0.95 (s, 5.4H), 0.88 (s, 3.6H)]. ¹³C NMR (126 MHz, CDCl₃) δ 206.7, 205.1, 203.6, 203.4, 109.2, 108.9, 105.4, 105.0, 48.9, 48.5, 40.0, 35.8, 34.2, 33.0, 32.9, 30.1, 30.0, 27.7, 27.4, 25.6, 25.0, 21.4, 21.1. HRMS (ESI) [M+H]⁺: calculated for C₁₆H₂₇O: 235.2062, found 235.2056.

3-(*tert*-**Butyl**)-2-(3,3-dimethylbut-1-en-1-ylidene)cyclopentan-1-one (13b). Flash column chromatography to afford product 13b as a pale yellow oil (23.8 mg, 54% yield, dr = 71:29). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [5.64 (d, J = 5.2 Hz, 0.72H), 5.61 (d, J = 5.0 Hz, 0.28H)], 2.80-2.75 (m, 1H), 2.42-2.23 (m, 2H), 2.04-1.97 (m, 1H), 1.78-1.68 (m, 1H), [1.13 (s, 6.48H), 1.09 (s, 2.52H)], [0.99 (s, 6.48H), 0.95 (s, 2.52H)]. ¹³C NMR (126 MHz, CDCl₃) δ 207.6(5), 207.6(3), 204.2, 203.7, 107.9, 107.8, 107.7, 107.5, 51.5, 51.2, 38.2(3), 38.2(0), 34.2, 33.6(0), 33.5(7), 33.3, 30.2, 30.1(5), 27.5, 27.3, 23.0, 22.7. HRMS (ESI) [M+H]⁺: calculated for C₁₅H₂₄O: 221.1905, found 221.1906.

3-(2-(3,3-Dimethylbut-1-en-1-ylidene)-3-oxocyclohexyl)-3-methylbutyl benzoate

(13c). Flash column chromatography to afford product 13c as a pale yellow oil (35.4 mg, 48% yield, dr = 48:52). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (m, 2H), 7.57-7.51 (m, 1H), 7.45-7.43 (m, 2H), [5.49 (d, *J* = 3.1 Hz, 0.55H), 5.46 (d, *J* = 2.7 Hz, 0.45H)], 4.45-4.31 (m, 2H), 2.71-2.54 (m, 1H), 2.55-2.45 (m, 1H), 2.31-2.17 (m, 1H), 2.07-1.82 (m, 4H), 1.76-1.65 (m, 1H), 1.58-1.45 (m, 1H), [1.12 (s, 4.95H), 1.05 (s, 4.05H)], 1.05-0.96 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 206.6, 205.2, 203.2, 203.0, 166.6, 132.8, 130.3, 129.5, 128.3(2), 128.3(0), 108.6, 108.3, 105.8, 105.4, 62.1(2), 62.0(7), 47.4, 46.6, 39.9, 38.0, 37.9, 37.6, 36.2, 33.1, 33.0, 30.1, 30.0, 25.1, 24.9, 24.8, 24.7, 24.6, 21.3, 21.0. HRMS (ESI) [M+Na]⁺: calculated for C₂₄H₃₂O₃Na: 391.2252, found 391.2249.

2-(3,3-Dimethylbut-1-en-1-ylidene)-1'-methyl-[1,1'-bi(cyclohexan)]-3-one (13d). Flash column chromatography to afford product 13d as a pale yellow oil (33.5 mg, 61% yield, dr = 52:48).

The first fraction: pale yellow oil.¹H NMR (500 MHz, CDCl₃) δ 5.43 (d, J = 2.8 Hz, 1H), 2.65-2.61 (m, 1H), 2.50-2.44 (m, 1H), 2.26-2.20 (m, 1H), 1.97-1.86 (m, 2H), 1.71-1.65 (m, 1H), 1.52-1.24 (m, 11H), 1.11 (s, 9H), 0.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.5, 203.7, 108.6, 104.9, 46.2, 40.0, 36.7, 35.8, 32.9, 30.1, 26.2, 24.3, 21.9, 21.6, 21.3, 21.0. HRMS (ESI) [M+H]⁺: calculated for C₁₉H₃₁O: 275.2375, found 275.2377.

The second fraction: pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 5.40 (d, J = 2.6 Hz, 1H), 2.76-2.72 (m, 1H), 2.50-2.45 (m, 1H), 2.23-2.16 (m, 1H), 1.96-1.87 (m, 2H), 1.67-1.62 (m, 1H), 1.48-1.17 (m, 11H), 1.05 (s, 9H), 0.76 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 206.5, 203.9, 108.4, 104.8, 45.3, 40.0, 38.0, 35.9, 35.6, 33.0, 30.2, 26.2, 23.8, 21.8, 21.6, 21.1, 20.9. HRMS (ESI) [M+H]⁺: calculated for C₁₉H₃₁O: 274.2375, found 274.2375.

3-(*tert***-Butyl)-2-(2-phenylvinylidene)cyclohexan-1-one** (13e). Flash column chromatography to afford product 13e as a pale yellow oil (23.4 mg, 46% yield, dr = 50:50). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.29 (m, 3H), 7.23-7.21 (m, 2H), [6.53 (d, *J* = 3.0 Hz, 0.47H), 6.45 (d, *J* = 3.0 Hz, 0.53H)], 2.67-2.53 (m, 2H), 2.37-2.29 (m,

1H), 2.11-1.97 (m, 2H), 1.87-1.73 (m, 1H), 1.58-1.52 (m, 1H), [0.95 (s, 4.77H), 0.94 (s, 4.23H)]. ¹³C NMR (126 MHz, CDCl₃) δ 210.2, 209.4, 202.6, 202.3, 132.8, 132.6, 128.7(3), 128.6(7), 127.5, 127.4, 127.3, 127.0, 110.9, 110.8, 97.6, 97.2, 49.7, 48.5, 40.3, 40.3, 35.5, 34.4, 27.5, 27.4, 25.5, 25.1, 21.5, 21.4. HRMS (ESI) [M+H]⁺: calculated for C₁₈H₂₂O: 255.1749, found 255.1751.

5,5-Dimethyl-4-phenyl-3-(2-phenylvinylidene)hexan-2-one (15). Flash column chromatography to afford product **15** as a white solid (44.9 mg, 74% yield, dr = 49:51). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.28 (m, 3H), 7.29-7.18 (m, 4H), 7.20-7.08 (m, 3H), 6.73 (s, 1H), [3.98 (s, 0.49H), 3.97 (s, 0.51H)], [2.22 (s, 1.47H), 2.20 (s, 1.53H)], [0.90 (s, 4.59H), 0.87 (s, 4.41H)]. ¹³C NMR (126 MHz, CDCl₃) δ 217.0, 216.5, 197.4, 197.3, 141.6, 141.3, 132.1, 131.9, 130.1, 130.0, 129.1, 128.9, 127.9(8), 127.9(7), 127.6, 127.5, 127.4, 127.2, 126.3(4), 126.2(8), 114.8, 114.3, 100.3, 99.9, 51.7, 35.5, 35.0, 28.2(0), 28.1(6), 26.8, 26.7. These data are consistent with the published literature.⁷

4 Deuteration study

To an oven-dried Schlenk tube was charged with **4b** (63.8 mg, 0.2 mmol, 1.0 equiv), NiBr₂(dme) (6.2 mg, 10 mol%), 2,2'-bipyridine (4.7 mg, 15 mol%), Zn (39 mg, 0.6 mmol, 3.0 equiv). The tube was capped with a rubber septum, evacuated and back-filled with nitrogen three times, at which point DMA (1 mL) and CD₃OD (1mL) was added via a syringe prior to the addition of tertiary alkyl bromide **2** (108.2 mg, 0.4 mmol, 2.0 equiv). The reaction mixture was allowed to stir at room temperature for 24 h, 3 mL of H₂O was added to quench the reaction and the mixture was extracted by ethyl acetate. The combined organic layer was dried over MgSO₄. After filtration and concentration, the residue was purified by column chromatography on silica gel. The product **5b-D** with 95% D-incorporation was determined by ¹H NMR.

5-Benzoyl-4-(4-methoxyphenyl)-3,3,8,8-tetramethylnona-5,6-dien-1-yl-7-d

benzoate (**5b-D**). The product 5b-D was obtained in 74% yield (75.7 mg, Dincorporation > 95 %, dr = 36:64) as a white solid after column chromatography. The mixtures are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.00 (m, 2H), 7.64-7.51 (m, 3H), 7.45-7.29 (m, 7H), 6.85-6.81 (m, 2H), 4.49-4.39 (m, 2H), [4.21 (s, 0.37H), 4.15 (s, 0.63H)], 3.78 (s, 3H), 2.04-1.80 (m, 2H), 1.15-1.12 (m, 6H), [0.94 (s, 5.67H), 0.71 (s, 3.33H)]. ¹³C NMR (126 MHz, CDCl₃) δ 213.3, 212.4, 196.2, 195.6, 166.5(7), 166.5(6), 158.2, 158.1, 138.5(2), 138.4(9), 133.0, 132.9, 132.7, 131.4, 131.3, 131.2, 131.0, 130.4(1), 130.3(9), 129.5, 128.7, 128.5, 128.2, 127.5, 127.4, 113.0, 112.9, 111.8, 111.6, 108.6, 108.4, 108.1(t, *J* = 23.9 Hz), 62.3, 55.1(2), 55.1(1), 51.5, 50.8, 38.6, 38.3, 38.0, 36.8, 33.5, 33.1, 29.4, 29.0, 25.7, 25.3, 25.0, 24.9. HRMS (ESI) [M+Na]⁺: calculated for C₃₄H₃₇DO₄Na: 534.2731, found 534.2731.

5 Transformation of 1,2-allenyl ketones

The reaction of **15** (55.2 mg, 0.2 mmol), iodobenzene (81.3 mg, 0.4 mmol), $Pd(PPh_3)_4$ (11.3 mg, 0.01 mmol), Ag_2CO_3 (2.8 mg, 0.01 mmol), and K_2CO_3 (55.3 mg, 0.4 mmol) in 2 mL dried DMF at 80 °C under N₂ for 48 h. Then, 3 mL of H₂O was added to quench the reaction and the mixture was extracted by ethyl ester (3x10 mL). The combined organic layer was dried over MgSO₄. After filtration and concentration, the residue was purified by column chromatography on silica gel to give **16** (40.3 mg) in 53% yield.

3-(2,2-Diphenylvinylidene)-5,5-dimethyl-4-phenylhexan-2-one (16). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.45 (m, 4H), 7.41-7.38 (m, 1H), 7.34-7.30 (m,

5H), 7.24-7.22 (m, 2H), 7.20-7.18 (m, 3H), 4.07 (s, 1H), 2.36 (s, 3H), 0.89 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 215.4, 197.6, 141.3, 134.9, 134.7, 130.3, 128.9, 128.7(2), 128.6(8), 128.4, 128.1, 128.0(1), 127.9(6), 127.5, 126.3, 113.7, 52.5, 35.1, 28.3, 27.1. HRMS (ESI) [M+ Na]⁺: calculated for C₂₈H₂₈ONa: 403.2038, found 403.2039.

6 Reference

- [1] W. Lei, Y. Liu, Y. Fang, Y. Li, C. Du and J. Fang, Modular access to 1,2-allenyl ketones based on a photoredox-catalysed radical-polar crossover process, *Org. Biomol. Chem.*, 2021, **19**, 8502-8506.
- [2] Y. Liu, W. Luo, T. Xia, Y. Fang, C. Du, X. Jin, Y. Li, L. Zhang, W. Lei and H. Wu. Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis, *Org. Chem. Front.*, 2021, 8, 1732-1738.
- [3] H. Huang, P. Bellotti, P. Pflueger, J. Schwarz, B. Heidrich, F. Glorius, Three-Component, Interrupted Radical Heck/Allylic Substitution Cascade Involving Unactivated Alkyl Bromides, J. Am. Chem. Soc., 2020, 142, 10173-10183.
- [4] H. Y. Kim, J. Y. Li, K. Oh, A Soft Vinyl Enolization Approach to α-Acylvinyl Anions: Direct Aldol/Aldol Condensation Reactions of (E)-β-Chlorovinyl Ketones, Angew. Chem. Int. Ed. 2013, 52, 3736-3740.
- [5] H. Zhang, Q. Yao, L. Lin, C. Xu, X. Liu, X. Feng, Catalytic Asymmetric Epoxidation of Electron-Deficient Enynes Promoted by Chiral N, N'-Dioxide-Scandium(III) Complex, *Adv. Synth. Catal.*, 2017, **359**, 3454-3459.
- [6] X. Wang; J. Dong; X. Xu, B. Tang, Dinucleophilic Reactivity of Isocyanoacetate: Base-Catalyzed One-Pot Access to 4-Azafluorenes and 4-Azafluorenones, *Org. Lett.*, 2021, 23, 9063-9067.
- [7] X. Yu and J. Zhang, Regioselective Addition of Organometallic Reagents to 2-(1-Al-kynyl)-2-alken-1-ones for an Efficient Synthesis of Substituted 1,2-Allenyl Ketones, Adv. Synth. Catal. 2011, 353, 1265–1268.

7 NMR spectra of new compound

S25

S53

S71

S73

S75

