Divergent Synthesis of 4-Amino Indoles with Free Amine Groups via Tandem Reaction of 2-Alkynylanilines

Xiaohua Li, Qiuqin He*, Renhua Fan*

*Corresponding author: Email: rhfan@fudan.edu.cn

Supplementary Information

Content	
S2	General Information
S2-S3	Evaluation of Conditions
83-25	Representative Procedure and Characterization of Products
826-74	¹ H NMR and ¹³ C NMR

Supplementary Methods

1. General Information

All reactions were performed in a 25 mL of Sealed tubes under air atmosphere. Flash column chromatography was performed using silica gel (60-Å pore size, 32–63 μ m, standard grade). Analytical thin–layer chromatography was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr (house vacuum) at 35–40 °C. Commercial reagents and solvents were used as received. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. High Resolution Mass spectra was recorded by Bruker MicroTOF II (ESI⁺).

2. Evaluation of Conditions

Entry	Catalyst	Equiv of Catalyst	Yield of 20	Yield of 20'
1	ZnCl ₂	2.0	0	82
2	In(OTf) ₃	2.0	0	79
3	Sc(OTf) ₃	2.0	0	79
4	Bi(OTf) ₃	2.0	0	50

5	AICl ₃	5.0	91	0
6	AlBr ₃	5.0	51	0
7	BF ₃ ·Et ₂ O	10.0	90	0
8	SnCl ₄	5.0	63	0
9	FeCl ₃	5.0	0	0
10	Cu(OTf) ₂	2.0	0	0
11	Yb(OTf) ₃	2.0	0	0
12	TsOH·H ₂ O	5.0	49	0
13	CF ₃ COOH	5.0	0	0

Table S2. Evaluation of Deprotection Conditions

Entry	Equiv. of AlCl ₃	T/°C	X/h	Yield of 45	Yield of 10
1	5.0	40	12	0	80
2	2.0	40	12	45	33
3	2.0	40	20	60	20
4	2.0	60	20	40	33
5	3.0	40	20	52	35
6	4.0	40	12	20	56
7	4.0	80	6	0	70

3. Representative Procedure and Characterization of Products

3.1 Representative Procedure

PhIO (0.1 mmol) was added to a solution of compound 1 (0.1 mmol) in MeOH (2.0 mL) at 25 °C. After 5 min, the reaction mixture was concentrated in vacuo. The resulting crude product was dissolved in 1,2-dichloroethane (2.0 mL), (2,4dimethoxyphenyl)methanamine (DmbNH₂) (0.1 mmol) was added and the resulting mixture was stirred at the room temperature for 30 min. Treating with 1.2 equivalents of hexan-1-amine (n-C₆H₁₃NH₂) in the presence of 10 mol% of AgOTf in 1,2dichloromethane at 80 °C for 4 hours led to the formation of 4-hexylamino indole. Then the reaction mixture was filtered through a short silica gel column to remove TsNH₂ and AgOTf (eluent: petroleum ether/ ethyl acetate 10:1). Next, The resulting crude product that was concentrated in vacuo was dissolved in Benzene (2 mL) and added anhydrous AlCl₃ (0.5 mmol). The solution was stirred at 80 °C for another 6 h. After the intermediate was completely consumed (monitored by TLC analysis), the mixture was cooled to the room temperature, the reaction was quenched by the addition of H_2O (5 mL) and the organic compounds were extracted with ethyl acetate $(5 \text{ mL} \times 3)$ for three times. The organic layers were washed with brine (10 mL ×2), dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. The obtained residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate 10:1) to furnish the desired compound 4 (20.8 mg, 68% yield).

3.2 General procedure for the synthesis of the racemic compound 49

N-isobutyl-5-methyl-2-phenyl-1*H*-indol-4-amine **5** (0.1 mmol, 1.0 equiv.) was added to a mixture of solution catalyst (*rac*)-CPA (0.01 mmol, 0.1 equiv.) and benzyl (*E*)-2-((*tert*-butoxycarbonyl)imino)-2-phenylacetate (0.15 mmol, 1.5 equiv.) in EA/CH₃CN (1.5 mL : 0.5 mL) at room temperature for 48 h. After completion (monitored by TLC), the mixture was directly purified by silica gel column chromatography (eluent: dichloromethane / petroleum ether = 4:1) to afford the compound **49**.

References:

(1) Y. Zhao, L. Cai, T. Huang, S. Meng, A. S. C. Chan and J Zhao. *Adv. Synth. Catal.*, 2020, **362**, 1309.

3.3 General procedure for the synthesis of the racemic compound 50

The (*E*)-1,4-diphenylbut-2-ene-1,4-dione (0.12 mmol, 1.2 equiv.) was added to a solution of catalyst (*rac*)-CPA (0.01 mmol, 0.1 equiv.) and *N*-isobutyl-5-methyl-2-phenyl-1*H*-indol-4-amine **5** (0.1 mmol, 1.0 equiv.) in THF (2 mL) at room temperature for 48 h. After completion (monitored by TLC), the mixture was concentrated and the residue was purified by flash chromatography on silica gel (eluent: petroleum ether /

ethyl acetate = 5:1) to afford the compound **50**.

References:

(2) T. Huang, Y. Zhao, S. Meng, A. S. C. Chan and J. Zhao. *Adv. Synth. Catal.*, 2019, **361**, 3632.

3.4 General procedure for the synthesis of the compound 51

The (*E*)-3-styryl-2*H*-benzo[*b*] [1,4] oxazin-2-one (0.12 mmol, 1.2 equiv.) was added to a solution of catalyst (S) or (R)-CPA (0.01 mmol, 0.1 equiv.) and *N*-isobutyl-5-methyl-2-phenyl-1*H*-indol-4-amine **5** (0.1 mmol, 1.0 equiv.) in dry toluene (2 mL) at room temperature for 24 h. After completion (monitored by TLC), the mixture was concentrated and the residue was purified by flash chromatography on silica gel (eluent : petroleum ether / ethyl acetate = 5:1) to afford the title compound **51**.

3.5 General procedure for the synthesis of the racemic compounds 51

The (*E*)-3-styryl-2*H*-benzo[*b*][1,4]oxazin-2-one (0.12 mmol, 1.2 equiv.) was added to a solution of catalyst (*rac*)-CPA (0.01 mmol, 0.1 equiv.) and *N*-isobutyl-5-methyl-2phenyl-1*H*-indol-4-amine **5** (0.1 mmol, 1.0 equiv.) in dry toluene (2 mL) at room temperature for 24 h. After completion (monitored by TLC), the mixture was concentrated and the residue was purified by flash chromatography on silica gel (eluent : petroleum ether / ethyl acetate = 5:1) to afford the title compound **51**.

References:

(3) W. Xun, B. Xu, B. Chen, S. Meng, A. S. C. Chan, F. G. Qiu and J. Zhao, Org. Lett., 2018, 20, 590.

3.6 General procedure for the synthesis of the compound 52

2,2,2-trifluoro-1-phenylethan-1-one (0.15 mmol, 1.5 equiv.) was added to a solution of catalyst (S) or (R)-CPA (0.01 mmol, 0.1 equiv.) and *N*-isobutyl-5-methyl-2-phenyl-1*H*-indol-4-amine **5** (0.1 mmol, 1.0 equiv.) in DCE (2 mL) at room temperature for 72 h. After completion (monitored by TLC), the mixture was concentrated and the residue was purified by flash chromatography on silica gel (eluent : dichloromethane /

petroleum ether = 2:1) to afford the compound **52**.

3.7 General procedure for the synthesis of the racemic compound 52

2,2,2-trifluoro-1-phenylethan-1-one (0.15 mmol, 1.5 equiv.) was added to a solution of catalyst (*rac*)-CPA (0.01 mmol, 0.1 equiv.) and *N*-isobutyl-5-methyl-2-phenyl-1*H*-indol-4-amine **5** (0.1 mmol, 1.0 equiv.) in DCE (2 mL) at room temperature for 72 h. After completion (monitored by TLC), the mixture was concentrated and the residue was purified by flash chromatography on silica gel (eluent : dichloromethane / petroleum ether = 2:1) to afford the compound **52**.

References:

(4) L. Cai, Y. Zhao, T. Huang, S. Meng, X. Jia, A. S. C. Chan and J. Zhao, Org. Lett., 2019, 21, 3538.

3.8 Characterization of Products

N-hexyl-5-methyl-2-phenyl-1*H*-indol-4-amine (4) (eluent: petroleum ether/ethyl acetate 10:1), 20.8 mg, 68% yield; green solid, m.p. : 81-82 °C; ¹H NMR (400 MHz,

CDCl₃) δ 8.22 (br s, 1H), 7.61 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.26 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.91 (s, 1H), 6.79 (d, J = 8.1 Hz, 1H), 3.54 (t, J = 7.2 Hz, 2H), 3.02 (br s, 1H), 2.27 (s, 3H), 1.71 – 1.63 (m, 2H), 1.45 – 1.41 (m, 2H), 1.33 – 1.31 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 137.8, 135.9, 132.6, 128.9, 127.2, 125.9, 124.8, 119.8, 113.6, 101.9, 98.8, 48.0, 31.7, 31.1, 26.8, 22.6, 17.6, 14.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₇N₂ 307.2169; Found : 307.2182.

N-isobutyl-5-methyl-2-phenyl-1*H*-indol-4-amine (5) (eluent: petroleum ether/ethyl acetate 10:1), 17.5 mg, 63% yield; green solid, m.p. : 134-135 °C; 1H NMR (400 MHz, CDCl₃) δ 8.19 (br s, 1H), 7.61 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.90 (s, 1H), 6.79 (d, J = 8.1 Hz, 1H), 3.37 (d, J = 6.7 Hz, 2H), 2.28 (s, 3H), 2.00 – 1.88 (m, 1H), 1.03 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 137.8, 135.9, 132.6, 128.9, 127.2, 126.0, 124.8, 119.6, 113.3, 101.7, 98.8, 55.6, 29.4, 20.5, 17.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₃N₂ 279.1856; Found : 279.1876.

N-cyclobutyl-5-methyl-2-phenyl-1*H*-indol-4-amine (6) (eluent: petroleum ether/ethyl acetate 10:1), 18.2 mg, 66% yield; green oil; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (br s, 1H), 7.63 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.88 (d, *J* = 1.5 Hz, 1H), 6.80 (d, *J* = 8.1 Hz, 1H), 4.39

(p, J = 7.7 Hz, 1H), 3.14 (br s, 1H), 2.49 – 2.42 (m, 2H), 2.28 (s, 3H), 1.99 – 1.89 (m, 2H), 1.81 – 1.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 137.6, 136.0, 132.6, 128.9, 127.2, 125.8, 124.8, 119.6, 113.4, 101.9, 98.5, 52.4, 33.4, 17.7, 14.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₁N₂ 277.1699; Found : 277.1697.

N-cyclopentyl-5-methyl-2-phenyl-1*H*-indol-4-amine (7) (eluent: petroleum ether/ethyl acetate 10:1), 21.5 mg, 74% yield; green oil; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.63 (d, *J* = 7.3 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.90 (d, *J* = 1.5 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 4.35 (p, *J* = 5.7 Hz, 1H), 2.78 (br s, 1H), 2.27 (s, 3H), 2.04 – 1.96 (m, 2H), 1.77 – 1.58 (m, 2H), 1.68 – 1.55 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 137.6, 135.9, 132.6, 128.9, 127.2, 125.9, 124.8, 120.1, 114.1, 102.0, 98.8, 58.1, 34.5, 23.8, 17.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₃N₂ 291.1856; Found : 291.1866.

N-cycloheptyl-5-methyl-2-phenyl-1*H*-indol-4-amine (8) (eluent: petroleum ether/ethyl acetate 10:1), 20.0 mg, 63% yield; green oil; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.64 (d, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.84 (d, *J* = 8.3 Hz, 1H), 6.82 (s, 1H), 3.92 – 3.86 (m, 1H), 2.74 (br s, 1H), 2.28 (s, 3H), 2.13 – 2.08 (m, 2H), 1.71 – 1.42 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 137.4, 136.0, 132.6, 128.9, 127.2, 125.9, 124.8, 120.9,

115.0, 102.5, 98.5, 57.3, 36.2, 28.4, 24.0, 17.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₇N₂ 319.2169; Found : 319.2189.

N-cyclooctyl-5-methyl-2-phenyl-1*H*-indol-4-amine (9) (eluent: petroleum ether/ethyl acetate 10:1), 14.9 mg, 45% yield; green oil; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.64 (d, *J* = 7.9 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.84 (d, *J* = 8.1 Hz, 1H), 6.82 (s, 1H), 3.97 – 3.87 (m, 1H), 2.28 (s, 3H), 2.03 – 1.97 (m, 2H), 1.72 – 1.55 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 137.4, 136.0, 132.7, 128.9, 127.2, 125.9, 124.9, 121.0, 115.2, 102.5, 98.5, 56.2, 33.2, 27.5, 25.7, 23.8, 17.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₃H₂₉N₂ 333.2325; Found : 333.2337.

Ethyl (5-methyl-2-phenyl-1*H*-indol-4-yl)-*L*-valinate (10) (eluent: petroleum ether/ethyl acetate 5:1), 24.5 mg, 70% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (br s, 1H), 7.63 (d, *J* = 7.9 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.84 (s, 1H), 4.36 (d, *J* = 5.6 Hz, 1H), 4.20 – 4.04 (m, 3H), 2.37 (s, 3H), 2.26 – 2.18 (m, 1H), 1.19 (t, *J* = 6.7 Hz, 3H), 1.18 (d, *J* = 6.7 Hz, 3H) 1.11 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 138.1, 137.4, 136.2, 132.5, 129.0, 127.3, 126.1, 124.9, 120.4, 115.4, 103.2, 98.1, 64.8, 60.7, 32.5, 18.9, 18.9, 17.5, 14.20. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for

 $C_{22}H_{26}N_2O_2$ 350.1994; Found : 350.1991.

Methyl (5-methyl-2-phenyl-1*H***-indol-4-yl)-***L***-isoleucinate (11) (eluent: petroleum ether/ethyl acetate 5:1), 28.7 mg, 82% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.62 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 6.82 (s, 1H), 4.45 (d, J = 5.8 Hz, 1H), 4.26 (br s, 1H), 3.64 (s, 3H), 2.36 (s, 3H), 2.04 – 1.94 (m, 1H), 1.84 – 1.77 (m, 1H), 1.42 – 1.33 (m, 1H), 1.05 (d, J = 7.0 Hz, 3H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 138.0, 137.4, 136.3, 132.5, 129.0, 127.4, 126.1, 124.9, 120.5, 115.6, 103.3, 98.0, 63.7, 51.6, 39.3, 25.9, 17.5, 15.4, 11.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₇N₂O₂ 351.2067; Found : 351.2077.**

Methyl (5-methyl-2-phenyl-1*H***-indol-4-yl)-***L***-leucinate (12) (eluent: petroleum ether/ethyl acetate 5:1), 21.0 mg, 60% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) \delta 8.24 (br s, 1H), 7.62 (d,** *J* **= 7.7 Hz, 2H), 7.41 (t,** *J* **= 7.5 Hz, 2H), 7.29 (t,** *J* **= 7.4 Hz, 1H), 6.92 (d,** *J* **= 8.1 Hz, 1H), 6.85 (d,** *J* **= 8.2 Hz, 1H), 6.82 (s, 1H), 4.55 (t,** *J* **= 7.1 Hz, 1H), 3.63 (s, 3H), 2.36 (s, 3H), 1.95 – 1.85 (m, 1H), 1.77 – 1.73 (m, 2H), 1.02 (d,** *J* **= 6.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) \delta 175.8, 137.8, 137.3, 136.3, 132.5, 128.9, 127.3, 126.0, 124.9, 120.7, 115.8, 103.6, 97.8, 58.2, 51.8, 43.9, 25.0, 22.8, 22.7, 17.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₇N₂O₂ 351.2067; Found : 351.2085.**

Methyl (5-methyl-2-phenyl-1*H*-indol-4-yl)-*L*-phenylalaninate (13) (eluent: petroleum ether/ethyl acetate 5:1), 21.9 mg, 57% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.55 (d, J = 7.7 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.34 – 7.23 (m, 6H), 6.90 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 6.49 (s, 1H), 4.73 (t, J = 6.2 Hz, 1H), 3.61 (s, 3H), 3.17 (t, J = 5.8 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 137.6, 137.4, 137.2, 136.4, 132.5, 129.7, 129.0, 128.5, 127.4, 126.9, 126.0, 124.9, 120.9, 116.1, 103.7, 97.9, 61.1, 52.0, 40.6, 17.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₅N₂O₂ 385.1911; Found : 385.1929.

Methyl (5-methyl-2-phenyl-1*H***-indol-4-yl)-***L***-tyrosinate (14) (eluent: petroleum ether/ethyl acetate 2:1), 22.4 mg, 56% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) \delta 8.22 (br s, 1H), 7.56 (d,** *J* **= 7.6 Hz, 2H), 7.40 (t,** *J* **= 7.6 Hz, 2H), 7.27 (t,** *J* **= 7.4 Hz, 1H), 7.09 (d,** *J* **= 8.2 Hz, 2H), 6.90 (d,** *J* **= 8.1 Hz, 1H), 6.85 (d,** *J* **= 8.1 Hz, 1H), 6.74 (d,** *J* **= 8.3 Hz, 2H), 6.50 (s, 1H), 4.68 (t,** *J* **= 6.2 Hz, 1H), 3.61 (s, 3H), 3.10 (dd,** *J* **= 5.7 Hz, 3.5 Hz, 2H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 174.9, 154.6, 137.5, 137.3, 136.4, 132.4, 130.7, 129.0, 128.9, 127.4, 125.9, 124.9, 120.9, 116.0, 115.3, 103.6, 97.8, 61.1, 52.0, 39.5, 17.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₅N₂O₃ 401.1860; Found : 401.1866.**

Methyl (1r, 4r)-4-(((5-methyl-2-phenyl-1*H*-indol-4-yl)amino)methyl)cyclohexane -1-carboxylate (15) (eluent: petroleum ether/ethyl acetate 5:1), 29.3 mg, 78% y ield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (br s, 1H), 7.63 (d, J =7.8 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 6.92 (d, J =8.1 Hz, 1H), 6.86 (d, J = 1.3 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 3.66 (s, 3H), 3.39 (d, J = 6.5 Hz, 2H), 2.32 – 2.24 (m, 4H), 2.04 – 2.01 (m, 5H), 1.51 – 1.41 (m, 2H), 1.14 – 1.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 13 9.6, 137.8, 136.0, 132.6, 128.9, 127.3, 125.9, 124.9, 119.7, 113.6, 102.0, 98.6, 54.1, 51.5, 43.4, 38.4, 30.2, 28.6, 17.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₉N₂O₂ 377.2224; Found : 377.2228.

N-butyl-5-ethyl-2-phenyl-1*H*-indol-4-amine (16) (eluent: petroleum ether/ethyl acetate 10:1), 22.2 mg, 76% yield; yellow solid. m.p. : 80-81 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (br s, 1H), 7.67 (d, *J* = 7.4 Hz, 2H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.95 (d, *J* = 1.3 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 3.57 (t, *J* = 7.2 Hz, 2H), 3.19 (br s, 1H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.75 – 1.68 (m, 2H), 1.56 – 1.47 (m, 2H), 1.30 (t, *J* = 7.6 Hz, 3H), 1.01 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 137.6, 136.0, 132.7, 129.0, 128.7, 127.3, 124.9, 124.4, 120.4, 102.4, 99.1, 48.1, 33.5, 24.4, 20.4, 14.9, 14.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₅N₂ 293.2012; Found : 293.2027.

N, **5-dibutyl-2-phenyl-1***H***-indol-4-amine (17)** (eluent: petroleum ether/ethyl acetate 10:1), 18.9 mg, 59% yield; green solid. mp: 74-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (br s, 1H), 7.63 (d, J = 7.4 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.91 (s, 1H), 6.85 (d, J = 8.1 Hz, 1H), 3.52 (t, J = 7.2 Hz, 2H), 2.94 (br s, 1H), 2.61 (t, J = 7.2 Hz, 2H), 1.71 – 1.64 (m, 2H), 1.64 – 1.56 (m, 2H), 1.52 – 1.38 (m, 4H), 0.98 (t, J = 7.3Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 137.6, 136.0, 132.7, 129.0, 127.3, 125.3, 124.90, 120.5, 119.2, 102.4, 99.1, 48.2, 33.4, 32.8, 31.3, 22.8, 20.4, 14.1, 14.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₉N₂ 321.2325; Found : 321.2328.

N-butyl-2,5-diphenyl-1*H*-indol-4-amine (19) (eluent: petroleum ether/ethyl acetate 10:1), 15.6 mg, 46% yield; green oil. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (br s, 1H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.44 - 7.38 (m, 6H), 7.35 - 7.26 (m, 2H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.96 (s, 1H), 6.88 (d, *J* = 8.2 Hz, 1H), 3.95 (br s, 1H), 3.44 (t, *J* = 7.1 Hz, 2H), 1.48 (dt, *J* = 14.7, 7.2 Hz, 2H), 1.28 (dq, *J* = 14.3, 7.3 Hz, 2H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.0, 139.4, 138.3, 136.2, 132.5, 130.0, 128.9, 128.7, 127.3, 126.5, 125.7, 124.9, 120.7, 119.6, 102.1, 99.5, 47.7, 32.9, 20.1, 13.9. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₂₄H₂₅N₂ 341.4775; Found : 341.4780.

5-methyl-2-phenyl-1*H***-indol-4-amine (20):** (eluent: petroleum ether/ethyl acetate 5:1), 17.1 mg, 77% yield; green solid; m.p. : 140-141 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (br s, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.71 (d, *J* = 1.9 Hz, 1H), 3.90 (br s, 2H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 136.6, 136.5, 136.4, 132.5, 129.7, 127.0, 125.9, 124.8, 118.8, 111.1, 101.4, 95.9, 16.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₅N₂ 223.1230; Found : 223.1231.

5-methyl-2-(m-tolyl)-1*H***-indol-4-amine (21)** (eluent: petroleum ether/ethyl acetate 5:1), 13.0 mg, 55% yield; green solid; m.p. : 152-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.47 (s, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.70 (dd, *J* = 2.1, 0.8 Hz, 1H), 3.90 (br s, 2H), 2.41 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 136.6, 136.5, 136.5, 132.5, 128.9, 128.1, 125.8, 125.6, 122.0, 118.8, 111.1, 101.4, 95.8, 21.5, 16.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₇N₂ 237.1386; Found : 237.1390.

2-(4-methoxyphenyl)-5-methyl-1*H***-indol-4-amine** (22) (eluent: petroleum ether/ethyl acetate 5:1), 13.6 mg, 54% yield; green solid; m.p. : 206-207 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.19 (br s, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 6.98 (d, J = 8.6 Hz, 2H)

2H), 6.83 (d, J = 1.2 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 4.52 (br s, 2H), 3.82 (s, 3H), 2.19 (s, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO) δ 159.0, 137.7, 137.2, 135.7, 126.1, 125.9, 125.1, 119.0, 114.3, 109.2, 100.4, 94.9, 54.8, 16.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₇N₂O 253.1335; Found : 253.1350.

5-methyl-2-(4-pentylphenyl)-1*H***-indol-4-amine (23)** (eluent: petroleum ether/ethyl acetate 5:1), 19.6 mg, 67% yield; green solid; m.p. : 193-194 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.28 (br s, 1H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 1.4 Hz, 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.66 (d, *J* = 8.2 Hz, 1H), 4.58 (br s, 2H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.21 (s, 3H), 1.65 (dt, *J* = 14.8, 7.4 Hz, 2H) 1.38 – 1.33 (m, 4H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO) δ 141.4, 137.8, 137.3, 135.8, 130.8, 128.8, 125.3, 124.5, 118.9, 109.2, 100.4, 95.6, 35.3, 31.4, 31.1, 22.3, 16.2, 13.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₅N₂ 293.2012; Found : 293.2025.

2-(4-fluorophenyl)-5-methyl-1*H***-indol-4-amine (24)** (eluent: petroleum ether/ethyl acetate 5:1), 11.8 mg, 49% yield; green solid; m.p. : 193-194 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.30 (br s, 1H), 7.81 (dd, *J* = 8.5, 5.4 Hz, 2H), 7.18 (t, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 1.8 Hz, 1H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 4.57 (br s, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO) δ 161.8 (d, ¹*J*_{CF} = 244.1 Hz), 138.0, 137.4, 134.7, 129.9 (d, ⁴*J*_{CF} = 3.0 Hz), 126.4 (d, ³*J*_{CF} = 7.9 Hz), 125.7, 118.8, 115.6 (d, ²*J*_{CF} = 21.8 Hz), 109.3, 100.4, 96.2, 16.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₄FN₂ 241.1136; Found : 241.1140.

2-(4-bromophenyl)-5-methyl-1*H***-indol-4-amine (25)** (eluent: petroleum ether/ethyl acetate 5:1), 16.9 mg, 56% yield; green solid; m.p. : 211-212 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.36 (br s, 1H), 7.75 – 7.71 (m, 2H), 7.58 – 7.55 (m, 2H), 7.02 (d, *J* = 1.6 Hz, 1H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 4.61 (br s, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO) δ 138.1, 137.6, 134.3, 132.5, 131.8, 126.3, 126.0, 119.6, 118.8, 109.3, 100.4, 97.0, 16.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₄BrN₂ 301.0335; Found : 301.0326.

2-(2-chlorophenyl)-5-methyl-1*H***-indol-4-amine (26)** (eluent: petroleum ether/ethyl acetate 5:1), 18.2 mg, 71% yield; green solid; m.p. : 190-191 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 br (s, 1H), 7.65 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.46 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.32 (td, *J* = 7.6, 1.4 Hz, 1H), 7.26 – 7.22 (m, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.82 (d, *J* = 8.2 Hz, 1H), 6.76 (dd, *J* = 2.2, 0.8 Hz, 1H), 3.92 (s, 2H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 136.1, 133.5, 131.3, 131.1, 130.8, 130.4, 128.4, 127.2, 126.2, 117.9, 110.9, 101.5, 99.6, 16.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₄ClN₂ 257.0840; Found : 257.0846.

2-(3-chlorophenyl)-5-methyl-1*H***-indol-4-amine (27)** (eluent: petroleum ether/ethyl acetate 5:1), 16.6 mg, 65% yield; green solid; m.p. : 184-185 °C; ¹H NMR (400 MHz,

(CD₃)₂CO) δ 10.40 (br s, 1H), 7.81 (t, *J* = 1.8 Hz, 1H), 7.74 (ddd, *J* = 7.9, 1.7, 1.0 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.26 (ddd, *J* = 8.0, 2.1, 0.9 Hz, 1H), 7.08 (dd, *J* = 2.3, 0.8 Hz, 1H), 6.81 (d, *J* = 8.1 Hz, 1H), 6.68 (d, *J* = 8.1 Hz, 1H), 4.62 (br s, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO) δ 138.2, 137.6, 135.3, 134.4, 133.8, 130.5, 126.2, 124.1, 122.8, 118.7, 109.3, 100.3, 97.5, 16.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₄ClN₂ 257.0840; Found : 257.0848.

2-(4-chlorophenyl)-5-methyl-1*H***-indol-4-amine (28)** (eluent: petroleum ether/ethyl acetate 5:1), 20.0 mg, 78% yield; green solid; m.p. : 187-188 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.37 (br s, 1H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 1.7 Hz, 1H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 4.61 (br s, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO) δ 137.7, 137.2, 133.9, 131.8, 131.3, 128.5, 126.0, 125.6, 118.4, 108.9, 100.0, 96.6, 15.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₄ClN₂ 257.0840; Found : 257.0849.

Methyl 4-(4-amino-5-methyl-1*H***-indol-2-yl)benzoate (29)** (eluent: petroleum ether/ethyl acetate 2:1), 17.6 mg, 63% yield; yellow solid; m.p. : 217-218 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.49 (br s, 1H), 8.03 (d, *J* = 8.4 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 1.2 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.69 (d, *J* = 8.1 Hz, 1H), 4.70 (br s, 2H), 3.89 (s, 3H), 2.20 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO) δ 166.1, 138.3, 137.9, 137.5, 134.2, 130.0, 127.8, 126.6, 124.1, 118.8, 109.3, 1493900.4, 98.5, 51.4, 16.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₇N₂O₂ 281.1285; Found: 281.1299.

5-methyl-2-(thiophen-2-yl)-1*H***-indol-4-amine (28)** (eluent: petroleum ether/ethyl acetate 5:1), 12.1 mg, 53% yield; green solid; m.p.: 180-181 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (br s, 1H), 7.24 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.20 (dd, *J* = 3.6, 1.0 Hz, 1H), 7.06 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.60 (d, *J* = 2.0 Hz, 1H), 3.91 (br s, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.5 , 136.2, 135.9, 130.8, 127.8, 126.0, 124.0, 122.3, 118.6, 111.3, 101.3, 96.5, 16.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₃N₂S 229.0794; Found : 229.0798.

5-methyl-1-octyl-2-phenyl-1*H***-indol-4-amine (32)** (eluent: petroleum ether/ethyl acetate 10:1), 21.0 mg, 63% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.40 (m, 5H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.81 (d, *J* = 8.2 Hz, 1H), 6.41 (s, 1H), 4.11 (t, *J* = 7.6 Hz, 2H), 2.32 (s, 3H), 1.72 – 1.64 (m, 2H), 1.29 – 1.18 (m, 10H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 137.2, 136.5, 133.6, 129.4, 128.4, 127.7, 125.0, 117.6, 110.8, 100.8, 97.9, 44.1, 31.8, 29.9, 29.1, 29.0, 26.8, 22.6, 16.7, 14.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₃H₃₁N₂ 335.2482; Found : 335.2499.

1-isobutyl-5-methyl-2-phenyl-1*H***-indol-4-amine (33)** (eluent: petroleum ether/ethyl acetate 10:1), 16.1 mg, 58% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.34 (m, 5H), 6.94 (d, *J* = 8.3 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.36 (s, 1H), 3.95 (d, *J* = 7.5 Hz, 2H), 3.77 (br s, 2H), 2.27 (s, 3H), 2.08 – 1.93 (m, 1H), 0.63 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 137.4, 136.4, 133.8, 129.5, 128.3, 127.5, 124.8, 117.5, 110.7, 101.2, 98.1, 51.3, 28.8, 20.0, 16.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₃N₂ 279.1856; Found : 279.1869.

1-isopropyl-5-methyl-2-phenyl-1*H***-indol-4-amine (34)** (eluent:petroleum ether/ethyl acetate 10:1), 18.7 mg, 71% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 5H), 7.00 (d, *J* = 8.3 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.31 (s, 1H), 4.62 (hept, *J* = 7.0 Hz, 1H), 3.77 (br s, 2H), 2.27 (s, 3H), 1.58 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 136.7, 135.1, 133.9, 129.5, 128.3, 127.7, 124.4, 118.4, 110.5, 103.2, 97.9, 47.8, 21.4, 16.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₂₁N₂ 265.1699; Found : 265.1704.

1-cyclopropyl-5-methyl-2-phenyl-1*H***-indol-4-amine** (35) (eluent: petroleum ether/ethyl acetate 10:1), 15.7 mg, 60% yield, green oil; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.1 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 6.38 (s, 1H), 3.79 (br s, 2H), 3.41 – 3.36 (m, 1H), 2.27 (s, 3H), 0.93 – 0.89 (m, 2H), 0.66 – 0.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 138.7, 136.5, 133.7, 128.6, 128.1, 127.1, 125.0, 117.0, 111.0, 101.7, 97.7, 26.2,

16.6, 9.0. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{18}H_{19}N_2$ 263.1543; Found : 263.1557.

1-cyclobutyl-5-methyl-2-phenyl-1*H***-indol-4-amine** (36) (eluent: petroleum ether/ethyl acetate 10:1), 17.9 mg, 65% yield, green oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 5H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.94 (d, *J* = 8.3 Hz, 1H), 6.31 (s, 1H), 4.94 (p, *J* = 8.9 Hz, 1H), 3.83 (br s, 2H), 3.00 – 2.90 (m, 2H), 2.33 – 2.27 (m, 5H), 1.94 – 1.86 (m, 1H), 1.79 – 1.67 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 136.8, 136.3, 133.8, 129.3, 128.3, 127.6, 124.6, 118.2, 110.7, 102.9, 98.0, 50.9, 29.5, 16.5, 14.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₁N₂ 277.1699; Found : 277.1698.

1-cyclopentyl-5-methyl-2-phenyl-1*H***-indol-4-amine** (37) (eluent: petroleum ether/ethyl acetate 10:1), 16.8 mg, 58% yield, green oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.36 (m, 5H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.32 (s, 1H), 4.74 (p, *J* = 9.0 Hz, 1H), 3.84 (br s, 2H), 2.43 – 2.33 (m, 2H), 2.27 (s, 3H), 1.97 – 1.91 (m, 4H), 1.67 – 1.64 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 136.9, 134.6, 133.9, 129.4, 128.4, 127.6, 124.4, 118.4, 110.5, 102.8, 97.7, 57.1, 29.9, 25.2, 16.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₃N₂ 291.1856; Found : 291.1879.

1-cyclohexyl-5-methyl-2-phenyl-1*H***-indol-4-amine** (38) (eluent: petroleum ether/ethyl acetate 10:1), 18.5 mg, 61% yield, green oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.36 (m, 5H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.32 (s, 1H), 4.19 – 4.11 (m, 1H), 3.80 (br s, 2H), 2.38 – 2.32 (m, 2H), 2.26 (s, 3H), 1.89 – 1.86 (m, 4H), 1.27 – 1.20 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 136.6, 135.5, 134.0, 129.5, 128.3, 127.6, 124.3, 118.4, 110.4, 103.5, 98.0, 56.3, 31.3, 26.2, 25.5, 16.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₅N₂ 305.2012; Found : 305.2036.

5-methyl-1-(3-morpholinopropyl)-2-phenyl-1*H***-indol-4-amine** (39) (eluent: petroleum ether/ethyl acetate 5:1), 20.9 mg, 60% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.37 (m, 5H), 6.95 (d, *J* = 8.3 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.39 (s, 1H), 4.20 (t, *J* = 7.2 Hz 2H), 3.60 – 3.58 (m, 4H), 2.28 (s, 3H), 2.23 – 2.20 (m, 4H), 2.16 (t, *J* = 6.9 Hz, 2H), 1.80 – 1.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 137.3, 136.5, 133.4, 129.3, 128.4, 127.7, 125.0, 117.6, 110.8, 100.6, 98.2, 66.8, 55.5, 53.3, 41.8, 26.5, 16.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₈N₃O 350.2227; Found : 350.2238.

5-methyl-2-phenyl-1-(prop-2-yn-1-yl)-1H-indol-4-amine (40) (eluent: petroleum

ether/ethyl acetate 10:1), 17.9 mg, 69% yield, white-off solid, mp: 121-122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.1 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.45 (s, 1H), 4.76 (d, J = 2.4 Hz, 2H), 3.87 (br s, 2H), 2.34 (t, J = 2.4 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 137.4, 136.6, 132.4, 129.1, 128.7, 127.9, 125.6, 117.5, 111.7, 100.5, 98.5, 79.1, 72.5, 34.2, 16.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₇N₂ 261.1386; Found : 260.1390.

2-(4-amino-5-methyl-2-phenyl-1*H***-indol-1-yl)ethan-1-ol (41)** (eluent: petroleum ether/ethyl acetate 2:1), 18.1 mg, 68% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.43 – 7.34 (m, 3H), 6.93 (d, *J* = 8.3 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.35 (s, 1H), 4.20 (t, *J* = 5.9 Hz, 2H), 3.73 (t, *J* = 5.9 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 137.4, 136.4, 133.0, 129.6, 128.5, 127.8, 125.3, 117.6, 111.2, 100.7, 98.5, 61.4, 46.0, 16.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₉N₂O 267.1492; Found : 267.1501.

(1s,4s)-4-(4-amino-5-methyl-2-phenyl-1*H*-indol-1-yl)cyclohexan-1-ol (42) (eluent: petroleum ether/ethyl acetate 2:1), 19.2 mg, 60% yield, white-off solid, mp: 95-96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 5H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.33 (s, 1H), 4.23 – 4.14 (m, 1H), 3.79 – 3.71 (m, 1H), 2.52 – 2.41 (m, 2H), 2.26 (s, 3H), 2.07 – 2.04 (m, 2H), 1.89 – 1.86 (m, 2H), 1.37 – 1.25 (m, 2H). ¹³C

NMR (100 MHz, CDCl₃) δ 140.1, 136.7, 135.3, 133.7, 129.4, 128.4, 127.8, 124.5, 118.3, 110.6, 103.2, 98.3, 69.8, 55.2, 34.9, 28.8, 16.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₅N₂O 321.1961; Found : 321.1977.

Methyl (1r,4r)-4-((4-amino-5-methyl-2-phenyl-1*H*-indol-1yl)methyl)cyclohexane-1-carboxylate (43) (eluent: petroleum ether/ethyl acetate 5:1), 26.3 mg, 70% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 5H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.41 (s, 1H), 4.03 (d, *J* = 7.3 Hz, 2H), 3.90 (br s, 2H), 3.62 (s, 3H), 2.32 (s, 3H), 2.16 – 2.06 (m, 2H), 1.86 – 1.83 (m, 2H), 1.49 – 1.46 (m, 2H), 1.27 – 1.17 (m, 2H), 0.79 – 0.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 140.1, 137.5, 136.4, 133.6, 129.5, 128.4, 127.6, 124.9, 117.5, 110.8, 101.0, 98.2, 51.4, 49.8, 42.9, 37.4, 29.7, 28.2, 16.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₉N₂O₂ 377.2224; Found : 377.2225.

1-(2-(1*H***-benzo[d]imidazol-2-yl)ethyl)-5-methyl-2-phenyl-1***H***-indol-4-amine (44) (eluent: dichloromethane/methanol 10:1), 20.1 mg, 55% yield, yellow solid, m.p. : 200-201°C; ¹H NMR (400 MHz, CD₃OD) δ 7.38 – 7.33 (m, 2H), 7.26 – 7.13 (m, 8H), 6.89 (d, J = 8.2 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 6.43 (s, 1H), 4.59 (t, J = 6.9 Hz, 2H), 3.11 (t, J = 6.9 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 153.5, 141.1, 139.7,**

138.8, 138.4, 134.5, 130.4, 129.7, 128.8, 126.7, 123.6, 120.1, 115.7, 113.2, 102.1, 100.6, 44.1, 30.5, 17.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₃N₄ 367.1917; Found : 367.1938.

Ethyl (7-(2,4-dimethoxybenzyl)-5-methyl-2-phenyl-1*H*-indol-4-yl)-*L*-valinate (45) (eluent: petroleum ether/ethyl acetate 5:1), 30.0 mg, 60% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.11 (br s, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.84 (s, 1H), 6.78 (s, 1H), 6.51 (s, 1H), 6.42 (d, *J* = 8.4 Hz, 1H), 4.27 (d, *J* = 5.7 Hz, 1H), 4.14 – 4.03 (m, 3H), 4.00 (s, 5H), 3.74 (s, 3H), 2.37 (s, 3H), 2.21 – 2.16 (m, 1H), 1.17 (t, *J* = 6.4 Hz, 3H), 1.16 (d, *J* = 6.5 Hz, 3H), 1.09 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 159.2, 156.6, 136.5, 136.2, 135.8, 133.1, 131.3, 128.9, 127.0, 126.0, 124.7, 121.5, 120.7, 117.0, 115.4, 105.6, 99.0, 98.0, 64.9, 60.5, 56.2, 55.4, 32.4, 30.4, 18.9, 17.5, 14.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₇N₂O₄ 501.2748; Found : 501.2748.

Methyl(7-(2,4-dimethoxybenzyl)-5-methyl-2-phenyl-1*H*-indol-4-yl)-*L*-isoleucinate (46) (eluent: petroleum ether/ethyl acetate 5:1), 33.0 mg, 66% yield,yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.16 (br s, 1H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.46(t, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 6.89 (s, 1H), 6.82

(s, 1H), 6.56 (d, J = 1.7 Hz, 1H), 6.47 (d, J = 8.4, 1H), 4.42 (d, J = 5.8 Hz, 1H), 4.19 (s, 2H), 4.05 (s, 2H), 4.04 (s, 3H), 3.78 (s, 3H), 3.67 (s, 3H), 2.41 (s, 3H), 2.02 – 1.95 (m, 1H), 1.88 – 1.79 (m, 1H), 1.45 – 1.36 (m, 1H), 1.09 (d, J = 7.0 Hz, 3H), 1.05 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 159.2, 156.7, 136.3, 136.1, 135.9, 133.1, 131.3, 128.9, 127.0, 126.0, 124.8, 121.5, 120.9, 117.1, 115.6, 105.6, 99.1, 97.9, 63.8, 56.2, 55.3, 51.5, 39.3, 30.4, 25.9, 17.4, 15.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₇N₂O₄ 501.2748; Found : 501.2765.

Methyl (7-(2,4-dimethoxybenzyl)-5-methyl-2-phenyl-1*H*-indol-4-yl)-*L*-leucinate (47) (eluent: petroleum ether/ethyl acetate 5:1), 31.0 mg, 62% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.11 (br s, 1H), 7.59 (d, *J* = 7.7 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.84 (s, 1H), 6.76 (s, 1H), 6.51 (s, 1H), 6.43 (d, *J* = 8.3 Hz, 1H), 4.45 (t, *J* = 7.1 Hz, 1H), 4.00 (s, 5H), 3.73 (s, 3H), 3.61 (s, 3H), 2.35 (s, 3H), 1.93 – 1.83 (m, 1H), 1.74 – 1.68 (m, 2H), 1.01 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 159.3, 156.7, 136.2, 136.1, 136.0, 133.1, 131.3, 128.9, 127.1, 126.0, 124.8, 121.5, 121.1, 117.4, 115.9, 105.6, 99.1, 97.8, 58.4, 56.2, 55.4, 51.7, 43.9, 30.4, 25.1, 22.9, 22.7, 17.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₇N₂O₄ 501.2748; Found : 501.2750.

Methyl (7-(2,4-dimethoxybenzyl)-5-methyl-2-phenyl-1*H*-indol-4-yl)-*L*-phenylalaninate (48) (eluent: petroleum ether/ethyl acetate 5:1), 27.2 mg, 51% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.09 (br s, 1H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.23 (m, 6H), 7.12 (d, *J* = 8.3 Hz, 1H), 6.82 (s, 1H), 6.50 (d, *J* = 1.6 Hz, 1H), 6.43-4.60 (m, 2H), 4.62 (t, *J* = 6.4 Hz, 1H), 3.98 (s, 5H), 3.72 (s, 3H), 3.59 (s, 3H), 3.18 – 3.09 (m, 2H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 159.3, 156.7, 137.3, 136.1, 136.0, 135.9, 133.0, 131.3, 129.6, 128.8, 128.3, 127.0, 126.8, 125.9, 124.7, 121.5, 121.2, 117.6, 116.1, 105.6, 99.1, 97.8, 61.4, 56.2, 55.3, 51.8, 40.6, 30.4, 17.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₄H₃₅N₂O₄ 535.2591; Found : 535.2597.

benzyl 2-((*tert*-butoxycarbonyl)amino)-2-(4-(isobutylamino)-5-methyl-2-phenyl-1*H*-indol-7-yl)-2-phenylacetate (49) (eluent: dichloromethane / petroleum ether 4:1), 40.1 mg, 65% yield, green oil; ¹H NMR (400 MHz, CDCl₃) δ 8.89 (br s, 1H), 7.57 -7.45 (m, 2H), 7.34 – 7.27 (m, 7H), 7.23 – 7.18 (m, 4H), 7.16 – 7.12 (m, 2H), 6.82 (d, *J* = 1.7 Hz, 1H), 6.66 (s, 1H), 6.15 (s, 1H), 5.26 (s, 1H), 5.20 (q, *J* = 12.3 Hz, 2H), 3.39 (d, *J* = 6.7 Hz, 2H), 2.14 (s, 3H), 1.98 – 1.88 (m, 1H), 1.32 (s, 9H), 1.04 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 154.8, 140.5, 135.78, 135.0, 134.8, 132.3, 128.8, 128.4, 128.2, 128.2, 127.8, 127.7, 127.0, 125.2, 124.6, 112.6, 111.9, 97.8, 80.2, 68.7, 67.9, 55.2, 29.5, 28.2, 20.4, 17.7. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{39}H_{44}N_3O_4$ 618.3326; Found : 618.2248.

2-(4-(isobutylamino)-5-methyl-2-phenyl-1*H***-indol-7-yl)-1,4-diphenylbutane-1,4dione (50)** (eluent: petroleum ether/ethyl acetate 5:1), 45.7 mg, 89% yield, green oil; ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.13 (d, *J* = 7.4 Hz, 2H), 7.94 (d, *J* = 7.9 Hz, 2H), 7.74 (d, *J* = 7.4 Hz, 2H), 7.53 – 7.37 (m, 9H), 7.29 (t, *J* = 7.4 Hz, 1H), 6.90 (d, *J* = 2.0 Hz, 1H), 6.88 (s, 1H), 5.49 (dd, *J* = 9.7, 3.9 Hz, 1H), 4.48 (dd, *J* = 18.4, 9.8 Hz, 1H), 3.44 (dd, *J* = 18.5, 3.9 Hz, 1H), 3.35 (d, *J* = 6.7 Hz, 2H), 2.23 (s, 3H), 1.96 – 1.85 (m, 1H), 1.02 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 199.0, 139.8, 136.8, 136.5, 136.3, 136.2, 133.3, 133.0, 132.5, 129.0, 129.0, 128.6, 128.5, 128.2, 127.3, 126.8, 124.9, 120.4, 113.6, 110.0, 98.5, 55.3, 46.4, 41.9, 29.5, 20.4, 17.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₅H₃₅N₂O₂ 515.2693; Found : 515.2689.

(*R*)-3-(2-(4-(isobutylamino)-5-methyl-2-phenyl-1*H*-indol-7-yl)-2-phenylethyl)-2*H*benzo[b][1,4]oxazin-2-one (51) (eluent: petroleum ether/ethyl acetate 5:1), 41.1 mg, 78% yield, 99% *ee*, green oil; The enantiomeric excess was determined by HPLC (Daicel Chiralpak AD, hexane/*i*-PrOH = 80:20 (v/v), λ = 254 nm, flow rate = 1.0 mL/min, 25 °C): t_{major} = 37.4 min, t_{minor} = 39.8 min, 60.0 min. ¹H NMR (400 MHz, CDCl₃) δ 9.44 (br s, 1H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.65 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.51 – 7.39 (m, 5H), 7.37 – 7.19 (m, 7H), 6.92 (d, *J* = 2.0 Hz, 1H), 6.50 (s, 1H), 5.08 (dd, *J* = 10.0, 4.3 Hz, 1H), 3.82 (dd, *J* = 14.5, 4.3 Hz, 1H), 3.64 (dd, *J* = 14.5, 10.1 Hz, 1H), 3.34 (d, *J* = 6.7 Hz, 2H), 2.18 (s, 3H), 1.97 – 1.86 (m, 1H), 1.03 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 153.9, 146.2, 141.1, 138.8, 136.1, 132.7, 131.2, 130.8, 129.0, 128.9, 128.8, 128.5, 127.1, 126.8, 125.6, 124.7, 124.3, 119.8, 117.9, 116.3, 112.9, 98.7, 55.6, 43.5, 39.9, 29.5, 20.5, 17.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₅H₃₄N₃O₂ 528.2646; Found : 528.2650.

(*S*)-2,2,2-trifluoro-1-(4-(isobutylamino)-5-methyl-2-phenyl-1*H*-indol-7-yl)-1phenylethan-1-ol (52) (eluent: dichloromethane / petroleum ether 2:1), 42.9 mg, 95% yield, 77% *ee*, green oil; The enantiomeric excess was determined by HPLC (Daicel Chiralpak AD, hexane/*i*-PrOH = 80:20 (v/v), λ = 254 nm, flow rate = 1.0 mL/min, 25 °C): t_{major} = 7.4 min, t_{minor} = 10.5 min, 30.0 min. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.63 -7.58 (m, 2H), 7.41 – 7.24 (m, 8H), 7.19-7.16 (m, 1H), 6.92 (s, 1H), 6.64 (d, J = 2.0 Hz, 1H), 4.41 (s, 1H), 3.73 (s, 1H), 3.73 – 3.24 (m, 2H), 2.20 (s, 3H), 1.97 – 1.87 (m, 1H), 1.03 (d, J = 6.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 138.7, 135.6, 135.3, 132.1, 128.8, 128.7, 128.2, 127.5, 127.1, 124.5 (q, J = 286.3 Hz), 124.6, 124.2, 120.2, 112.4, 111.9, 97.6, 79.8 (q, J = 28.9 Hz), 55.5, 29.3, 20.5, 17.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₂₈F₃N₂O 453.2148; Found : 453.2153.

S91

$$-174.96$$

$$-174.96$$

$$-174.06$$

$$-159.24$$

$$-159.24$$

$$-159.29$$

$$-133.07$$

$$-133.07$$

$$-133.07$$

$$-122.08$$

$$-132.05$$

$$-1127.03$$

$$-127.03$$

$$-1127.03$$

$$-51.47$$

$$-51.47$$

$$-32.88$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

$$-51.47$$

Signal: DAD1 A, Sig=220,4 Ref=360,100

RT [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%
37.461	1.417	376.167	4.425	49.6489
39.837	1.475	381.487	4.311	50.3511
	Sum	757.6540		

Signal: DAD1 A, Sig=220,4 Ref=360,100

	0				
R	T [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%
37	.439	0.837	8.395	0.167	0.2630
39	0.759	1.432	3184.358	37.066	99.7370
		Sum	3192.7535		

Signal:	DAD1 C, Sig=214,4 Ref=360,100

RT [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%
7.391	0.180	2361.089	203.157	50.1865
10.515	0.279	2343.540	130.931	49.8135
	Sum	4704.6292		

Signal: DAD1 C, Sig=214,4 Ref=360,100

	RT [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%
	7.380	0.183	1993.488	162.397	11.8143
	10.498	0.285	14879.990	816.560	88.1857
		Sum	16873.4778		