Supporting Information

Vibsanoids A-D, four new subtype vibsane diterpenoids with a

distinctive tricyclo[8.2.1.0^{2,9}]tridecane core from *Viburnum*

odoratissimum

Shi-Fang Li,^a Tian-Ming Lv,^a Ya-Ling Li,^a Xiao-Qi Yu,^a Guo-Dong Yao,^a Bin Lin,^b Xiao-Xiao Huang*^a, Shao-Jiang Song*^a

^aKey Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China;

^bSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

Contents

Table S1 ¹H (600 Hz) and ¹³C (150 Hz) NMR data of compounds 1–4.

Figure S1 Molecular network of the fractions from V. odoratissimum.

Figure S2 TIC of the fractions from the extract of V. odoratissimum.

Figure S3 MS/MS spectra of compounds 1-5.

Figure S4 The structures of vibsatins A and B.

Table S2 The cytotoxic effects of compounds on HepG2, A549 and MCF-7 cells.

 Table S3 Crystal data and structure refinement for 1.

Table S4 Experimental and calculated ¹³C NMR data of compound 2 and its possibleisomers 2a-2d.

Table S5 The results of DP4+ analysis of compound 2.

Figure S5 Liner correlation between calculated and experimental ¹³C NMR chemical shifts of compounds **3a–3b**.

Figure S6 Liner correlation between calculated and experimental ¹³C NMR chemical shifts of compounds **4a–4b**.

Table S6 Experimental and calculated ¹³C NMR data of compounds **3**, **4** and their possible isomers.

Table S7 The results of DP4+ analysis of compound **3**.

Table S8 The results of DP4+ analysis of compound 4.

Figure S7-S10 The low-energy conformers of compound 2a-2d.

Table S9-S12 Conformer analyses of compound 2a-2d.

Figure S11-S12 The low-energy conformers of compound 3a-3b.

Table S13-S14 Conformer analyses of compound 3a-3b.

Figure S13-S14 The low-energy conformers of compound 4a-4b.

 Table S15-S16 Conformer analyses of compound 4a-4b.

Figure S15 UV spectrum of compound 1.

Figure S16 HRESIMS spectrum of compound 1.

Figure S17 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S18 ¹³C NMR spectrum (150 MHz, DMSO- d_6) of compound 1.

Figure S19 HSQC spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S20 HMBC spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S21 1 H- 1 H COSY spectrum (600 MHz, DMSO- d_{6}) of compound 1.

Figure S22 NOESY spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S23 DEPT spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S24 UV spectrum of compound 2.

Figure S25 HRESIMS spectrum of compound 2.

Figure S26 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S27 ¹³C NMR spectrum (150 MHz, DMSO- d_6) of compound 2.

Figure S28 HSQC spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S29 HMBC spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S30 1 H- 1 H COSY spectrum (600 MHz, DMSO- d_{6}) of compound **2**.

Figure S31 NOESY spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S32 DEPT spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S33 UV spectrum of compound 3.

Figure S34 HRESIMS spectrum of compound 3.

Figure S35 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 3.

Figure S36 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3.

Figure S37 HSQC spectrum (600 MHz, CDCl₃) of compound 3.

Figure S38 HMBC spectrum (600 MHz, CDCl₃) of compound 3.

Figure S39 ¹H-¹H COSY spectrum (600 MHz, CDCl₃) of compound 3.

Figure S40 NOESY spectrum (600 MHz, CDCl₃) of compound 3.

Figure S41 DEPT spectrum (600 MHz, CDCl₃) of compound 3.

Figure S42 UV spectrum of compound 4.

Figure S43 UV spectrum of compound 4.

Figure S44 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 4.

Figure S45 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 4.

Figure S46 HSQC spectrum (600 MHz, CDCl₃) of compound 4.

Figure S47 HMBC spectrum (600 MHz, CDCl₃) of compound 4.

Figure S48 ¹H-¹H COSY spectrum (600 MHz, CDCl₃) of compound 4.

Figure S49 NOESY spectrum (600 MHz, CDCl₃) of compound 4.

Figure S50 DEPT spectrum (600 MHz, CDCl₃) of compound 4.

No	1 ^a		2 ^a		3 ^b		4 ^b	
INO.	$\delta_{ m H}$, mult (J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$, mult (J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$, mult (J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$, mult (J in Hz)	$\delta_{ m C}$
1	α 0.88, m β 1.54, dd (9.4, 2.4)	42.3	α 1.18, o. β 1.46, dd (9.3, 1.7)	44.5	α 1.14, dd (10.0, 1.5) β 1.21, m	45.2	α 1.12, o. β 1.59, dd (10.8, 2.5)	43.2
2	2.81, m	39.6	1.78, o.	45.4	2.45, m	42.0	1.80, o.	41.1
3	-	53.7	-	44.9	-	56.0	-	54.2
4	-	95.8	α 1.80, ο. β 1.25, ο.	30.3	-	113.3	4.93, dd (9.4, 3.4)	75.3
5	α 2.90, dd (15.4, 2.0) β 1.85, dd (15.4, 1.9)	36.9	α 1.31, o. β 2.08, m	25.2	6.24, d (5.8)	134.2	2.79, o. 2.79, o.	39.6
6	3.15, o.	58.7	2.85, dd (9.6, 5.2)	62.1	6.07, d (5.8)	135.7	-	216.2
7	-	54.8	-	59.8	-	88.9	-	81.8
8	4.31, d (7.6)	70.6	4.72, dd (11.2, 6.3)	74.5	5.27, dd (11.6, 4.1)	75.1	4.68, dd (12.2, 2.7)	74.6
9	4.72, t (7.6)	69.4	α 1.61, td (13.5, 6.3) β 1.16, o.	24.3	α 1.84, o. β 1.52, o.	27.4	α 1.78, o. β 1.27, m	34.0
10	1.23, o.	52.9	1.32, o.	50.9	0.86, m	50.7	1.15, o.	50.1
11	-	47.7	-	47.5	-	48.0	-	46.5
12	α 1.20, o. β 1.32, o.	36.3	1.37, m 1.75, o.	27.7	α 1.85, o. β 1.32, m	32.0	α 1.33, m β 1.48, td (12.2, 2.3)	37.6
13	α 1.69, m β 1.32, o.	27.8	1.06, m 1.25, o.	27.4	α 2.24, m β 1.52, o.	28.1	α 1.79, o. β 1.54, m	27.7
18	3.85, dd (11.5, 5.3) 3.17, o.	65.8	3.40, dd (11.1, 4.5) 3.60, dd (11.1, 4.5)	58.0	3.43, d (10.7) 3.37, d (10.7)	67.9	3.42, d (10.7) 4.05, d (10.7)	66.5
19	1.13, s	22.5	1.17, s	15.7	1.38, s	23.2	1.22, s	19.0
20	0.89, s	18.0	1.00, s	19.8	1.12, s	20.4	0.98, s	19.0

Table S1 ¹H (600 Hz) and ¹³C (150 Hz) NMR data of compounds 1–4.

1'	-	165.5	-	165.1	-	165.6	-	165.4
2'	5.71, d (1.4)	115.1	5.72, d (1.3)	115.4	5.61, d (1.3)	116.0	5.70, d (1.3)	115.6
3'	-	158.2	-	157.7	-	157.6	-	158.4
4'	2.12, d (1.4)	20.0	2.12, d (1.3)	20.0	2.16, d (1.3)	20.6	2.16, d (1.3)	20.5
5'	1.89, d (1.4)	27.0	1.89, d (1.3)	26.9	1.89, d (1.3)	27.6	1.89, d (1.3)	27.6
4-OH	5.64, s	-	-	-	-	-	-	-
18-OH	4.05, dd (5.3, 3.3)	-	4.33, t (4.5)	-	-	-	-	-

a: measured in DMSO- d_6 .

b: measured in CDCl₃.

Figure S1 Molecular network of the fractions from *V. odoratissimum*. Node sizes are based on the degree of correlation between compounds. And the nodes with novel skeleton were highlighted using the red frame.

Figure S2 TIC of the fractions from the extract of *V. odoratissimum* and the corresponding MS/MS spectra of compounds **2-4** (A-C).

Figure S3 MS/MS spectra of compounds 1-5.

Figure S4 The structures of vibsatins A and B.

(10,50, μ11)			
Compound	A549	HepG2	MCF-7
1	>50	>50	>50
2	>50	>50	>50
3	>50	>50	>50
4	>50	>50	>50
5	29.10 ± 1.02	9.82 ± 0.12	34.88 ± 0.67
Taxol ^a	0.024 ± 0.001	-	-
Sorafenib ^a	-	6.49 ± 0.24	-
Tamoxifen ^a	-	-	15.65 ± 0.53

Table S2 The cytotoxic effects of compounds on A549, HepG2 and MCF-7 cells $(IC_{50}, \mu M)$

^a Positive control.

 Table S3 Crystal data and structure refinement for 1.

Empirical formula	$C_{21}H_{30}O_{6}$		
Formula weight	378.45		
Temperature	153(2) K		
Crystal system	monoclinic		
Space group	P 1 21 1		
a/Å	6.8059(6)		
b/Å	11.1722(9)		
c/Å	12.3471(11)		
a/°	90		
$\beta^{ ho}$	95.962(5)		
γ/°	90		
Volume/Å	933.76(14)		
Ζ	2		
$\rho_{calc}g/cm^3$	1.346		
μ/mm^{-1}	0.799		
F(000)	408		
Crystal size/mm ³	0.15 imes 0.15 imes 0.1		
Radiation	Cu K α (λ = 1.54178)		
Theta range for data collection/°	3.60 to 67.49		
Index ranges	-8≤h≤8, -13≤k≤13, -14≤l≤14		
Reflections collected	13150		
Independent reflections	3263 [R(int) = 0.1556]		
Data/restraints/parameters	3263/1/250		
Goodness-of-fit on F ²	1.103		
Final R indexes [I>2 σ (I)]	$R_1 = 0.0671, wR_2 = 0.1715$		
Final R indexes [all data]	$R_1 = 0.1008, wR_2 = 0.1953$		
Largest diff. peak/hole/e Å ³	0.486/-0.475		
Absolute structure parameter	0.3(3)		

No	2 (Evn.)		Calcd.					
110.	2 (Exp.) -	2a	2b	2c	2d			
1	44.5	47.8	44.6	46.6	44.2			
2	45.4	50.5	47.2	50.4	53.9			
3	44.9	51.6	54.9	50.7	56.7			
4	30.3	33.3	26.8	30.1	29.6			
5	25.2	29.4	31.7	28.3	27.5			
6	62.1	66.9	68.7	67.9	66.2			
7	59.8	64.6	65.3	64.9	65.4			
8	74.5	79.6	83.9	79.0	81.6			
9	24.3	27.6	31.8	28.1	39.4			
10	50.9	54.4	53.4	49.1	54.9			
11	47.5	53.5	51.9	54.2	52.7			
12	27.7	31.2	44.1	31.8	41.7			
13	27.4	31.5	27	27.3	29.2			
18	58.0	64.4	67.2	71.3	69.1			
19	15.7	18.1	19.5	22.1	18.3			
20	19.8	21.4	20.9	22.1	20.8			
1'	165.1	175.6	174.8	174.7	175.5			
2'	115.4	120.6	120.9	120.6	120.7			
3'	157.7	176.3	176.1	176.5	176.2			
4'	20.0	21.3	21.3	21.2	21.3			
5'	26.9	30.5	30.4	30.4	30.5			

 Table S4 Experimental and calculated ¹³C NMR data of compound 2 and its possible isomers 2a-2d (ppm)

A B		С	D	E	F	G	Н
Functional		Solvent?		Basi	Basis Set		f Data
mPW1PW91		P		6-311+G(d,p)		Unscaled	l Shifts
		Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
sDP4+ (H data	a)	11 99.74%	0. 22%	0. 04%	0. 00%		
sDP4+ (C data	a)	all 00. 00%	0.00%	od 0. 00%	0.00%	-	-
sDP4+ (all da	ta)	all 00. 00%	0. 00%	0. 00%	0. 00%	_	_
uDP4+ (H data	a)	15.83%	84.14%	0. 01%	0. 02%		
uDP4+ (C data	a)	all 00. 00%	all 0. 00%	off 0. 00%	oll 0. 00%	-	-
uDP4+ (all da	ta)	all 00. 00%	0.00%			-	-
DP4+ (H data)	198.85%	1.15%	oll 0. 00%	off 0. 00%		
DP4+ (C data)	nt 00.00%	all 0.00%				-
DP4+ (all dat	a)	nt 00. 00%	10.00%				

Table S5 The results of DP4+ analysis of compound 2.

To further validate the relative configurations of C-10 and C-3 for the formation of new bond and confirm the deduced structures of compound **3** and **4**, ¹³C NMR predictions with DFT method were also performed. The results were as following.

Figure S5 Liner correlation and DP4+ probability analysis between calculated and experimental ¹³C NMR chemical shifts of compounds **3a–3b**.

Figure S6 Liner correlation and DP4+ probability analysis between calculated and experimental ¹³C NMR chemical shifts of compounds **4a–4b**.

No	2 (Evr.)	Calcd.		4 (Evr.)	Calcd.	
INO.	5 (Exp.) -	3 a	3b	- 4 (Exp.) -	4 a	4b
1	45.2	47.8	47.3	43.2	45.9	49.4
2	42.0	46.1	45.9	41.1	45.8	50.7
3	56.0	60.8	63.0	54.2	59.7	56.3
4	113.3	119.2	120.2	75.3	78.6	82.5
5	134.2	141.7	142.3	39.6	44.2	44.4
6	135.7	146.5	145.2	216.2	231.1	231.2
7	88.9	94.2	93.2	81.8	86.9	87.7
8	75.1	78.2	79.6	74.6	79.1	76.2
9	27.4	30.8	36.2	34.0	36.6	32.8
10	50.7	54.3	53.9	50.1	52.9	52.1
11	48.0	53.0	52.8	46.5	51.7	53.6
12	32.0	34.7	40.9	37.6	40.9	34.7
13	28.1	31.3	30.3	27.7	31.5	29.8
18	67.9	70.0	71.8	66.5	68.9	71.8
19	23.2	24.9	24.2	19.0	21.8	22.6
20	20.4	22.1	20.9	19.0	20.7	22.2
1'	165.6	173.5	173.4	165.4	173.6	173.6
2'	116.0	121.0	121.0	115.6	121.1	121.4
3'	157.6	174.9	174.9	158.4	174.6	174.7
4'	20.6	21.1	21.1	20.5	21.2	21.2
5'	27.6	30.2	30.3	27.6	30.2	30.2

 Table S6 Experimental and calculated ¹³C NMR data of compounds 3, 4 and their possible isomers (ppm)

Functional	Solvent?	Basis Set	Туре с	Type of Data	
mPW1PW91	PC	6-311+G(d,p)	Unscale	Unscaled Shifts	
	Isomer 1 Isomer 2	Isomer 3 Isomer	· 4 Isomer 5	Isomer 6	
sDP4+ (H data)	all 00. 00% all 0. 00%		_	—	
sDP4+ (C data)	1 99.99% 0 0.01%		-		
sDP4+ (all data)	11 00.00% 010.00%		-	<u> </u>	
uDP4+ (H data)	all 00. 00% all 0. 00%			—	
uDP4+ (C data)	1 99.90% 1 0.10%		-	-	
uDP4+ (all data)	100.00% 10.00%		<u> </u>	_	
DP4+ (H data)	11 00.00% 11 0.00%				
DP4+ (C data)	all 00.00% all 0.00%		(-)		
DP4+ (all data)	all 00.00% all 0.00%		<u>-</u>	<u>-</u>	

Table S8 The results of DP4+ analysis of compound 4.

Functional	Solvent?		Basis Set		Type of Data	
mP#1P#91	PC I		6-311+	G(d,p)	Unscaled	l Shifts
	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
sDP4+ (H data)	all 00. 00%	0. 00%	-	-	-	-
sDP4+ (C data)	all 00. 00%	all 0. 00%		_	-	
sDP4+ (all data)	100.00%	0.00%	1	-	-	—
uDP4+ (H data)	all 00. 00%	al 0. 00%	-	-	-	-
uDP4+ (C data)	all 00. 00%	all 0. 00%		-		—
uDP4+ (all data)	all 00. 00%	0.00%	1	-	-	-
DP4+ (H data)	11 00.00%		1000		10000	100
DP4+ (C data)	all 00. 00%	all 0. 00%	-	-	-	-
DP4+ (all data)	all 00.00%	all 0.00%				<u> </u>

Figure S7 The low-energy conformers of compound 2a.

Table S9 C	onformer a	nalyses of	compound 2a.
------------	------------	------------	--------------

Conformations	G		Boltzmann
Conformations	(Hartree)	ΔG (Kcal/mol)	distribution
2a-1	-1120.42245332	0	20.67%
2a-2	-1120.42245100	0.00000232	20.62%
2a-3	-1120.42211148	0.00034184	14.39%
2a-4	-1120.41918408	0.00326924	14.38%
2a-5	-1120.42183289	0.00062043	10.71%
2a-6	-1120.42183264	0.00062068	10.71%
2a-7	-1120.41999222	0.00246110	1.53%

Gibbs free energy and Boltzmann distribution of compound **2a** (298.15 K)

Figure S8 The low-energy conformers of compound 2b. Table S10 Conformer analyses of compound 2b.

Cibbo fros onor	our and Daltzmann	distribution of com	nound 3h (200 15 K)
GIUUS HEE EHEI	gy and Donzmann	distribution of com	DOUIIU 20 (290.13 K)

	G		Boltzmann
Conformations	(Hartree)	rtree) $\Delta G (Kcal/mol)$ distribution	distribution
2b-1	-1120.41491463	0	22.23%
2b-2	-1120.41490990	0.00000473	22.12%

2b-3	-1120.41451634	0.00039829	14.58%
2b-4	-1120.41451562	0.00039901	14.57%
2b-5	-1120.41425685	0.00065778	11.06%
2b-6	-1120.41425501	0.00065962	11.08%
2b-7	-1120.41220540	0.00270923	1.26%

Figure S9 The low-energy conformers of compound 2c.

 Table S11 Conformer analyses of compound 2c.

Gibbs free energy and Boltzmann distribution of compound 2c (298.15 K)

	G		Boltzmann
Conformations	(Hartree)	∆G (Kcal/mol)	distribution

2c-1	-1120.41000748	0	16.63%
2c-2	-1120.41000716	0.0000032	16.63%
2c-3	-1120.40965448	0.00035300	11.45%
2c-4	-1120.40965365	0.00035383	11.44%
2c-5	-1120.40938118	0.00062630	8.57%
2c-6	-1120.40903578	0.00097170	5.94%
2c-7	-1120.40884746	0.00116002	4.87%
2c-8	-1120.40884537	0.00116211	4.86%
2c-9	-1120.40869773	0.00130975	4.15%
2c-10	-1120.40784871	0.00215877	1.69%
2c-11	-1120.40784555	0.00216193	1.68%
2c-12	-1120.40747945	0.00252803	1.14%
2c-13	-1120.40747789	0.00252959	1.14%

Figure S10 The low-energy conformers of compound 2d.

 Table S12 Conformer analyses of compound 2d.

Gibbs free energy and Boltzmann distribution of compound 2d (298.15 K)

	G		Boltzmann
Conformations	(Hartree)	∆G (Kcal/mol)	distribution

2d-1	-1120.41450112	0	18.34%
2d-2	-1120.41450091	0.00000021	18.33%
2d-3	-1120.41435371	0.00014741	15.69%
2d-4	-1120.41435361	0.00014751	15.68%
2d-5	-1120.41393960	0.00056152	10.12%
2d-6	-1120.41393865	0.00056247	10.11%
2d-7	-1120.41301735	0.00148377	3.81%
2d-8	-1120.41301730	0.00148382	3.81%

Figure S11. The low-energy conformers of compound 3a.

 Table S13. Conformer analyses of compound 3a.

Gibbs free energy	and Boltzmann	distribution	of compound 3a	(298.1.	5 K)
0,			1		

Conformations	G		Boltzmann
Conformations	(Hartree)	ΔG (Kcal/mol)	distribution
3a-1	-1194.44992764	0	30.87%
3a-2	-1194.44992654	0.00000110	30.83%
3a-3	-1194.44929441	0.00063323	15.78%
3a-4	-1194.44928768	0.00063996	15.67%
3a-5	-1194.44676696	0.00316068	1.09%
3a-6	-1194.44677170	0.00315594	1.09%

Figure S12. The low-energy conformers of compound 3b. Table S14. Conformer analyses of compound 3b.

Gibbs free energy	and Boltzmann	distribution	of compound 3b	(298.15 K)

Conformations	G		Boltzmann
Comormations	(Hartree)	$\Delta G (Kcal/mol)$	distribution
3b-1	-1194.45135648	0	31.94%
3b-2	-1194.45135643	0.00000005	31.94%
3b-3	-1194.45044680	0.00090968	12.19%
3b-4	-1194.45044359	0.00091289	12.15%
3b-5	-1194.44909516	0.00226132	2.91%
3b-6	-1194.44909586	0.00226062	2.91%
3b-7	-1194.44831428	0.00304220	1.27%
3b-8	-1194.44831243	0.00304405	1.27%
3b-9	-1194.44818252	0.00317396	1.11%

Figure S13. The low-energy conformers of compound 4a. Table S15. Conformer analyses of compound 4a.

Gibbs free energy	and Boltzmann	distribution	of compound 4	4a ((298.15)	K)
01						

Conformations	G	∆G (Kcal/mol)	Boltzmann
	(Hartree)		distribution
4a-1	-1194.46260719	0	40.16%
4a-2	-1194.46260568	0.00000151	40.1%
4a-3	-1194.46176122	0.00084597	16.39%
4a-4	-1194.46004390	0.00256329	2.66%

Figure S14. The low-energy conformers of compound 4b. Table S16. Conformer analyses of compound 4b.

Gibbs free energy and Boltzmann distribution of compound **4b** (298.15 K)

Conformations	G (Hartree)	ΔG (Kcal/mol)	Boltzmann distribution
4b-1	-1194.45937152	0	12.19%
4b-2	-1194.45937131	0.00000021	12.19%
4b-3	-1194.45914701	0.00022451	9.61%
4b-4	-1194.45914660	0.00022492	9.6%
4b-5	-1194.45908834	0.00028318	9.03%
4b-6	-1194.45908777	0.00028375	9.03%
4b-7	-1194.45884753	0.00052399	7%
4b-8	-1194.45884703	0.00052449	7%
4b-9	-1194.45854452	0.00082700	5.08%
4b-10	-1194.45854426	0.00082726	5.08%
4b-11	-1194.45854227	0.00082925	5.06%
4b-12	-1194.45854168	0.00082984	5.06%

Figure S15 UV spectrum of compound 1.

Figure S16 HRESIMS spectrum of compound 1.

Figure S17 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S18 ¹³C NMR spectrum (150 MHz, DMSO- d_6) of compound 1.

Figure S19 HSQC spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S20 HMBC spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S21 ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S22 NOESY spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S23 DEPT spectrum (600 MHz, DMSO- d_6) of compound 1.

Figure S24 UV spectrum of compound 2.

Mass Spectrum SmartFormula Report

 Analysis Info

 Analysis Name

 D:\Data\20190626CEYANG\SHS-18_1-C,2_01_14000.d

 Method
 20190626ceyang.m

 Sample Name
 SHS-18

 Comment
 SHS-18

Acquisition Date 6/26/2019 12:35:10 PM

Operator Bruker Customer Instrument / Ser# micrOTOF-Q 125

Figure S25 HRESIMS spectrum of compound 2.

Figure S26 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S27 ¹³C NMR spectrum (150 MHz, DMSO- d_6) of compound 2.

Figure S28 HSQC spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S29 HMBC spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S30 ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S31 NOESY spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S32 DEPT spectrum (600 MHz, DMSO- d_6) of compound 2.

Figure S33 UV spectrum of compound 3.

Figure S34 HRESIMS spectrum of compound 3.

Figure S35 ¹H NMR spectrum (600 MHz, CDCl₃) of compound **3**.

Figure S36 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3.

Figure S37 HSQC spectrum (600 MHz, CDCl₃) of compound 3.

Figure S38 HMBC spectrum (600 MHz, CDCl₃) of compound 3.

Figure S39 ¹H-¹H COSY spectrum (600 MHz, CDCl₃) of compound 3.

Figure S40 NOESY spectrum (600 MHz, CDCl₃) of compound 3.

Figure S41 DEPT spectrum (600 MHz, CDCl₃) of compound 3.

Figure S42 UV spectrum of compound 4.

Mass Spectrum SmartFormula Report

Acquisition Date 4/30/2019 12:22:36 PM

Operator Bruker Customer Instrument / Ser# micrOTOF-Q 125

Figure S43 HRESIMS spectrum of compound 4.

Figure S44 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 4.

Figure S45 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 4.

Figure S46 HSQC spectrum (600 MHz, CDCl₃) of compound 4.

Figure S47 HMBC spectrum (600 MHz, CDCl₃) of compound 4.

Figure S48 ¹H-¹H COSY spectrum (600 MHz, CDCl₃) of compound 4.

Figure S49 NOESY spectrum (600 MHz, CDCl₃) of compound 4.

Figure S50 DEPT spectrum (600 MHz, CDCl₃) of compound 4.