Supplementary Information

An Experimental and Theoretical Study on Stereocontrolled Glycosylations by "One-pot" Procedure

Xuemei Zhong,^{a,#} Xiaoya Zhao,^{a,#} Jiaming Ao,^{a,#} Yan Huang,^{a,} Yuhua Liu,^{b*} Siai Zhou,^a Bizhi Li,^a Akihiro Ishiwata,^c Qianglin Fang,^d Chongguang Yang,^d Hui Cai,*^a Feiqing Ding*^a

^aSchool of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China

^bSchool of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China

°RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan

^dSchool of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China

E-mail: liuyuhua@gzhu.edu.cn, caihui5@mail.sysu.edu.cn, and: dingfq3@mail.sysu.edu.cn

Table of Contents

1 General Information	3
2 Cartesian coordinates of all the key structures	3
3 General Glycosylation Procedures	13
4 NMR data of Compounds	14
5 Reference	
6 NMR Spectrums of Compounds	

1 General Information

All reactions sensitive to air and/or moisture were carried out under nitrogen or argon atmosphere with anhydrous solvents. Substrates of glycosylations were dried by a zeotropic removal with toluene. Column chromatography was performed on silica gel, 300-400 mesh. Reactions were monitored by thin-layer chromatography (TLC) on silica gel 60 F254 of 0.2mm thickness, and compounds were detected by examination under UV light and by charring with 10% sulfuric acid in MeOH. Noted that when using toluene-ethyl acetate (CAUTION! STRONG CARCINOGENIC ACTIVITY). Solvents were removed under reduced pressure at <40 °C. CH₂Cl₂ was freshly distilled from calcium hydride under nitrogen prior to use. Molecular sieves (4Å) were activated at 170 °C for 2-3 h under reduced pressure prior to application. All reactions were carried out under an argon atmosphere. ¹H NMR and ¹³C NMR spectra were recorded on Bruker spectrometers at 400 MHz or JEOL ECX 400 spectrometer. ¹H NMR spectra were referenced to CDCl₃ at 7.26 ppm, MeOD at 3.31 ppm and C_6D_6 at 7.15 ppm, and ¹³C NMR spectra were referenced to CDCl₃ at 77.0 ppm, MeOD at 47.67 ppm and C₆D₆ at 128.01 ppm or native scale. Assignments were made by standard 2D experiments. Optical rotations were measured with 'Insmark IP-digi300/1' polarimeter. HRMS were recorded on Shimadzu (LCMS-IT-TOF). All other reagents were purchased from Adamas-Beta Co., Bidepharm Co. and Macklin Co.

The calculation package used is the Gaussian program.¹ All geometries were optimized at the theory level of B3LYP ² //BS1 (BS1 = 6-31G(d) ³ for main group elements and Lanl2dz ⁴ for Sn) in the gas phase. Vibrational frequency calculations were used to confirm that the optimized structures are minima on the potential energy surface. The single point energies for the B3LYP optimized geometries were computed using the SMD ⁵ solvent model (solvent = DCM) at the M06 ⁶ //BS2 (BS2= $6-311+G^{**}$ ⁴ for main group elements and SDD ⁷ for Sn) level of theory.

2 Cartesian coordinates of all the key structures

TS4

Charge =	0 Multiplicity = 1			
Н	2.06158	-0.84197	-1.0792	
Cl	1.50483	0.52711	-1.41039	
Cl	-0.70483	-0.46186	1.40732	
Cl	-1.41844	-1.59589	-2.28873	
Cl	-0.72329	-3.98442	0.42136	
С	2.63535	-2.95346	0.0944	
Н	2.20053	-3.94917	0.20091	
Н	3.57032	-3.01827	-0.46561	
Н	2.81575	-2.512	1.07898	
Sn	-0.17903	-1.85347	-0.36417	
0	1.74764	-2.11835	-0.68303	
Thermal	correction to Energy=		0.063922	2
Thermal	correction to Enthalpy=	0.064866		
Thermal	correction to Gibbs Free Er	0.011712		
Sum of electronic and zero-point Energies=			-1959.95	3068
Sum of e	lectronic and thermal Energ	-1959.9	41634	

Sum of electronic and thermal Enthalpies=			-1959.940689	
Sum of electronic and thermal Free Energies=			-1959.993844	
SCF Done:	E(RM06) =	-1959.972	209909	
TS7				
Charge = () Multiplicity	= 1		
С		1.56299	0.0197	0.17844
Н		1.49616	-1.01917	-0.02876
С		0.29809	0.70658	0.62337
Н		0.39262	0.83783	1.7153
С		0.19942	2.11257	0.01193
Н		0.06428	2.02633	-1.07327
С		1.51076	2.86459	0.29005
Н		1.61541	3.00335	1.37836
С		2.71961	2.08653	-0.25551
Н		2.67178	2.10492	-1.34785
0		2.69431	0.65879	0.10025
С		-1.18954	-1.02575	1.32443
Н		-1.45971	-0.47767	2.24031
С		-2.35009	-1.84261	0.8251
С		-2.14863	-3.13532	0.32813
Н		-1.14697	-3.55846	0.32185
С		-3.22451	-3.88534	-0.15077
Н		-3.05611	-4.88954	-0.53
С		-4.51212	-3.34626	-0.13947
Н		-5.35055	-3.92995	-0.51013
С		-4.72222	-2.05603	0.3547
С		-3.64653	-1.31064	0.83606
0		-0.86284	2.83526	0.59859
С		-2.07722	2.84289	-0.1655
0		1.53277	4.11162	-0.37763
С		1.11636	5.23609	0.4244
С		4.06	2.62601	0.23584
Н		4.03288	3.72123	0.14063
Н		-5.72359	-1.63408	0.36905
0		1.37381	-0.15046	-1.9174
С		2.06483	-1.22948	-3.90298
0		2.30737	-1.31681	1.74785
С		2.89491	-0.74837	2.89345
Н		3.51062	-1.4695	3.44791
Н		3.52982	0.12033	2.65805
Н		2.08435	-0.41975	3.56229
С		2.11796	-1.05649	-2.32519
Ν		2.91392	-1.89	-1.64484
Н		3.40262	-2.53276	-2.26733

Cl	2.45162	0.36621	-4.63906
Cl	0.38966	-1.71071	-4.32365
Cl	3.2081	-2.45101	-4.5633
0	-0.83361	-0.05902	0.3075
Н	-0.32566	-1.66121	1.55414
Н	-3.81154	-0.30814	1.22489
Н	-1.89019	3.29049	-1.15237
Н	-2.40728	1.80833	-0.32331
C	-3.12139	3.63847	0.57912
С	-3.94363	4.5416	-0.10451
С	-3.30722	3.46121	1.95705
С	-4.94135	5.24828	0.5713
Н	-3.80509	4.69106	-1.17314
С	-4.29684	4.17254	2.63486
Н	-2.66137	2.77418	2.49564
С	-5.11918	5.06627	1.94326
Н	-5.57291	5.94491	0.02647
Н	-4.42774	4.02934	3.70427
Н	-5.89097	5.61902	2.47199
С	1.05968	6.4569	-0.45602
С	2.23842	7.04974	-0.92801
С	-0.17212	7.00883	-0.82536
С	2.18741	8.17166	-1.75392
Н	3.20022	6.62765	-0.64573
С	-0.22693	8.13621	-1.64783
Н	-1.0922	6.55473	-0.46433
С	0.95251	8.71826	-2.11448
Н	3.10852	8.62323	-2.11257
Н	-1.18956	8.55849	-1.92341
Н	0.91174	9.5959	-2.75404
Н	1.84445	5.37617	1.23922
Н	0.13848	5.02909	0.86704
0	5.16242	2.07638	-0.44553
Н	4.18295	2.36596	1.29325
С	5.47192	2.70859	-1.68295
Н	5.54848	3.79846	-1.5198
Н	4.669	2.55359	-2.42065
С	6.77507	2.16552	-2.22263
С	7.79187	1.74226	-1.35871
С	6.99364	2.12535	-3.60433
С	9.00712	1.28765	-1.87199
Н	7.61715	1.75327	-0.28806
С	8.21299	1.68084	-4.11773
Н	6.20443	2.4398	-4.28435

С	9.22338	1.2595	-3.25144
Н	9.78538	0.95111	-1.19219
Н	8.36822	1.65284	-5.19302
Н	10.17023	0.9038	9 -3.64891
Sn	3.677	-2.57181	0.29343
Cl	5.56905	-1.56402	1.27773
Cl	2.34146	-4.34764	1.09765
Cl	5.02484	-4.0156	-1.07417
Thermal correction to En	ergy=		0.756009
Thermal correction to En	thalpy=		0.756953
Thermal correction to Gil	bbs Free En	ergy=	0.591507
Sum of electronic and zer	ro-point Ene	ergies=	-4778.552194
Sum of electronic and the	ermal Energ	ies=	-4778.497306
Sum of electronic and the	ermal Entha	lpies=	-4778.496362
Sum of electronic and the	ermal Free H	Energies=	-4778.661808
SCF Done: E(RM06) =	-4778.50	245395	
TS10			
Charge = 0 Multiplicity	r = 1		
Н	1.49098	-1.31437	-1.51627
Cl	0.4018	-0.68127	-2.30303
Cl	-0.15561	0.5197	1.11142
Cl	-2.37059	-2.14187	-0.62162
Cl	-0.10363	-3.04993	2.03629
Sn	-0.25769	-1.61087	0.19233
Ν	1.8601	-1.83664	-0.37041
С	2.64292	-3.01721	-0.27137
0	3.61034	-3.10177	0.43577
С	2.2543	-4.17404	-1.24787
Cl	2.97548	-3.73554	-2.83814
Cl	0.45716	-4.30486	-1.42563
Cl	2.90528	-5.71227	-0.66819
Н	2.36076	-1.12411	0.17321
Thermal correction to En	ergy=		0.062329
Thermal correction to En	thalpy=		0.063273
Thermal correction to Gil	bbs Free En	ergy=	-0.002404
Sum of electronic and zer	ro-point Ene	ergies=	-3432.160597
Sum of electronic and the	ermal Energ	ies=	-3432.144165
Sum of electronic and the	ermal Entha	lpies=	-3432.143221
Sum of electronic and the	ermal Free H	Energies=	-3432.208898
SCF Done: E(RM06) =	-3432.17	327234	
12			
Charge = 0 Multiplicity	r = 1		
С	-0.50447	-0.82175	-0.43832
Н	-1.11031	-1.58742	-0.89601

С	-1.12822	0.36755	0.31577
Н	-1.03923	0.18117	1.39699
С	-0.3839	1.67588	0.02176
Н	-0.86439	1.87401	-0.93957
С	1.10934	1.97111	-0.09013
Н	1.60025	1.76426	0.87286
С	1.85048	1.46219	-1.33949
Н	1.40536	1.9216	-2.22242
0	1.74563	0.01503	-1.53291
С	-3.44296	-0.37126	0.35139
Н	-3.69457	-0.27238	1.42018
С	-4.66322	-0.17016	-0.51734
С	-4.49396	0.12007	-1.87904
Н	-3.4841	0.23784	-2.26819
C	-5.61339	0.26655	-2.69835
Н	-5.48051	0.49443	-3.75295
С	-6.90102	0.12253	-2.1728
Н	-7.76945	0.23818	-2.81634
С	-7.06891	-0.1643	-0.8173
С	-5.95112	-0.30538	0.00862
0	-0.91024	2.49185	1.05918
С	-2.2065	3.03406	0.79296
0	1.35402	3.30834	-0.49671
С	1.5663	4.2474	0.57933
С	3.34099	1.72907	-1.24761
Н	3.8439	1.63795	-2.21401
Н	3.49537	2.72575	-0.83323
0	3.90368	0.73917	-0.33722
С	5.27276	1.07506	0.09709
Н	-8.06702	-0.2693	-0.39982
Н	5.86662	1.28335	-0.79741
Н	5.63763	0.15744	0.55725
С	5.28184	2.22388	1.06773
С	4.72268	2.07149	2.34566
С	5.87537	3.44463	0.72352
С	4.75135	3.12498	3.25803
Н	4.27093	1.12244	2.62329
С	5.91224	4.49869	1.64011
Н	6.32161	3.56718	-0.26078
С	5.34709	4.34065	2.90643
Н	4.3183	2.99704	4.24607
Н	6.383	5.43834	1.36533
Н	5.37336	5.15921	3.62005
0	-2.47043	0.5948	-0.02526

Н	-3.05157	-1.3887	0.20296
Н	-6.08424	-0.51783	1.06774
Н	-2.19028	3.59273	-0.15433
Н	-2.92665	2.2138	0.67755
С	-2.6051	3.94822	1.92771
С	-3.36244	5.098	1.67131
С	-2.26287	3.64582	3.25243
С	-3.77855	5.92563	2.71635
Н	-3.63158	5.34581	0.64658
С	-2.67036	4.47654	4.29661
Н	-1.6665	2.76179	3.45464
С	-3.43202	5.61761	4.03289
Н	-4.36646	6.81385	2.50013
Н	-2.39434	4.2318	5.31924
Н	-3.75016	6.26316	4.84721
С	1.68313	5.62647	-0.01578
С	2.90307	6.08	-0.53336
С	0.56436	6.46581	-0.08296
С	3.00405	7.34599	-1.11072
Н	3.77933	5.4382	-0.4739
С	0.66195	7.73405	-0.65759
Н	-0.38461	6.1245	0.32404
С	1.88179	8.17552	-1.1743
Н	3.95677	7.68779	-1.50697
Н	-0.21257	8.37783	-0.69994
Н	1.95925	9.16351	-1.62048
Н	2.48769	3.97586	1.11524
Н	0.72788	4.1915	1.27773
0	-0.06268	-1.79203	0.98647
С	-1.06175	-2.49689	1.73464
Н	-1.65227	-3.15014	1.0845
Н	-0.56943	-3.09826	2.50303
Н	-1.70964	-1.76137	2.2197
Sn	3.39312	-1.39256	-1.09613
Cl	5.44068	-2.38906	-0.37046
Cl	4.48507	-1.1924	-3.21265
Cl	2.32576	-3.2996	-2.06362
C1	2.50882	-2.20783	0.96917
Thermal correction to End	erøv=		0.718816
Thermal correction to En	Thermal correction to Enthalpy=		
Thermal correction to Gil	obs Free En	ergv=	0.578992
Sum of electronic and zer	o-point Ene	ergies=	-3651.507872
Sum of electronic and the	-3651 461030		
Sum of electronic and the	rmal Enthal	lnies=	-3651 460086
or ereen only und the		-r	2021.100000

Sum of ele	ctronic and the	rmal Free E	energies=	-365
SCF Done:	E(RM06) =	-3651.47	710568	
13				
Charge =	0 Multiplicity	= 1		
С		2.0692	2.19754	1.76033
0		-0.07362	-0.00849	-0.89147
С		-0.47625	1.31363	-0.99163
С		0.0836	2.12319	0.17316
С		-0.22328	1.45496	1.53524
С		1.13456	1.08816	2.19536
С		4.30355	3.01939	1.95409
С		-0.23311	1.83077	-2.41563
0		1.71605	-0.10959	1.80333
С		1.06478	-1.31353	2.2777
0		-0.89457	2.37818	2.37723
С		-2.29666	2.09026	2.59735
0		1.58283	2.24178	0.17538
С		2.20783	3.23486	-0.70548
0		-0.97742	0.9263	-3.2374
С		-0.85855	1.16412	-4.6609
С		-1.55372	2.44032	-5.0715
С		-0.88466	3.41096	-5.82505
С		-2.89474	2.65475	-4.71784
С		-1.54342	4.57416	-6.2324
С		-3.54949	3.81948	-5.11542
С		-2.87639	4.781	-5.87606
Н		1.76323	3.19669	2.09268
Н		-1.56768	1.41581	-0.82569
Н		-0.30097	3.14781	0.17319
Н		-0.80208	0.54419	1.37535
Н		0.99215	1.15481	3.28647
Н		4.72665	3.22894	0.96916
Н		3.82668	3.91491	2.37003
Н		-0.61298	2.85029	-2.56283
Н		0.82508	1.77379	-2.69869
Н		0.30476	-1.6129	1.54946
Н		2.44752	4.11697	-0.09995
Н		0.20362	1.16979	-4.93237
Н		-1.32469	0.28669	-5.11307
Н		0.15509	3.25163	-6.10321
Н		-3.41654	1.90407	-4.12996
Н		-1.01418	5.31685	-6.82371
Н		-4.58903	3.97456	-4.83898
Н		-3.391	5.68515	-6.19052

-3651.600854

0	3.36054	1.93665	1.85303
Cl	-1.98711	-2.10421	-4.17975
Cl	1.2879	-1.37495	-3.31843
Cl	-3.09809	-0.64187	-1.27259
Cl	-0.63451	-3.25178	-0.88417
Sn	-0.8909	-1.28792	-2.20065
Н	5.08862	2.67375	2.62756
Н	3.06689	2.82459	-1.19395
С	1.66241	3.87483	-1.99566
С	2.30773	3.65084	-3.21215
С	0.52324	4.6783	-1.94809
С	1.8143	4.23077	-4.38067
Н	3.20625	3.01797	-3.2492
C	0.02896	5.25769	-3.11702
Н	0.01441	4.85481	-0.98941
C	0.67434	5.03418	-4.33319
Н	2.32325	4.05477	-5.33946
Н	-0.86948	5.89081	-3.07928
Н	0.28544	5.49128	-5.25466
С	-3.03725	2.04653	1.24782
С	-3.96649	1.03717	0.9945
С	-2.77914	3.01605	0.27882
С	-4.63693	0.99702	-0.22784
Н	-4.16919	0.27253	1.75836
С	-3.45043	2.9766	-0.94357
Н	-2.04692	3.81176	0.47838
С	-4.37911	1.96723	-1.19709
Н	-5.36892	0.2011	-0.42783
Н	-3.24702	3.74139	-1.70724
Н	-4.9079	1.93541	-2.16076
Н	-2.45943	1.18402	3.14246
Н	-2.64634	2.94147	3.1433
C	0.37885	-1.01764	3.62438
С	0.98259	-0.15544	4.54011
C	-0.84604	-1.6115	3.9286
C	0.36185	0.11226	5.76005
Н	1.94864	0.31199	4.30029
C	-1.46757	-1.34305	5.14845
Н	-1.32211	-2.29093	3.2069
С	-0.8638	-0.48143	6.06421
Н	0.83797	0.79136	6.48215
Н	-2.43353	-1.8111	5.38787
Н	-1.35307	-0.27017	7.02612
Н	1.81105	-2.07144	2.39405

Thermal correction to Energy=			0.718444
Thermal correction to Enthalpy=			0.719388
Thermal correction to Gil	obs Free En	ergy=	0.580582
Sum of electronic and zer	o-point Ene	ergies=	-3651.461083
Sum of electronic and the	ermal Energ	ies=	-3651.414173
Sum of electronic and the	ermal Enthal	lpies=	-3651.413229
Sum of electronic and the	ermal Free E	Energies=	-3651.552036
SCF Done: $E(RM06) =$	-3651.454	413091	
14			
Charge = 1 Multiplicity	r = 1		
С	1.40569	0.00768	-0.94711
Н	1.44891	-1.0179	-1.26833
С	0.14467	0.55091	-0.29821
Н	0.28767	0.46237	0.78317
С	-0.0409	2.03985	-0.60086
Н	-0.3012	2.1845	-1.65754
С	1.2778	2.75399	-0.28881
Н	1.53362	2.58538	0.76325
С	2.40822	2.23157	-1.17907
Н	2.22352	2.56342	-2.2045
0	2.41023	0.74852	-1.3008
С	-1.54257	-1.04046	0.31768
Н	-1.94893	-0.37904	1.09468
С	-2.62978	-1.87568	-0.30234
С	-2.39815	-3.217	-0.62999
Н	-1.43003	-3.66052	-0.40981
С	-3.3998	-3.9848	-1.22715
Н	-3.21039	-5.02683	-1.47049
С	-4.64305	-3.41451	-1.50741
Н	-5.4246	-4.0119	-1.96944
С	-4.8832	-2.07577	-1.18599
С	-3.88178	-1.31277	-0.58564
0	-1.06901	2.52806	0.23995
С	-2.02461	3.36189	-0.40743
0	1.16906	4.14081	-0.56289
С	1.2383	4.98266	0.60875
С	3.81051	2.70334	-0.77796
Н	4.55647	2.06902	-1.27417
Н	3.9126	3.71861	-1.17424
0	4.03822	2.80154	0.60922
С	4.46988	1.59452	1.27431
Н	-5.85186	-1.63024	-1.39659
Н	3.71284	0.8054	1.20078
Н	4.53133	1.89545	2.32577

С	5.81014	1.0847	0.78837
С	6.90143	1.95532	0.65299
С	5.97951	-0.27393	0.49378
С	8.14134	1.4757	0.2329
Н	6.77	3.01173	0.87429
С	7.22547	-0.7557	0.0824
Н	5.13223	-0.94883	0.59397
С	8.30681	0.11639	-0.05062
Н	8.98058	2.15928	0.13077
Н	7.34706	-1.81261	-0.14022
Н	9.27447	-0.25834	-0.37447
0	-0.96029	-0.21423	-0.72056
Н	-0.76136	-1.66528	0.76438
Н	-4.07002	-0.27294	-0.32792
Н	-1.5167	4.19101	-0.91798
Н	-2.55492	2.77506	-1.17626
С	-3.0111	3.89997	0.60547
С	-3.83565	4.97655	0.25016
С	-3.14441	3.33392	1.87779
С	-4.78248	5.4724	1.14646
Н	-3.73621	5.42923	-0.73464
С	-4.08862	3.83482	2.77741
Н	-2.49939	2.50988	2.16179
С	-4.91169	4.90183	2.4153
Н	-5.4147	6.30751	0.85645
Н	-4.17861	3.38856	3.76436
Н	-5.64545	5.28986	3.11657
С	1.0817	6.41551	0.172
С	2.16101	7.10287	-0.39895
С	-0.14621	7.07411	0.30793
С	2.01677	8.42184	-0.82766
Н	3.11951	6.59961	-0.50299
С	-0.29324	8.39633	-0.11678
Н	-0.99018	6.55055	0.75157
С	0.78749	9.07161	-0.68632
Н	2.86243	8.94507	-1.26599
Н	-1.25	8.89847	-0.00025
Н	0.67507	10.10143	-1.01492
Н	2.20571	4.82038	1.1018
Н	0.43935	4.70015	1.30463
Thermal correction to Ene	ergy=		0.654963
Thermal correction to Enthalpy=			0.655907
Thermal correction to Gibbs Free Energy=			0.541902
Sum of electronic and zer	o-point Ene	ergies=	-1691.844062
		-	

Sum of electronic and thermal Energies=	-1691.808999
Sum of electronic and thermal Enthalpies=	-1691.808055
Sum of electronic and thermal Free Energies=	-1691.922060
SCF Done: $E(RM06) = -1691.81594352$	

3 General Glycosylation Procedures

General procedure of **Method A**: The trichloroacetimidate donor **1a** and alcohol acceptor **2** were combined in a flask, co-evaporated with toluene $(3 \times 3 \text{ mL})$ and dissolved in DCM to maintain a concentration of 0.01 M (based on the acceptor). Powdered freshly activated molecular sieves (100 mg/mL solvent) were added, and the mixture was stirred for 30 min under argon at ambient temperature and then cooled to -40 °C. A solution of SnCl₄ in DCM (0.10 equiv, 0.1 M solution in DCM) was added dropwise. After stirring for 12 hours at the same temperature, TLC indicated that the reaction was complete and then the reaction was allowed to warm slowly to room temperature. The reaction was quenched by the addition of Et₃N. The suspension was diluted with DCM and filtered through a pad of Celite, and the filtrate washed with saturated NaHCO₃ and NaCl aqueous, dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography or simple preparative thin-layer chromatography on silica gel (EtOAc–hexane or EtOAc–toluene or acetone–toluene elution) to afford the β -isomer and a trace amount of N-glucosyl trichloroacetamide.

General procedure of **Method B**: The trichloroacetimidate donor **1a** and alcohol acceptor **2** were combined in a flask, co-evaporated with toluene $(3 \times 3 \text{ mL})$ and dissolved in DCM to maintain a concentration of 0.01 M (based on acceptor). Powdered freshly activated molecular sieves (100 mg/mL solvent) were added, and the mixture was stirred for 15 min under argon at ambient temperature. Then, a solution of SnCl₄ in DCM (3.0 equiv., 0.1 M solution in DCM) was added dropwise at 0 °C. After stirring for 3 hours at ambient temperature, TLC indicated that the reaction was complete, and then the reaction was quenched by the addition of Et₃N. The suspension was diluted with EtOAc and filtered through a pad of Celite, and the filtrate washed with saturated NaHCO₃ and NaCl aqueous, dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography or simple preparative thin-layer chromatography on silica gel (EtOAc–hexane or EtOAc–toluene or acetone–toluene elution) to afford pure α -isomer concomitant as major with pure β -isomer as minor.

4 NMR data of Compounds

2,3,4,6-tetra-O-benzyl- α -D-glucopyranoside trichloroacetimidate α -1a:

To a magnetically stirred solution of 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside (500 mg, 0.9 mmol) and CCl₃CN (0.37 mL, 3.7 mmol, 4 equiv.) in anhydrous CH₂Cl₂ (20 mL), DBU (26 μ L, 0.18 mmol, 0.2 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 4:1) to afford compound *a***-1a** (600 mg, 97% yield) as a white powder. TLC (hexane–EtOAc, 4:1): $R_f = 0.60$; ¹H NMR (CDCl₃, 400 MHz): δ 8.60 (s, 1H, NH), 7.36–7.16 (m, 20H, ArH), 6.55 (d, 1H, *J* = 3.48Hz, C1^{Gle}-H), 4.98 (d, 1H, *J* = 11.00 Hz, OCH₂Ph), 4.89–4.83 (m, 2H, OCH₂Ph), 4.77 (d, 1H, *J* = 11.56 Hz, OCH₂Ph), 4.70 (d, 1H, *J* = 11.36 Hz, OCH₂Ph), 4.62 (d, 1H, *J* = 12.04 Hz, OCH₂Ph), 4.55 (d, 1H, *J* = 10.72 Hz, OCH₂Ph), 4.49 (d, 1H, *J* = 12.04 Hz, OCH₂Ph), 4.07 (t, 1H, *J* = 9.36 Hz, C3^{Gle}-H), 4.02–4.00 (m, 1H, C5^{Gle}-H), 3.83–3.77 (m, 3H, C4^{Gle}-H, C6^{Gle}-H and C2^{Gle}-H), 3.69 (dd, 1H, *J* = 1.92, 10.76 Hz, C6^{Gle}-H); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 162.3, 138.3, 137.9, 137.8, 128.6, 128.5, 127.9, 92.5, 77.5, 77.1, 77.0, 76.8, 76.6, 75.6, 73.7, 73.0, 72.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₆H₃₆Cl₃NNaO₆ 706.1506, found 706.1509.

2,3,4,6-tetra-O-benzyl- β -D-glucopyranoside trichloroacetimidate β -1a:

To a magnetically stirred solution of 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside (60 mg, 0.12 mmol) and CCl₃CN (0.15 mL, 1.44 mmol, 13.0 equiv.) in anhydrous CH₂Cl₂ (2.0 mL), K₂CO₃ (77.0 mg, 0.55 mmol, 5.0 equiv.) was added at room temperature, and the reaction mixture was stirred at the same temperature for overnight, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 5:1) to afford compound **β-1a** (71.3 mg, 87% yield) as a white powder. TLC (hexane–EtOAc, 4:1): $R_f = 0.60$, $[\alpha]_D^{21} = +18.6$ (c = 0.66, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 8.70 (s, 1H, NH), 7.33–7.15 (m, 20H, ArH), 5.80 (d, 1H, J = 6.80 Hz, C1^{Gle}-H), 4.94 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.57 (d, 1H, J = 11.20 Hz, OCH₂Ph), 4.53 (d, 1H, J = 12.40 Hz, OCH₂Ph), 4.57 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.53 (d, 1H, J = 12.40 Hz, OCH₂Ph), 3.76–3.61 (m, 6H, C3^{Gle}-H, C5^{Gle}-H, C6^{Gle}-H, C6^{Gle}-H and C2^{Gle}-H); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 161.2, 138.4, 138.1, 138.0, 137.9, 128.4, 128.3, 128.0, 127.9, 128.8, 127.7, 127.6, 100.0, 98.4 (C1^{Gle}), 91.0, 84.6, 80.9, 77.4, 77.3, 77.0, 76.7, 75.9, 75.6, 75.0, 75.9, 73.3, 68.2, 29.7; HRMS (ESI) m/z [M+Na]+ calcd for C₃₆H₃₆Cl₃NNaO₆ 706.1506, found 706.1512.

Cyclohexanol 2,3,4,6-tetra-O-benzyl- β -D-glucopyranoside β -3a:

Following the general procedure of Method **A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (4.87 mg, 0.049 mmol) in DCM (4.90 mL) at -40° C temperature for 12 hours afforded **β-3a** (24 mg, 80% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{2l} = +16.7$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.28–7.09 (m, 20H, ArH), 4.92 (d, 1H, J = 10.88 Hz, OCH₂Ph), 4.85 (d, 1H, J = 10.96 Hz, OCH₂Ph), 4.72 (dd, 2H, J = 10.88, 16.24 Hz, OCH₂Ph), 4.64 (d, 1H, J = 10.92 Hz, OCH₂Ph), 4.52–4.45 (m, 3H, OCH₂Ph), 4.43 (d, 1H, J = 7.8Hz, C1^{Glc1}-H), 3.69–3.61 (m, 2H, C6^{Glc1}-H and OCH), 3.60–3.54 (m, 2H, C3^{Glc1}-H and C6^{Glc1}-H), 3.50–3.45 (m, 1H, C4^{Glc1}-H), 3.40–3.35 (m, 2H, C2^{Glc1}-H and C5^{Glc1}-H), 1.96–1.16 (m, 10H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 138.6, 138.3, 138.2, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 127.6, 127.5, 101.9 (C1^{Glc1}), 84.9, 82.3, 77.4, 77.0, 76.7, 74.8, 73.4, 69.2, 58.4, 33.8, 32.0, 29.7, 25.7, 24.1, 24.0, 18.4; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₆O₆Na 645.3192, found 645.3199.

Cyclohexanol 2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranoside α-3a:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (4.87 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded **a-3a** (23 mg, 76% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{\rm p}^{21} = +31.5$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.25 (m, 20H, ArH), 4.99 (d, 1H, J = 10.88 Hz, OCH₂Ph), 4.96 (d, 1H, J = 3.68 Hz, C1^{Glc1}-H), 4.84–4.79 (m, 2H, OCH₂Ph), 4.74 (d, 1H, J = 12.08 Hz, OCH₂Ph), 4.65 (d, 1H, J = 11.96 Hz, OCH₂Ph), 4.61 (d, 1H, J = 12.16 Hz, OCH₂Ph), 4.48 (d, 1H, J = 2.40 Hz, OCH₂Ph), 4.45 (d, 1H, J = 3.84 Hz, OCH₂Ph), 4.00 (t, 1H, J = 9.28 Hz, C3^{Glc1}-H), 3.89–3.86(m, 1H, OCH₂), 3.75–3.70 (m, 1H, C6^{Glc1}-H), 3.64–3.60 (m, 2H, C6^{Glc1}-H and C5^{Glc1}-H), 3.57–3.53 (m, 2H, C4^{Glc1}-H and C2^{Glc1}-H), 1.86–1.33 (m, 10H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.4, 138.3, 138.1, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 94.7 (C1^{Glc1}), 82.1, 80.0, 78.0, 77.3, 77.0, 76.7, 75.6, 75.4, 75.1, 74.8, 73.5, 73.0, 70.1, 68.7, 33.4, 31.5, 29.7, 25.6, 24.5, 24.2; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₆O₆Na 645.3192, found 645.3199.

Cyclopentanol 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside β-3b:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **2b** (4.19 mg, 0.049 mmol) in DCM (4.90 mL) at –40°C temperature for 12 hours afforded **β-3b** (24 mg, 80% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = +28.3$ ($c = 1.0, CHCl_3$); ¹H NMR (CDCl₃, 400 MHz): δ 7.26–7.08 (m, 20H, ArH), 4.85 (dd, 1H, J = 5.36, 10.92 Hz, O<u>CH₂Ph</u>), 4.83 (d, 1H, J = 9.96 Hz, O<u>CH₂Ph</u>), 4.74 (d, 1H, J = 10.84 Hz, O<u>CH₂Ph</u>), 4.70 (d, 1H, J = 11.00 Hz, O<u>CH₂Ph</u>), 4.62 (d, 1H, J = 10.92 Hz, O<u>CH₂Ph</u>), 4.55–4.45 (m, 3H, O<u>CH₂Ph</u>), 4.35 (d, 1H, J = 7.84 Hz, C1^{Glc1}-H), 4.31–4.29 (m, 1H, O<u>CH₂</u>), 3.67 (dd, 1H, J = 1.76, 10.76 Hz, C6^{Glc1}-H), 3.61–3.54 (m, 2H, C6^{Glc1}-H and C3^{Glc1}-H), 3.47 (t, 1H, J = 9.56 Hz, C4^{Glc1}-H), 3.40–3.32 (m, 2H, C5^{Glc1}-H and C2^{Glc1}-H), 1.81–1.45 (m, 8H, <u>CH₂</u>); ¹³C {¹H</sup>} NMR (CDCl₃, 400 MHz): δ 138.7, 138.6, 138.3, 138.2, 128.4, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 102.1, 84.9, 82.3, 81.0, 78.0, 77.4, 77.0, 76.7, 75.7, 75.0, 74.9, 74.8, 73.5, 69.2, 33.6, 32.1, 29.7, 23.7, 23.4; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₉H₄₄O₆Na 631.3036, found 631.3041.

Cyclopentanol 2,3,4,6-tetra-O-benzyl- α -D-glucopyranoside α -3b:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **3b** (4.19 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded *a*-**3b** (17mg, 61% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = +110.1$ (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.12 (m, 20H, ArH), 4.99 (d, 1H, *J* =10.88 Hz, O<u>CH₂Ph</u>), 4.86 (d, 1H, *J* = 3.64 Hz, C1^{Gle1}-H), 4.82 (d, 1H, *J* = 9.96 Hz, O<u>CH₂Ph</u>), 4.77 (d, 1H, *J* = 12.76 Hz, O<u>CH₂Ph</u>), 4.74 (d, 1H, *J* = 12.04 Hz, O<u>CH₂Ph</u>), 4.65–4.57 (m, 3H, O<u>CH₂Ph</u>), 4.47 (d, 1H, *J* = 11.60 Hz, O<u>CH₂Ph</u>), 4.15–4.14 (m, 1H, O<u>CH₂</u>), 3.97 (t, 1H, *J* = 9.28 Hz, C3^{Gle1}-H), 3.83–3.80 (m, 1H, C6^{Gle1}-H), 3.74 (dd, 1H, *J* = 3.60, 10.52 Hz, C6^{Gle1}-H), 3.64–3.61 (m, 2H, C5^{Gle1}-H and C4^{Gle1}-H), 3.54 (dd, 1H, *J* = 3.68, 9.60 Hz, C2^{Gle1}-H), 1.74–1.33(m, 8H, CH₂); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.4, 138.3, 138.1, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 95.6 (C1^{Gle1}), 82.1, 80.2, 79.0, 78.0, 77.9, 77.4, 77.0, 76.7, 75.6, 75.1, 75.0, 73.5, 73.0, 70.1, 68.7, 32.9, 31.7, 29.7, 23.5, 23.3; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₉H₄₄O₆Na 631.3036, 631.3041.

n-Butanol 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside β-3c:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor n-butanol **2c** (3.61 mg, 0.049 mmol) in DCM (4.90 mL) at -40° C temperature for 12 hours afforded **β-3c** (20 mg, 69% yield) as a white solid (eluent, Toluene–acetonitrile 15:1). $[\alpha]_{D}^{21}$ = +23.0 (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.28–7.08 (m, 20H, ArH), 4.87 (t, 2H, *J* = 9.4 Hz, O<u>CH₂Ph</u>), 4.74 (d, 1H, *J* = 8.64 Hz, O<u>CH₂Ph</u>), 4.71(d, 1H, *J* = 8.76Hz, O<u>CH₂Ph</u>), 4.64 (d, 1H, *J* = 8.79 Hz, O<u>CH₂Ph</u>), 4.54 (d, 1H, *J* = 9.76 Hz, O<u>CH₂Ph</u>), 4.50–4.44 (m, 2H, O<u>CH₂Ph</u>), 4.31 (d, 1H, *J* = 6.24Hz, C1^{Glc1}-H), 3.92–3.87 (m, 1H, OCH₂), 3.67 (d, 1H, *J* = 8.44 Hz, C6^{Glc1}-H), 3.61–3.55 (m, 2H, C6^{Glc1}-H and C3^{Glc1}-H), 3.52–3.45(m, 2H, C5^{Glc1}-H and OCH₂), 3.40–3.36 (m, 2H, C4^{Glc1}-H and

C2^{Gle1}-H), 1.61–1.54 (m, 2H, CH₂), 1.39–1.33 (m, 2H, CH₂), 0.86 (t, 3H, J = 5.88 Hz, CH₃); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 138.5, 138.2, 138.1, 128.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 103.7 (C1^{Gle1}), 84.8, 82.3, 78.0, 77.0, 76.8, 75.7, 75.0, 74.9, 74.8, 73.5, 69.8, 69.1, 33.5, 31.9, 31.8, 29.7, 29.4, 29.3, 29.1, 24.8, 22.7, 19.3, 14.1, 13.9; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₈H₄₄O₆Na 619.3036, found 619.3038.

n-Butanol 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside α -3c:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor n-butanol **2c** (3.61 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded **a-3c** (23 mg, 77% yield) as a white solid (eluent, Toluene–acetonitrile 15:1. $[\alpha]_{p}^{21}$ = +204.2 (c = 0.2, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.13 (m, 20H, ArCH), 4.99 (d, 1H, J = 10.88 Hz, O<u>CH₂Ph</u>), 4.84–4.79 (m, 3H, O<u>CH₂Ph</u>), 4.75 (d, 1H, J = 2.44 Hz, C1^{Gle1}-H), 4.62 (dd, 2H, J = 12.12, 16.40 Hz, O<u>CH₂Ph</u>), 4.48–4.45 (m, 2H, O<u>CH₂Ph</u>), 3.98 (t, 1H, J = 9.28 Hz, C3^{Gle1}-H), 3.79–3.76 (m, 1H, OCH₂), 3.72 (dd, 1H, J = 3.76, 10.56 Hz, C6^{Gle1}-H), 3.66–3.60 (m, 3H, C6^{Gle1}-H), 1.63–1.58 (m, 2H, CH₂), 1.42–1.33 (m, 2H, CH₂), 0.91 (t, 3H, J = 7.36Hz, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.4, 138.3, 138.0, 128.4, 128.3, 128.2, 128.1, 127.9, 129.0, 127.8, 127.7, 127.5, 96.9 (C1^{Gle1}), 82.1, 80.2, 77.8, 77.4, 77.0, 76.7, 75.7, 75.1, 73.5, 73.1, 70.1, 68.6, 67.9, 31.9, 31.5, 29.7, 29.4, 22.7, 19.4, 14.1, 13.9; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₈H₄₄O₆Na 619.3036, found 619.3038.

n-Hexanol 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside β-3d:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **3d** (4.97 mg, 0.049 mmol) in DCM (4.90 mL) at –40°C temperature for 12 hours afforded **\beta-3d** (24 mg, 81% yield) as a white solid (eluent, Toluene–Ethyl acetate 30:1). [α]²¹_D = –1.2 (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.28–7.08 (m, 20H, ArH), 4.87 (t, 2H, *J* = 10.92 Hz, OCH₂Ph), 4.76–4.70 (m, 2H, OCH₂Ph), 4.64 (d, 1H, *J* = 10.96 Hz, OCH₂Ph), 4.56–4.41 (m, 3H, OCH₂Ph), 4.31 (d, 1H, *J* = 7.80Hz, C1^{Gle1}-H), 3.92–3.86 (m, 1H, OCH₂), 3.68–3.66 (m, 1H, C6^{Gle1}-H), 3.62–3.43(m, 4H, C6^{Gle1}-H, C3^{Gle1}-H, C5^{Gle1}-H and OCH₂), 3.41–3.35 (m, 2H, C4^{Gle1}-H and C2^{Gle1}-H), 1.62–1.53 (m, 4H, CH₂), 1.35–1.22 (m, 4H, CH₂), 0.81 (t, 3H, *J* = 6.80 Hz, CH₃); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 138.6, 138.3, 138.2, 128.4, 128.2, 128.0, 127.9, 127.8, 127.6, 127.5, 103.7 (C1^{Gle1}), 84.8, 82.3, 78.0, 77.3, 77.0, 76.7, 75.7, 75.0, 74.9, 74.8, 73.5, 70.2, 69.1, 31.7, 29.8, 29.7, 25.9, 22.6, 14.1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₈O₆Na 647.3349, found 647.3355.

n-Hexanol 2,3,4,6-tetra-O-benzyl- α -D-glucopyranoside α -3d:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **3d** (4.97 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded *a*-**3d** (24 mg, 80% yield) as a white solid (eluent, Toluene–Ethyl acetate 30:1). $[\alpha]_{D}^{21} = +27.0$ (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.12 (m, 20H, ArH), 5.00 (d, 1H, *J* = 10.88 Hz, O<u>CH</u>₂Ph), 4.84–4.76 (m, 3H, O<u>CH</u>₂Ph), 4.75 (d, 1H, *J* = 3.72 Hz, C1^{Gle}-H), 4.64 (d, 1H, *J* = 12.12 Hz, O<u>CH</u>₂Ph), 4.60 (d, 1H, *J* = 12.12 Hz, O<u>CH</u>₂Ph), 4.46 (d, 2H, *J* = 11.52 Hz, O<u>CH</u>₂Ph), 3.99 (d, 1H, *J* = 9.24Hz, C3^{Gle}-H), 3.79–3.76 (m, 1H, OCH₂), 3.72 (dd, 1H, *J* = 3.60, 10.48 Hz, C6^{Gle}-H), 3.65–3.59 (m, 3H, OCH₂, C4^{Gle}-H and C6^{Gle}-H), 3.55 (dd, 1H, *J* = 3.68, 9.68 Hz, C2^{Gle}-H), 3.46–3.39 (m, 1H, C5^{Gle}-H), 1.65–1.56 (m, 4H, CH₂), 1.35–1.25 (m, 4H, CH₂), 0.88 (t, 3H, *J* = 6.72 Hz, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 140.0, 138.7, 138.6, 138.3, 138.2, 138.1, 128.4, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 103.7, 96.9, 84.8, 82.3, 82.1, 80.2, 80.0, 78.00, 77.8, 77.4, 77.0, 76.7, 75.7, 75.1, 75.0, 74.9, 74.8, 73.5, 73.1, 70.2, 70.1, 69.1, 68.6, 68.3, 31.7, 29.8, 29.4, 25.9, 22.6, 22.5; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₈O₆Na 647.3349, found 647.3355.

Isoamyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside β-3e:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **3e** (4.29 mg, 0.049 mmol) in DCM (4.90 mL) at –40°C temperature for 12 hours afforded **β-3e** (25 mg, 82% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = +24.9$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.26–7.13 (m, 20H, ArH), 4.91 (d, 1H, J = 10.92 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 10.86 Hz, O<u>CH</u>₂Ph), 4.73 (dd, 2H, J = 13.64, 2.76 Hz, O<u>CH</u>₂Ph), 4.64 (d, 1H, J = 10.92 Hz, O<u>CH</u>₂Ph), 4.56–4.48 (m, 3H, O<u>CH</u>₂Ph), 4.37 (d, 1H, J = 7.76 Hz, C1^{Gle1}-H), 3.68–3.64 (m, 1H, C6^{Gle1}-H), 3.62–3.57 (m, 2H, C6^{Gle1}-H and C3^{Gle1}-H), 3.54–3.47 (m, 2H, OCH₂ and C5^{Gle1}-H), 3.39–3.35(m, 2H, C4^{Gle1}-H and C2^{Gle1}-H), 1.59–1.50 (m, 4H, CH₂), 0.91–0.79 (m, 6H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.8, 138.6, 138.5, 138.2, 128.4, 128.3, 128.2, 128.0, 127.8, 127.6, 127.5, 102.6 (C1^{Gle1}), 85.0, 82.5, 82.0, 78.1, 77.3, 77.0, 76.7, 75.7, 75.0, 74.9, 73.5, 69.2, 29.7, 27.0, 26.0, 9.7, 9.5; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₉H₄₆O₆Na 633.3192, found 633.3199.

Isoamyl 2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranoside **α-3e**:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **3e** (4.29 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 4 hours

afforded **a-3e** (24 mg, 80% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = +19.4$ (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.27–7.06 (m, 20H, ArH), 4.91 (d, 1H, *J* = 10.88 Hz, O<u>CH</u>₂Ph), 4.89 (d, 1H, *J* = 3.64 Hz, C1^{Glc1}-H), 4.76 (d, 1H, *J* = 7.48 Hz, O<u>CH</u>₂Ph), 4.73 (d, 1H, *J* = 7.68 Hz, O<u>CH</u>₂Ph), 4.64–4.62 (m, 2H, O<u>CH</u>₂Ph), 4.54 (d, 1H, *J* = 12.08 Hz, O<u>CH</u>₂Ph), 4.42–4.37 (m, 2H, O<u>CH</u>₂Ph), 3.92 (t, 1H, *J* = 9.32 Hz, C3^{Glc1}-H), 3.84–3.82 (m, 1H, OCH₂), 3.66 (dd, 1H, *J* = 3.56, 10.52 Hz, C6^{Glc1}-H), 3.58–3.54 (m, 2H, C6^{Glc1}-H and C4^{Glc1}-H), 3.51–3.47 (m, 1H, C2^{Glc1}-H), 3.44–3.35 (m, 1H, C5^{Glc1}-H), 1.59–1.44 (m, 4H, CH₂), 0.91–0.81 (m, 6H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.4, 138.3, 138.1, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 95.6, 82.1, 80.2, 78.0, 77.3, 77.0, 76.7, 75.1, 73.2,70.4, 68.6, 29.7, 26.6, 26.0, 25.1, 10.2, 9.2; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₉H₄₆O₆Na 633.3192, found 633.3199.

Adamantyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside β-3f:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor 1-admantanol **2f** (7.46 mg, 0.049 mmol) in DCM (4.90 mL) at –40°C temperature for 12 hours afforded β -**3f** (29 mg, 88% yield) as a white solid (eluent, Toluene–Ethyl acetate 30:1). $[\alpha]_{p}^{21} = -21.6 \ (c = 1.0, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (\text{CDCl}_3, 400 \text{ MHz}): \delta 7.29–7.11 (m, 20\text{H, ArH}), 4.93 (d, 1\text{H},$ *J* $= 11.00 Hz, O<u>CH_2</u>Ph), 4.83 (d, 1H,$ *J* $= 10.92 Hz, O<u>CH_2</u>Ph), 4.74 (d, 1H,$ *J* $= 10.92 Hz, O<u>CH_2</u>Ph), 4.69 (d, 1H,$ *J* $= 10.92 Hz, O<u>CH_2</u>Ph), 4.64 (d, 1H,$ *J*= 7.32 Hz, C1^{Glc1}-H), 4.61 (d, 1H,*J* $= 4.16 Hz, O<u>CH_2</u>Ph), 4.53–4.45 (m, 3H, O<u>CH_2</u>Ph), 3.65 (dd, 1H,$ *J* $= 1.56, 10.84 Hz, C6^{Glc1}-H), 3.59–3.52 (m, 2H, C4^{Glc1}-H and C6^{Glc1}-H), 3.46–3.34 (m, 3H, C3^{Glc1}-H, C2^{Glc1}-H and C5^{Glc1}-H), 2.07 (s, 3H, CH₃), 1.88–1.75 (m, 6H, CH₃), 1.59–1.52 (m, 6H, CH₃); <math>{}^{13}\text{C}{}^{1}\text{H}$ NMR (CDCl₃, 400 MHz): δ 138.7, 138.6, 138.4, 138.2, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 96.3 (C1^{Glc1}), 85.2, 82.4, 78.3, 77.4, 77.1, 76.7, 75.7, 75.3, 75.0, 74.6, 73.4, 69.6, 42.8, 36.3, 30.7, 30.7, 29.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₄H₅₀O₆Na 697.3505, found 697.3508.

Adamantyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside α-3f:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor 1-admantanol **2f** (7.46 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded *a*-**3f** (26 mg, 80% yield) as a white solid (eluent, Toluene–Ethyl acetate 30:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.35–7.30 (m, 20H, ArH), 5.29 (d, 1H, *J* = 4.12 Hz, C1^{Gle1}-H), 5.00 (d, 1H, *J* = 11.00 Hz, O<u>CH</u>₂Ph), 4.83 (t, 2H, *J* = 11.00 Hz, O<u>CH</u>₂Ph), 4.69–4.63 (m, 3H, O<u>CH</u>₂Ph), 4.48–4.44 (m, 2H, O<u>CH</u>₂Ph), 4.05–4.00 (m, 2H, C3^{Gle1}-H and C5^{Gle1}-H), 3.76 (dd, 1H, *J* = 3.68, 6.88 Hz, C6^{Gle1}-H), 3.69–3.60 (m, 2H, C4^{Gle1}-H and C6^{Gle1}-H), 3.54 (dd, 1H, *J* = 3.68, 10.00 Hz, C2^{Gle1}-H), 2.14 (s, 3H, CH₃), 1.88–1.83 (m, 6H, CH₃), 1.62–1.59 (m, 6H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.2, 138.5, 138.4, 128.5, 128.4, 128.0, 89.9 (C1^{Gle1}), 82.2, 80.2, 78.2, 77.5, 77.1, 76.8, 74.7, 69.7,

69.7, 68.8, 42.5, 36.4, 30.7; HRMS (ESI) m/z $[M+Na]^+$ calcd for $C_{44}H_{50}O_6Na$ 697.3505, found 697.3508.

(L)-Menthyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside β-3g:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor (L)-menthyl **3g** (7.60 mg, 0.049 mmol) in DCM (4.90 mL) at -40°C temperature for 12 hours afforded **\beta-3g** (27 mg, 82% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). [α]_D²¹ = -15.5 (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.28–7.11 (m, 20H, ArH), 4.86 (t, 2H, *J* = 10.68 Hz, O<u>CH2</u>Ph), 4.73 (t, 2H, *J* = 11.24 Hz, O<u>CH2</u>Ph), 4.61 (d, 1H, *J* = 10.92 Hz, O<u>CH2</u>Ph), 4.55–4.45 (m, 3H, O<u>CH2</u>Ph), 4.40 (d, 1H, *J* = 7.80 Hz, C1^{Glc1}-H), 3.63–3.58 (m, 2H, C5^{Glc1}-H and C6^{Glc1}-H), 3.56–3.50 (m, 2H, C3^{Glc1}-H and C6^{Glc1}-H), 3.46–3.40 (m, 1H, OCH), 3.56–3.32 (m, 2H, C2^{Glc1}-H and C4^{Glc1}-H), 2.29–2.26 (m, 1H, CH₂), 2.06 (d, 1H, *J* = 9.00 Hz, CH₂), 1.60–1.57 (m, 3H, CH₂), 0.86–0.74 (m, 13H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 128.6, 128.5, 128.4, 128.2, 127.9, 127.8, 127.6, 100.9 (C1^{Glc1}), 82.4, 78.1, 77.5, 77.2, 76.8, 75.7, 75.1, 75.0, 73.8, 48.3, 31.6, 29.9, 22.4, 21.2, 16.1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₄H₅₄O₆Na 701.3818, found 701.3826.

(L)-Menthyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside **α-3g**:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor (L)-menthyl **3g** (7.60 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded **a-3g** (53 mg, 81% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{2l}$ = +31.5 (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.33–7.14 (m, 20H, ArH), 5.02 (d, 1H, *J* = 3.68 Hz, C1^{Gle1}-H), 4.98 (d, 1H, *J* = 11.00 Hz, O<u>CH2</u>Ph), 4.84 (d, 1H, *J* = 5.96 Hz, O<u>CH2</u>Ph), 4.82 (d, 1H, *J* = 5.96 Hz, O<u>CH2</u>Ph), 4.73–4.63 (m, 3H, O<u>CH2</u>Ph), 4.49–4.44 (m, 2H, O<u>CH2</u>Ph), 4.04–3.96 (m, 2H, C3^{Gle1}-H) and C5^{Gle1}-H), 3.75 (dd, 1H, *J* = 4.12, 10.56 Hz, C6^{Gle1}-H), 3.66–3.61 (m, 2H, C4^{Gle1}-H and C6^{Gle1}-H), 3.56–3.53 (m, 1H, C2^{Gle1}-H), 3.39–3.32 (m, 1H, OCH), 2.45–2.39 (m, 1H, CH2), 2.12 (d, 1H, *J* = 12.35 Hz, CH₂), 1.63–1.57 (m, 3H, CH₂), 1.38–1.26 (m, 2H, CH₂), 1.08–0.97 (m, 7H, CH₃), 0.72–0.70 (d, 3H, *J* = 6.88 Hz, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.4, 138.1, 128.5, 128.0, 127.7, 98.7 (C1^{Gle1}), 82.1, 81.1, 80.6, 78.2, 77.5, 77.1, 76.8, 70.4, 68.7, 48.9, 43.2, 34.4, 31.8, 24.7, 23.0, 22.4, 21.2, 16.2; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₄H₅₄O₆Na 701.3818, found 701.3826.

3-O-[2,3,4,6-tetra-O-benzyl- β -D-glucopyranoside]diosgenin β -3h:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor diosgenin **2h** (20.3 mg, 0.049 mmol) in DCM (4.90 mL) at -40° C temperature for 12 hours afforded **β-3h** (28 mg, 60% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = -11.2$ (c = 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.29–7.09 (m, 20H, ArH), 5.26 (d, 1H, J = 4.72 Hz, CH=<u>CH</u>₂), 4.90 (d, 1H, J = 10.88 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 10.92 Hz, O<u>CH</u>₂Ph), 4.75–4.63 (m, 3H, O<u>CH</u>₂Ph), 4.52–4.45 (m, 3H, O<u>CH</u>₂Ph), 4.42 (d, 1H, J = 7.84 Hz, C1^{Gle1}-H), 4.39–4.31 (m, 1H, OCH), 3.67–3.64 (m, 1H, C6^{Gle1}-H), 3.59–3.45 (m, 4H, C6^{Gle1}-H, C3^{Gle1}-H, C5^{Gle1}-H and OCH), 3.41–3.28 (m, 4H, C4^{Gle1}-H, C2^{Gle1}-H, OCH and OCH), 2.36–0.71 (m, 34H, diosgeninyl); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 140.6, 138.7, 138.5, 138.3, 138.1, 128.4, 128.3, 128.0, 127.9, 127.7, 121.6, 109.3, 102.2 (C1^{Gle1}), 84.8, 82.4, 80.8, 79.6, 78.0, 77.3, 77.0, 76.7, 75.7, 75.0, 74.8, 73.4, 69.2, 66.9, 62.1, 56.5, 50.1, 41.6, 40.3, 39.8, 39.1, 37.3, 36.9, 31.5, 31.4, 30.3, 29.7, 28.8, 20.9, 19.5, 17.2, 16.3, 14.5; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₀H₇₄O₈Na 945.5281, found 945.5288.

3-O-[2,3,4,6-tetra-O-benzyl- α -D-glucopyranoside]diosgenin α -3h:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor diosgenin **2h** (18.8 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded α -**3h** (38 mg, 85% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.35–7.13 (m, 20H, ArH), 5.28 (d, 1H, J = 5.04 Hz, CH=<u>CH</u>₂), 5.01 (d, 1H, J = 11.00 Hz, O<u>CH</u>₂Ph), 4.93 (d, 1H, J = 3.68 Hz, C1^{Glc1}-H), 4.85–4.76 (m, 3H, O<u>CH</u>₂Ph), 4.63 (dd, 2H, J = 3.68, 12.36 Hz, O<u>CH</u>₂Ph), 4.48–4.39 (m, 3H, O<u>CH</u>₂Ph and OCH), 4.00 (t, 1H, J = 9.60 Hz, C3^{Glc1}-H), 3.88 (d, 1H, J = 10.08 Hz, C5^{Glc1}-H), 3.74 (dd, 1H, J = 3.64, 6.88 Hz, C6^{Glc1}-H), 3.66–3.61 (m, 2H, C6^{Glc1}-H and C4^{Glc1}-H), 3.55 (dd, 1H, J = 3.68, 9.64 Hz, C2^{Glc1}-H), 3.50–3.35 (m, 3H, OCH), 2.42–0.75 (m, 34H, diosgeninyl); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 141.0, 139.0, 138.4, 138.0, 128.5, 128.4, 128.0, 121.6,109.4, 94.7 (C1^{Glc1}), 82.2, 80.9, 80.0, 78.0, 77.5, 77.1, 76.8, 76.5, 73.5, 70.1, 66.9, 62.2, 56.6, 50.1, 41.7, 40.4, 39.9, 39.9, 37.0, 32.0, 31.5, 30.4, 28.9, 27.5, 20.9, 19.5, 17.3, 16.4, 14.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₀H₇₄O₈Na 945.5281, found 945.5288.

3-*O*-[2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside]cholesterol β-3i:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor cholesterol **2i** (18.8 mg, 0.049 mmol) in DCM (4.90 mL) at -40° C temperature for 12 hours afforded **β-3i** (34 mg, 76% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = -20.2$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.29–7.09 (m, 20H, ArH), 5.28–5.22 (m, 1H, CH=<u>CH</u>₂), 4.90 (d, 1H, J = 10.88 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 10.96 Hz, O<u>CH</u>₂Ph), 4.77–4.63 (m, 3H, O<u>CH</u>₂Ph), 4.55–4.44 (m, 3H, O<u>CH</u>₂Ph), 4.40 (d, 1H, J = 9.48 Hz, C1^{Glc1}-H), 3.67–3.65 (m, 1H, C6^{Glc1}-H), 3.59–3.45 (m, 4H, C3^{Glc1}-H, C6^{Glc1}-H, C5^{Glc1}-H and OCH), 3.39–3.35 (m, 2H, C4^{Glc1}-H and C2^{Glc1}-H), 2.35-0.79 (m, 43H, cholesteryl); ¹³C NMR (CDCl₃, 400 MHz): δ 140.6, 138.7, 138.6, 138.3, 138.2, 128.4, 128.3, 128.0, 127.9, 127.7, 121.9, 102.3 (C1^{Glc1}), 84.9, 82.4, 79.7, 78.0, 77.4, 77.0, 76.7, 74.7, 75.0, 75.0, 74.8, 73.4, 69.2, 56.8, 56.2, 50.2, 42.4, 39.8, 39.6, 36.8, 35.8, 32.0, 31.9, 30.0, 29.7, 28.3, 28.0, 24.3, 23.8, 22.8, 22.6, 21.1, 19.4, 18.8, 11.9; HRMS (ESI) m/z [M+Na]⁺ calcd for C_{61H80}O₆Na 931.5853, found 931.5860.

3-*O*-[2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranoside]cholesterol **α-3i**:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor cholesterol **2i** (20.3 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded *a*-**3i** (38 mg, 82% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.15 (m, 20H, ArH), 5.29 (d, 1H, *J* = 5.08 Hz, CH=<u>CH</u>₂), 5.01 (d, 1H, *J* = 11.00 Hz, O<u>CH</u>₂Ph), 4.94 (d, 1H, *J* = 3.68 Hz, C1^{Glc1}-H), 4.85–4.76 (m, 3H, O<u>CH</u>₂Ph), 4.64 (dd, 2H, *J* = 12.36, 16.04 Hz, O<u>CH</u>₂Ph), 4.46 (dd, 2H, *J* = 4.60, 11.00 Hz, O<u>CH</u>₂Ph), 4.01 (t, 1H, *J* = 9.64 Hz, C3^{Glc1}-H), 3.88 (d, 1H, *J* = 10.08 Hz, C5^{Glc1}-H), 3.74 (dd, 1H, *J* = 3.68, 11.00 Hz, C6^{Glc1}-H), 3.67–3.62 (m, 2H, C6^{Glc1}-H and C4^{Glc1}-H), 3.56 (dd, 1H, *J* = 3.68, 9.64 Hz, C2^{Glc1}-H), 3.51–3.45 (m, 1H, OCH), 2.47–0.68 (m, 43H, cholesteryl); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 140.9, 139.0, 138.4, 138.1, 128.6, 128.5, 128.0, 121.8, 94.7 (C1^{Glc1}), 82.2, 80.0, 78.0, 77.5, 77.1, 76.8, 76.6, 73.5, 73.2, 70.1, 56.9, 56.2, 50.2, 42.4, 40.0, 39.6, 36.9, 35.9, 32.0, 31.9, 28.4, 28.1, 23.9, 23.0, 22.7, 19.5, 18.8, 12.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₁H₈₀O₆Na 931.5853, found 931.5860.

Methyl 2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranoside-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **\beta-3j:**

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **2j** (22.6 mg, 0.049 mmol) in DCM (4.90 mL) at –40°C temperature for 12 hours afforded *a*-**3j** (40 mg, 83% yield) as a white solid (eluent, Toluene–Ethyl acetate 50:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.31–7.15 (m, 35H, ArH), 4.97 (d, 1H, *J* = 3.20 Hz, O<u>CH</u>₂Ph), 4.95 (d, 1H, *J* = 2.76 Hz, O<u>CH</u>₂Ph), 4.90 (d, 1H, *J* = 11.00 Hz, O<u>CH</u>₂Ph), 4.82–4.49 (m, 12H, O<u>CH</u>₂Ph and C1^{Glc1}-H), 4.34 (d, 1H, *J* = 7.80 Hz, C1^{Glc2}-H), 4.22–4.16 (m, 1H, C6^{Glc2}-H), 3.99 (t, 1H, *J* = 9.16 Hz, C3^{Glc1}-H), 3.84–3.81 (m, 1H, C6^{Glc1}-H), 3.73–3.48 (m, 8H, C4^{Glc2}-H, C3^{Glc2}-H, C5^{Glc2}-H, C6^{Glc2}-H, C6^{Glc1}-H, C4^{Glc1}-H, C2^{Glc1}-H and C3^{Glc1}-H), 3.44–3.41 (m, 1H, C2^{Glc2}-H), 3.32 (s, 3H, OMe); ¹³C{¹H} (CDCl₃, 400 MHz): δ 138.9, 138.6, 138.5, 138.3, 138.2, 128.6, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 103.9 (C1^{Glc2}), 98.1 (C1^{Glc1}), 84.9, 82.2, 82.1, 79.8, 78.1, 78.0, 77.4, 77.1, 76.8, 75.8, 75.1, 75.0, 73.5, 73.5, 69.9, 69.1, 68.6, 55.3; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₂H₆₆O₁₁Na 1009.4503, found 1009.4510.

Methyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside- $(1 \rightarrow 6)$ -2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **a-3j**:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **2j** (22.6 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded α -**3j** (43 mg, 90% yield) as a white solid (eluent, Toluene–Ethyl acetate 50:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.29–7.10 (m, 35H, ArH), 4.98 (d, 1H, J = 2.28 Hz, C1^{Glc1}-H), 4.95–4.90 (m, 3H, O<u>CH</u>₂Ph), 4.84–4.78 (m, 3H, O<u>CH</u>₂Ph), 4.75–4.56 (m, 6H, O<u>CH</u>₂Ph), 4.55 (d, 1H, J = 4.12 Hz, C1^{Glc2}-H), 4.43 (t, 2H, J = 11.92 Hz, O<u>CH</u>₂Ph), 3.99 (d, 1H, J = 9.64 Hz, C3^{Glc2}-H), 3.94 (d, 1H, J = 9.64 Hz, C3^{Glc1}-H), 3.83–3.60 (m, 7H, C6^{Glc1}-H, C5^{Glc1}-H, C5^{Glc2}-H, C6^{Glc2}-H, C6^{Glc2}-H, C6^{Glc2}-H, C6^{Glc2}-H), 3.56–3.52 (m, 2H, C4^{Glc1}-H and C2^{Glc1}-H), 3.44 (dd, 1H, J = 3.68, 10.08 Hz, C2^{Glc2}-H), 3.35 (s, 3H, OMe); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.9, 138.5, 138.3, 138.1, 128.5, 128.5, 128.4, 128.4, 128.1, 128.0, 127.8, 127.7, 98.0 (C1^{Glc1}), 97.4 (C1^{Glc2}), 82.2, 81.8, 80.2, 80.1, 77.9, 77.7, 77.4, 77.1, 76.8, 75.8, 75.6, 75.1, 75.0, 73.5, 72.5, 70.4, 70.3, 68.5, 66.1, 55.3; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₂H₆₆O₁₁Na 1009.4503, found 1009.4510.

2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranoside-(1 \rightarrow 6)-1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose **\beta-3k**:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **2k** (12.7 mg, 0.049 mmol) in DCM (4.90 mL) at -40 °C for 12 hours afforded

β-3k (30 mg, 79% yield) as a white solid (eluent: Toluene–acetone 15:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.35–7.05 (m, 20H, ArH), 5.49 (d, 1H, J = 5.00 Hz, C1^{Gal2}-H), 4.98 (d, 1H, J = 11.16 Hz, O<u>CH</u>₂Ph), 4.87 (d, 1H, J = 10.96 Hz, O<u>CH</u>₂Ph), 4.71 (dd, 2H, J = 10.08, 14.00 Hz, O<u>CH</u>₂Ph), 4.64 (d, 1H, J =11.12 Hz, O<u>CH</u>₂Ph), 4.52–4.42 (m, 4H, C3^{Gal2}-H and O<u>CH</u>₂Ph) , 4.38 (d, 1H, J = 7.76 Hz, C1^{Glc1}-H), 4.24 (dd, 1H, J = 2.36, 4.96 Hz, C2^{Gal2}-H), 4.17 (dd, 1H, J = 1.64, 7.92 Hz, C4^{Gal2}-H), 4.09–4.04 (m, 2H, C5^{Gal2}-H and C6^{Gal2}-H), 3.68–3.51 (m, 5H, C6^{Glc1}-H, C6^{Glc1}-H, C6^{Gal2}-H, C5^{Glc1}-H and C3^{Glc1}-H), 3.41–3.37 (m, 2H, C4^{Glc1}-H and C2^{Glc1}-H), 1.43 (s, 3H, Me), 1.38 (s, 3H, Me), 1.24 (s, 3H, Me), 1.19 (s, 3H, Me); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 138.2, 128.6, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 109.4, 104.4 (C1^{Glc1}), 96.4 (C1^{Gal2}), 84.6, 81.7, 77.8, 77.3, 77.0, 76.7, 75.7, 75.0, 74.8, 74.4, 73.5, 71.5, 70.8, 70.5, 69.7, 68.8, 67.4, 29.7, 26.1, 26.0, 25.0, 24.5; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₆H₅₄O₁₁Na 805.3564, found 805.3567.

2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside- $(1 \rightarrow 6)$ -1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose *a***-3k**:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **3k** (12.7 mg, 0.049 mmol) in DCM (4.90 mL) at at room temperature for 3 hours afforded *a*-**3k** (26 mg, 68% yield) as a white solid, (eluent: Toluene–acetone 15:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.38–7.12 (m, 20H, ArH), 5.52 (d, 1H, *J* = 5.20 Hz, C1^{Gal1}-H), 5.00 (d, 1H, *J* = 3.44 Hz, C1^{Gle2}-H), 4.98 (d, 1H, *J* = 10.76 Hz, O<u>CH</u>₂Ph), 4.82 (d, 1H, *J* = 11.00 Hz, O<u>CH</u>₂Ph), 4.80 (d, 1H, *J* = 11.44 Hz, O<u>CH</u>₂Ph), 4.72 (q, 2H, *J* = 11.92 Hz, O<u>CH</u>₂Ph), 4.63 (d, 1H, *J* = 12.40 Hz, O<u>CH</u>₂Ph), 4.60 (dd, 1H, *J* = 2.32, 10.08 Hz, C3^{Gal1}-H), 4.48 (d, 1H, *J* = 10.96 Hz, O<u>CH</u>₂Ph), 4.46 (d, 1H, *J* = 12.36 Hz, O<u>CH</u>₂Ph), 4.36 (dd, 1H, *J* = 1.84, 7.80 Hz, C4^{Gal1}-H), 4.32 (dd, 1H, *J* = 2.28, 5.04 Hz, C2^{Gal1}-H), 4.06–4.02 (m, 1H, C5^{Gal1}-H), 3.99 (t, 1H, *J* = 9.64 Hz, C3^{Gle2}-H), 3.84–3.79 (m, 1H, C3^{Gle2}-H), 3.78–3.74 (m, 3H, C6^{Gle2}-H, C6^{Gal1}-H and C6^{Gal1}-H), 3.72–3.63 (m, 2H, C6^{Gle2}-H and C4^{Gle2}-H), 3.58 (dd, 1H, *J* = 3.68, 9.60 Hz, C2^{Gle2}-H), 1.53 (s, 3H, Me), 1.45 (s, 3H, Me), 1.33 (s, 3H, Me), 1.32 (s, 3H, Me); 1³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.4, 138.1, 128.5, 128.0, 128.0, 127.9, 127.8, 127.7, 127.6, 109.3, 108.7, 97.1 (C1^{Gle2}), 96.4 (C1^{Gal1}), 82.1, 79.9, 77.7, 77.4, 75.7, 75.1, 73.6, 72.5, 70.9, 70.8, 70.7, 70.3, 68.4, 66.3, 65.8, 26.3, 26.2, 25.0, 25.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₆H₅₄O₁₁Na 805.3564, found 805.3567.

Methyl 2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranoside- $(1 \rightarrow 4)$ -2,3,6-tri-*O*-benzyl- α -D-glucopyranoside **\beta-31**:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (65 mg, 0.095 mmol, 1.5 equiv.) and acceptor **3l** (29.4 mg, 0.063 mmol) in DCM (6.30 mL) at -40 °C for 12 hours afforded **β-3l** (38 mg, 71% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = +79.6$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.26–7.09 (m, 35H, ArH), 4.89 (dd, 2H, J = 3.88, 11.04 Hz, O<u>CH₂Ph</u>), 4.83 (d, 1H, J = 10.96 Hz, O<u>CH₂Ph</u>), 4.74–4.63 (m, 6H, O<u>CH₂Ph</u>), 4.57 (d, 1H, J = 12.12 Hz, O<u>CH₂Ph</u>), 4.53 (d, 1H, J = 3.12 Hz, C1^{Glc2}-H), 4.50–4.42 (m, 4H, O<u>CH₂Ph</u>), 4.27 (d, 1H, J = 7.76 Hz, C1^{Glc1}-H), 4.11–4.09 (m, 1H, C6^{Glc2}-H), 3.92 (t, 1H, J = 9.28 Hz, C3^{Glc2}-H), 3.77–3.74 (m, 1H, C3^{Glc1}-H), 3.86–3.81 (m, 5H, C6^{Glc1}-H, C6^{Glc2}-H, C5^{Glc2}-H, C4^{Glc1}-H and C6^{Glc1}-H), 3.46–3.39 (m, 3H, C2^{Glc2}-H, C4^{Glc2}-H and C2^{Glc1}-H), 3.37–3.34 (m, 1H, C5^{Glc1}-H), 3.25 (s, 3H, OMe); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.9, 138.6, 138.4, 138.3, 138.2, 128.4, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 103.8 (C1^{Glc1}), 98.1 (C1^{Glc1}), 84.8, 82.1, 79.8, 78.0, 77.9, 77.3, 77.0, 76.7, 75.7, 75.1, 75.0, 74.9, 73.5, 73.4, 69.9, 55.2, 29.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₂H₆₆O₁₁Na 1009.4503, found 1009.4509.

Methyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside- $(1 \rightarrow 4)$ -2,3,6-tri-*O*-benzyl- α -D-glucopyranoside *a***-3l**:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (65 mg, 0.095 mmol, 1.5 equiv.) and acceptor **3l** (29.4 mg, 0.063 mmol) in DCM (6.30 mL) at room temperature for 3 hours afforded *a*-**3l** (37 mg, 63% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.32–7.08 (m, 35H, ArH), 5.69 (d, 1H, *J* = 3.68 Hz, C1^{Gle2}-H), 5.03 (d, 1H, *J* = 11.32 Hz, OCH₂Ph), 4.88 (d, 1H, *J* = 11.00 Hz, OCH₂Ph), 4.82–4.76 (m, 3H, OCH₂Ph), 4.70 (d, 1H, *J* = 12.36 Hz, OCH₂Ph), 4.60 (d, 1H, *J* = 3.68 Hz, C1^{Gle1}-H), 4.58–4.49 (m, 6H, OCH₂Ph), 4.70 (d, 1H, *J* = 11.44 Hz, OCH₂Ph), 4.27 (d, 1H, *J* = 12.84 Hz, OCH₂Ph), 4.11–4.02 (m, 2H, C3^{Gle1}-H and C4^{Gle1}-H), 3.90 (t, 1H, *J* = 8.72 Hz, C3^{Gle2}-H), 3.86–3.81 (m, 2H, C5^{Gle1}-H and C6^{Gle1}-H), 3.72–3.62 (m, 3H, C6^{Gle1}-H, C4^{Gle2}-H and C5^{Gle2}-H), 3.59 (dd, 1H, *J* = 3.64, 9.16 Hz, C2^{Gle1}-H), 3.51–3.47 (m, 2H, C2^{Gle2}-H and C6^{Gle2}-H), 3.39 (dd, 1H, *J* = 1.84, 11.00 Hz, C6^{Gle1}-H), 3.37 (s, 3H, OMe),; ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 139.1, 138.9, 138.6, 138.3, 138.1, 138.0, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 126.9, 97.9 (C1^{Gle1}), 96.7 (C1^{Gle1}), 82.1, 80.3, 79.6, 77.7, 77.4, 75.6, 75.0, 74.5, 73.6, 73.5, 73.3, 73.2, 72.4, 71.1, 69.6, 69.1, 68.3, 55.2; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₂H₆₆O₁₁Na 1009.4503, found 1009.4509.

Benzyl 2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranoside- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- β -D-mannopyranoside β -3m:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (65 mg, 0.095 mmol, 1.5 equiv.) and acceptor **2m** (34 mg, 0.063 mmol) in DCM (6.30 mL) at -40 °C for 12 hours afforded **\beta-3m** (17 mg, 55% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = +31.0$ (c = 0.4, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.06 (m, 40H, ArH), 5.09 (d, 1H, J = 10.16 Hz, O<u>CH₂Ph</u>), 5.01 (s, 1H, C1^{Glc1}-H), 4.88–4.83 (m, 3H, O<u>CH₂Ph</u>), 4.74–4.65 (m, 3H, O<u>CH₂Ph</u>), 4.45–4.41 (m, 5H, O<u>CH₂Ph</u>), 4.36 (d, 1H, J = 2.04 Hz, C1^{Man2}-H), 4.38–4.36 (m, 2H, O<u>CH₂Ph</u>), 4.33 (d, 2H, J = 3.00 Hz, O<u>CH₂Ph</u>), 4.23–4.22 (m, 1H, C2^{Glc1}-H), 3.98 (t, 1H, J = 9.28 Hz, C4^{Glc1}-H), 3.92 (dd, 1H, J = 3.20, 9.36 Hz, C3^{Glc1}-H), 3.77–3.74 (m, 1H, C5^{Glc1}-H), 3.67 (dd, 1H, J = 4.60, 10.52 Hz, C6^{Glc1}-H), 3.66–3.40 (m, 7H, C6^{Glc1}-H, C6^{Man2}-H, C4^{Man2}-H, C5^{Man2}-H, C2^{Man2}-H and C3^{Man2}-H); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 129.2, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.5, 127.3, 103.0 (C1^{Glc1}), 97.6 (C1^{Man2}), 84.7, 81.5, 77.3, 77.0, 76.7, 75.0, 73.3, 29.5; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₈H₇₀O₁₁Na 1085.4816, found 1085.4822.

Benzyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- β -D-mannopyranoside *a***-3m**:

Following the general procedure of **Method B** using trichloroacetimidate **1a** (65 mg, 0.095 mmol, 1.5 equiv.) and acceptor **2m** (34 mg, 0.063 mmol) in DCM (6.30 mL) at room temperature for 3 hours afforded *a*-**3m** (17 mg, 51% yield) as a white solid (eluent, Toluene–Ethyl acetate 15:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.37–7.09 (m, 40H, ArH), 5.44 (d, 1H, *J* = 3.64 Hz, C1^{Gle2}-H), 4.92 (d, 1H, *J* = 1.84 Hz, C1^{Man1}-H), 4.88 (d, 1H, *J* = 11.00 Hz, O<u>CH</u>₂Ph), 4.82–4.51 (m, 10H, O<u>CH</u>₂Ph), 4.45–4.40 (m, 4H, O<u>CH</u>₂Ph), 4.35 (d, 1H, *J* = 11.44 Hz, O<u>CH</u>₂Ph), 4.21 (t, 1H, *J* = 2.28 Hz, C2^{Man1}-H), 4.07 (t, 1H, *J* = 9.64 Hz, C4^{Man1}-H), 4.01–3.96 (m, 2H, C3^{Man1}-H and C3^{Gle2}-H), 3.83–3.77 (m, 3H, C5^{Man1}-H, C6^{Man1}-H and C6^{Gle2}-H), 3.73–3.69 (m, 1H, C6^{Man1}-H), 3.63 (dd, 1H, *J* = 4.12, 11.00 Hz, C6^{Gle2}-H), 3.59 (t, 1H, *J* = 9.64 Hz, C4^{Gle2}-H), 3.53 (dd, 1H, *J* = 3.64, 10.08 Hz, C2^{Gle2}-H), 3.48 (dd, 1H, *J* = 1.64, 9.16 Hz, C5^{Gle2}-H); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.1, 138.7, 138.6, 138.5, 138.2, 138.0, 137.4, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.6, 127.5, 127.4, 127.3, 98.3 (C1^{Gle2}), 97.3 (C1^{Man1}), 81.6, 80.6, 79.8, 77.3, 77.1, 75.6, 75.2, 75.1, 73.6, 73.5, 73.2, 73.1, 72.8, 71.8, 70.7, 69.5, 69.0, 68.5; HRMS (ESI) m/z [M+Na]⁺ calcd for C₆₈H₇₀O₁₁Na 1085.4816, found 1085.4822.

Benzyl 2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranoside (1 \rightarrow 2)-4,6-*O*-benzylidene-3-*O*-TIBS- α -D-gluco pyranoside **\beta-3n**:

Following the general procedure of **Method A** using trichloroacetimidate **1a** (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor **2n** (23 mg, 0.049 mmol) in DCM (4.90 mL) at -40 °C for 12 hours afforded β -3n (26 mg, 54% yield) as a white solid (eluent, N-hexane–Ethyl acetate 6:1). $[\alpha]_{p}^{21} = +28.5$ (c = 1.0,

CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.48–7.18 (m, 25H, ArH), 6.01–5.91 (m, 1H, OCH₂<u>CH</u>=CH₂), 5.43 (s, 1H, ArCH), 5.40 (dd, 1H, *J* = 1.40, 17.44 Hz, OCH₂CH=<u>CH₂</u>), 5.18 (dd, 1H, *J* = 0.88, 11.44 Hz, OCH₂CH=<u>CH₂</u>), 5.05 (d, 1H, *J* = 10.48 Hz, O<u>CH₂Ph</u>), 5.04 (d, 1H, *J* = 2.96 Hz, C1^{Glc1}-H), 4.94 (d, 1H, *J* = 10.48 Hz, O<u>CH₂Ph</u>), 4.82 (d, 1H, *J* = 7.56 Hz, C1^{Glc2}-H), 4.81–4.75 (m, 3H, O<u>CH₂CH</u>), 4.64–4.53 (m, 3H, O<u>CH₂CH</u>), 4.36 (t, 1H, *J* = 9.16Hz, C3^{Glc1}-H), 4.30–4.22 (m, 2H, C5^{Glc2}-H and O<u>CH₂CH</u>), 4.09 (dd, 1H, *J* = 5.12, 13.40 Hz, C6^{Glc2}-H), 3.98–3.87 (m, 2H, C2^{Glc1}-H and O<u>CH₂CH</u>), 3.77–3.68 (m, 3H, C6^{Glc2}-H, C6^{Glc1}-H and C3^{Glc2}-H), 3.64–3.60 (m, 2H, C6^{Glc1}-H and C4^{Glc2}-H), 3.50–3.41 (m, 3H, C5^{Glc1}-H, C4^{Glc1}-H and C2^{Glc2}-H), 1.09–0.92 (m, 21H, TIPIS); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.2, 134.2, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 126.4, 104.2, 102.3, 98.2, 81.7, 77.9, 77.3, 77.0, 76.7, 75.4, 74.9, 48.2, 18.1, 13.2; HRMS (ESI) m/z [M+Na]⁺ calcd for C₅₉H₇₄NaO₁₁Si 1009.4898, found 1009.4905.

Benzyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside (1 \rightarrow 2)-4,6-*O*-benzylidene-3-O-TIBS- α -D-gluco pyranoside α -3n:

Following the general procedure of Method B using trichloroacetimidate 1a (50 mg, 0.073 mmol, 1.5 equiv.) and acceptor 2n (23 mg, 0.049 mmol) in DCM (4.90 mL) at room temperature for 3 hours afforded α -3n (24 mg, 51% yield) as a white solid (eluent, hexane–Ethyl acetate 6:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.47–7.16 (m, 25H, ArH), 5.93–5.84 (m, 1H, OCH₂CH=CH₂), 5.43 (s, 1H, ArCH), 5.31 $(dd, 1H, J = 1.40, 17.44 \text{ Hz}, \text{OCH}_2\text{CH}=\underline{\text{CH}}_2)$, 5.21 $(d, 1H, J = 3.68 \text{ Hz}, \text{C1}^{\text{Gle1}}$ -H), 5.17 (d, 1H, J = 3.68 Hz)Hz, C1^{Glc2}-H), 5.15 (dd, 1H, *J* = 0.88, 11.44 Hz, OCH₂CH=CH₂), 4.89 (d, 1H, *J* = 11.00 Hz, OCH₂Ph), 4.87 (d, 1H, J = 11.32 Hz, OCH₂Ph), 4.78 (d, 1H, J = 11.92 Hz, OCH₂Ph), 4.71 (d, 1H, J = 11.00 Hz, OCH_2Ph), 4.61 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.59 (d, 1H, J = 11.92 Hz, OCH_2Ph), 4.49 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.59 (d, 1H, J = 11.92 Hz, OCH_2Ph), 4.49 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.59 (d, 1H, J = 11.92 Hz, OCH_2Ph), 4.59 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.59 (d, 1H, J = 11.92 Hz, OCH_2Ph), 4.59 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.36 Hz, OCH_2Ph), 4.50 (d, 1H, J = 12.3611.00 Hz, OCH₂Ph), 4.46 (d, 1H, J = 12.36 Hz, OCH₂Ph), 4.38 (t, 1H, J = 9.16Hz, C3^{Glc1}-H), 4.26-4.19 (m, 2H, C6^{Glc1}-H and OCH2CH), 4.11 (t, 1H, J = 9.16Hz, C3^{Glc2}-H), 4.02-3.96 (m, 2H, C6^{Glc2}-H and OCH₂CH), 3.90–3.84 (m, 1H, C5^{Glc1}-H), 3.74–3.64 (m, 5H, C4^{Glc2}-H, C6^{Glc1}-H, C6^{Glc2}-H $C2^{Glc1}$ -H and $C5^{Glc2}$ -H), 3.62 (dd, 1H, J = 3.68, 9.60 Hz, $C2^{Glc2}$ -H), 3.41 (t, 1H, J = 9.04Hz, $C4^{Glc1}$ -H), 1.15–0.95 (m, 21H, TIPIS); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.9, 138.6, 138.1, 137.3, 133.5, 129.2, 128.4, 128.30, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.3, 127.2, 126.5, 118.4, 102.5, 95.2 (C1^{Glc1}), 92.6 (C1^{Glc2}), 82.7, 82.0, 79.4, 77.4, 75.8, 74.7, 73.6, 71.7, 71.2, 70.5, 69.2, 68.5, 68.3, 62.5, 18.3, 18.2, 13.3; HRMS (ESI) m/z [M+Na]⁺ calcd for C₅₉H₇₄NaO₁₁Si 1009.4898, found 1009.4905.

2-azide-3,4,6-tri-*O*-benzyl-α-D-glucopyranoside trichloroacetimidate 1b:

To a magnetically stirred solution of 2-azide-3,4,6-tri-O-benzyl- α -D-glucopyranoside (103.4 mg, 0.22 mmol) and CCl₃CN (0.22 mL, 2.2 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (5 mL), DBU (15.3 μ L, 0.11 mmol, 0.5 equiv.) was added dropwise at 0 °C, and the reaction mixture was

stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: toluene–EtOAc, 12:1) to afford compound **1b** (133 mg, 99% yield) as a white powder. TLC (toluene–EtOAc, 12:1): $R_f = 0.60$, $[\alpha]_D^{21} = +61.4$ (c = 0.53, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 8.70 (s, 1H, NH), 7.40–7.14 (m, 15H, ArH), 6.44 (d, 1H, J = 3.60Hz, C1^{Gle}-H), 4.94 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.89 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.82 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.62 (d, 1H, J = 11.60 Hz, OCH₂Ph), 4.57 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.47 (d, 1H, J = 11.60 Hz, OCH₂Ph), 4.06–3.97 (m, 2H, C3^{Gle}-H and C5^{Gle}-H), 3.88 (t, 1H, J = 9.20 Hz, C4^{Gle}-H), 3.80 (dd, 1H, J = 3.20, 11.20 Hz, C6^{Gle}-H), 3.71–3.65 (m, 2H, C6^{Gle}-H and C2^{Gle}-H); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 160.8, 137.7, 137.6, 128.5, 128.4, 128.0, 127.9, 127.8, 95.0 (C1^{Gle}), 90.9, 80.1, 77.8, 77.3, 77.0, 76.7, 75.5, 75.3, 73.6, 67.8, 63.1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂₉H₂₉Cl₃N₄NaO₅ 641.1101, found 641.1108.

Cyclohexanol 2-azide-3,4,6-tri-O-benzyl- β -D-glucopyranoside β -4b:

Following the general procedure of Method **A** using trichloroacetimidate **1b** (50 mg, 0.081 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (4.87 mg, 0.048 mmol) in DCM (4.80 mL) at -40° C temperature for 12 hours afforded α/β -4b (18.7 mg, 70% yield, α/β =9/91) as a white solid (eluent, Toluene–Ethyl acetate 30:1). $[\alpha]_{D}^{21} = +2.12$ (c = 1.29, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.38–7.16 (m, 15H, ArH), 4.88 (d, 1H, J = 11.24 Hz, OCH₂Ph), 4.80 (d, 1H, J = 10.36 Hz, OCH₂Ph), 4.78 (d, 1H, J = 10.28 Hz, OCH₂Ph), 4.62–4.53 (m, 3H, OCH₂Ph), 4.38 (d, 1H, J = 7.72 Hz, C1^{Glcl}-H), 3.73–3.64 (m, 3H, C6^{Glcl}-H, C6^{Glcl}-H and C4^{Glcl}-H), 3.57 (t, 1H, J = 8.92 Hz, C3^{Glcl}-H), 3.44–3.36 (m, 3H, C5^{Glcl}-H, C2^{Glcl}-H and CHO), 1.98–1.23 (m, 10H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.2, 138.1, 137.9, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 100.6 (C1^{Glcl}), 83.2, 78.0, 77.8, 77.4, 77.3, 77.2, 77.1, 77.0, 76.7, 75.5, 75.1, 75.0, 73.5, 68.9, 66.5, 33.6, 31.7, 25.6, 23.9, 23.8; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₃₉N₃O₅Na 580.2787, found 580.2769.

Cyclohexanol 2-azide-3,4,6-tri-O-benzyl- α -D-glucopyranoside α -4b:

Following the general procedure of Method **B** using trichloroacetimidate **1b** (50 mg, 0.081 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (5.39 mg, 0.048 mmol) in DCM (4.80 mL) at room temperature for 3 hours afforded α -4b (21.7 mg, 81% yield) as a white solid (eluent, Toluene–Ethyl acetate 30:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.39–7.14 (m, 15H, ArH), 5.07 (d, 1H, J = 3.64 Hz, C1^{Glc1}-H), 4.89 (d, 1H, J = 10.68 Hz, OCH₂Ph), 4.86 (d, 1H, J = 10.72 Hz, OCH₂Ph), 4.80 (d, 1H, J = 10.72 Hz, OCH₂Ph), 4.80 (d, 1H, J = 10.72 Hz, OCH₂Ph), 4.03 (dd, 1H, J = 8.76, 10.28 Hz, C6^{Glc1}-H), 3.95–3.91 (m, 1H, C3^{Glc1}-H), 3.79–3.59 (m, 4H, C4^{Glc1}-H, C5^{Glc1}-H, C6^{Glc1}-H and OCH), 3.28 (dd, 1H, J = 3.60, 10.24 Hz,

C2^{Glc1}-H), 1.92–1.21 (m, 10H, CH₂); ${}^{13}C{}^{1}H$ NMR (CDCl₃, 400 MHz): δ 138.1, 138.0, 137.9, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 96.3 (C1^{Glc1}), 80.1, 78.5, 77.3, 77.0, 76.7, 76.4, 75.3, 75.1, 73.5, 70.7, 68.4, 63.29, 33.3, 33.4, 29.7, 25.6, 24.1, 23.8; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₃₉N₃O₅Na 580.2787, found 580.2759.

2-azide-3,4,6-tri-*O*-benzyl-α-D-galactose-pyranoside trichloroacetimidate 1c:

To a magnetically stirred solution of 2-azide-3,4,6-tri-O-benzyl-α-D-galactose-pyranoside (117.7 mg, 0.25 mmol) and CCl₃CN (0.25 mL, 2.5 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (5 mL), DBU (17.5 µL, 0.12 mmol, 0.5 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane-EtOAc, 4:1) to afford compound 1c (144.3 mg, 97% yield) as a white powder. TLC (hexane–EtOAc, 4:1): $R_f = 0.60$, $[\alpha]_{p}^{2} = +66.0$ (c = 0.36, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 8.65 (s, 1H, NH), 7.43–7.23 (m, 15H, ArH), 6.38 (d, 1H, J = 3.60 Hz, C1^{Gal}-H), 4.91 (d, 1H, J = 11.20 Hz, OCH₂Ph), 4.79 (d, 1H, J = 11.20 Hz, OCH₂Ph), 4.69 (d, 1H, J = 11.20 Hz, OCH₂Ph), 4.57 (d, 1H, J = 11.20 Hz, OCH₂Ph), 4.48 (d, 1H, *J* = 11.60 Hz, OCH₂Ph), 4.42 (d, 1H, *J* = 11.60 Hz, OCH₂Ph), 4.20–4.13 (m, 3H, C2^{Gal}-H, C6^{Gal}-H and C4^{Gal}-H), 4.03 (dd, 1H, J = 2.40, 10.40 Hz, C3^{Gal}-H), 3.68–3.64 (m, 1H, C5^{Gal}-H), 3.58–3.54 (m, 1H, C6^{Gal}-H); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 160.8, 138.1, 137.7, 137.2, 128.6, 128.4, 128.3, 128.0, 127.9, 127.8, 95.5 (C1^{Gal}), 91.1, 77.3, 77.2, 77.0, 76.7, 75.0, 73.6, 72.8, 72.2, 72.1, 68.0, 59.2, 29.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂₉H₂₉Cl₃N₄NaO₅ 641.1101, found 641.1120.

Cyclohexanol 2-azide-3,4,6-tri-O-benzyl- β -D-galactose-pyranoside β -4c:

Following the general procedure of Method **A** using trichloroacetimidate **1c** (54.7 mg, 0.088 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (5.89 mg, 0.059 mmol) in DCM (5.90 mL) at -40° C temperature for 12 hours afforded $\alpha/\beta-4c$ (23.7 mg, 72% yield, $\alpha/\beta=10:90$) as a white solid (eluent, Toluene–Ethyl acetate 30:1). $[\alpha]_{D}^{21} = -1.33$ (c = 0.86, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.40–7.25 (m, 15H, ArH), 4.88 (d, 1H, J = 11.24 Hz, OCH₂Ph), 4.67 (s, 2H, OCH₂Ph), 4.59 (d, 1H, J = 12.00 Hz, OCH₂Ph), 4.46–4.40 (m, 2H, OCH₂Ph), 4.31 (d, 1H, J = 8.00 Hz, Cl^{Gal} -H), 3.85–3.78 (m, 2H, C4^{Gal}-H and C2^{Gal}-H), 3.69–3.55 (m, 4H, OCH, C5^{Gal}-H, C6^{Gal}-H and C6^{Gal}-H), 3.26 (dd, 1H, J = 2.80, 10.40 Hz, C3^{Gal}-H), 1.92–1.22 (m, 10H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.4, 138.0, 137.8, 128.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 100.7 (C1^{Gal}), 80.7, 77.8, 77.4, 77.1, 76.7. 74.6, 73.6, 72.6, 72.2, 68.8, 63.5, 33.5, 31.6, 25.6, 24.0, 23.9; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₃₉N₃O₅Na 580.2787, found 580.2868.

Cyclohexanol 2-azide-3,4,6-tri-O-benzyl-D-galactose-pyranoside α/β -4c:

Following the general procedure of Method **B** using trichloroacetimidate **1c** (54.7 mg, 0.088 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (5.89 mg, 0.059 mmol) in DCM (5.90 mL) at room temperature for 3 hours afforded a/β -4c (19.7 mg, 60% yield, a/β =50:50) as a white solid (eluent, Toluene–Ethyl acetate 30:1). $[\alpha]_{D}^{21} = +56.47$ (c = 0.61, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.42–7.24 (m, 30H, ArH), 5.05 (d, 1H, J = 3.60 Hz, C1^{Gal}-H), 4.90–4.86 (m, 2H, OCH₂Ph), 4.76–4.67 (m, 4H, OCH₂Ph), 4.60–4.40 (m, 6H, OCH₂Ph), 4.31 (d, 1H, J = 8.00 Hz, C1^{Gal}-H), 4.08–3.98 (m, 6H), 3.85–3.75 (m, 6H), 3.69–3.45 (m, 6H), 3.26 (dd, 1H, J = 3.60, 12.00 Hz), 1.91–1.25 (m, 20H, CH₂); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.4, 138.0, 137.8, 137.7, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 100.7 (C1^{Gal}), 96.7 (C1^{Gal}), 80.7, 77.3, 77.2, 77.0, 76.7, 76.4, 74.8, 74.6, 73.6, 72.6, 72.2, 69.6, 68.8, 63.5, 59,7, 33.5, 33.3, 31.6, 31.5, 29.7, 25.6, 24.1, 24.0, 23.9; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₃₉N₃O₅Na 580.2787, found 580.2780.

2,3,4,6-tetra-O-benzyl- α -D-galactopyranoside trichloroacetimidate 1d:

To a magnetically stirred solution of 2,3,4,6-tetra-*O*-benzyl- α -D-galactopyranoside (49.6 mg, 0.09 mmol) and CCl₃CN (0.93 mL, 0.92 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (5.0 mL), DBU (7.1 µL, 0.05 mmol, 0.5 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 5:1) to afford compound **1d** (61 mg, 99% yield) as a white powder. TLC (hexane–EtOAc, 5:1): R_f = 0.60. The ¹H NMR is accordance with the literature previously reported⁸.

Cyclohexanol 2,3,4,6-tetra-O-benzyl-D-galactose-pyranoside α/β -4d:

Following the general procedure of Method **A** using trichloroacetimidate **1d** (50.0 mg, 0.073 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (4.87 mg, 0.049 mmol) in DCM (4.90 mL) at -40° C temperature for 12 hours afforded α/β -4d (18.6 mg, 61% yield, α/β =14:86) as a white solid (eluent, Toluene–Ethyl acetate 15:1). [α]_D²¹ = +32 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.30–7.18 (m, 24H, ArH), 4.94-4.84 (m, 2H), 4.79–4.49 (m, 6H), 4.42–4.22 (m, 4H), 3.98–3.87 (m, 1H), 3.80–3.70 (m, 2H), 3.62–3.58 (m, 1H), 3.51–3.41 (m, 5H), 1.86–0.79 (m, 12H, CH₂); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 128.4, 128.3, 128.2, 128.1, 127.9,

127.8, 127.5, 127.4, 102.2 (C1^{Gal}), 82.5, 79.6, 77.3, 77.0, 76.7, 75.2, 75.3, 74.5, 73.7, 73.5, 73.4, 73.2, 69.1, 33.7, 31.9, 29.7, 25.7, 24.1, 24.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₆O₆Na 645.3192, found 645.3222.

Cyclohexanol 2,3,4,6-tetra-O-benzyl-D-galactose -pyranoside α/β -4d:

Following the general procedure of Method **B** using trichloroacetimidate **1d** (95.0 mg, 0.139 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (9.26 mg, 0.092 mmol) in DCM (9.20 mL) at room temperature for 3 hours afforded α/β -4d (48.7 mg, 85% yield, α/β =67:33) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_D^{21} = +1.7$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.30–7.18 (m, 30H, ArH), 4.93 (d, 1H, J = 3.65 Hz, C1^{Gal}-H), 4.90–4.84 (m, 2H), 4.77 (d, 1H, J = 11.64 Hz), 4.72–4.48 (m, 6H), 4.42–4.31 (m, 5H), 4.23 (t, 1H, J = 6.72 Hz), 3.99–3.87 (m, 4H), 3.80–3.70 (m, 1H), 3.63–3.41 (m, 6H), 1.84–0.79 (m, 15H, CH₂); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.8, 138.2, 128.8, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 127.4, 127.3, 102.2 (C1^{Gal}), 95.5 (C1^{Gal}), 82.5, 79.6, 79.2, 77.3, 77.0, 76.7, 76.6, 75.4, 75.3, 74.8, 73.7, 73.5, 73.4, 73.2, 73.0, 69.3, 69.2, 65.6, 33.7, 33.4, 31.6, 29.7, 25.7, 24.5, 24.3, 19.2, 13.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₆O₆Na 645.3192, found 645.3222.

3,4,6-tri-O-acetyl-2-dexoy-α-D-glucopyranoside trichloroacetimidate 1e:

To a magnetically stirred solution of 3,4,6-tri-*O*-acetyl-2-dexoy- α -D-glucopyranosid (39.9 mg, 0.14 mmol) and CCl₃CN (0.14 mL, 1.37 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (5.0 mL), DBU (2.0 μ L, 0.01 mmol, 0.1 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 5 min, after 5 min the ice bath was remove and solution stirred for 1.5 h. after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 2:1) to afford compound **1e** (60.2 mg, 99% yield) as a white powder. TLC (hexane–EtOAc, 2:1): R_f = 0.50. The ¹H NMR is accordance with the literature previously reported⁹.

Cyclohexanol 3,4,6-tri-O-acetyl-2-dexoy-α-D-glucopyranoside α-4e:

Following the general procedure of **Method A** using trichloroacetimidate **1e** (41.4 mg, 0.095 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (6.74 mg, 0.064 mmol) in DCM (6.40 mL) at -40°C temperature for 12 hours afforded α/β -4e (17.1 mg, 72% yield, α/β =88/12) as a white solid (eluent, Hex–Ethyl acetate 3:1).; ¹H NMR (CDCl₃, 400 MHz): δ 5.40–5.34 (m, 1H, C3^{Glcl}-H), 5.13 (d, 1H, *J* = 3.16 Hz,

C4^{Gle1}-H), 5.00 (t, 1H, J = 9.64 Hz, C1^{Gle1}-H), 4.30 (dd, 1H, J = 5.24, 12.64 Hz, C6^{Gle1}-H), 4.10–4.06 (m, 2H, C5^{Gle1}-H and C6^{Gle1}-H), 3.59–3.52 (m, 1H, OCH), 2.20 (dd, 1H, J = 5.04, 12.48 Hz, C2^{Gle1}-H), 2.11 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.89–1.23 (m, 11H, C2^{Gle1}-H and CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 170.8, 170.3, 170.0, 101.1, 94.9, 77.3, 77.0, 76.7, 75.5, 69.7, 69.3, 67.9, 62.6, 35.6, 33.4, 31.5, 25.6, 24.2, 23.9, 21.0, 20.8, HRMS (ESI) m/z [M+Na]⁺ calcd for C₁₈H₂₈O₈Na 395.1682, found 395.1673.

3,4,6-tri-O-benzyl-2-dexoy- α -D-glucopyranoside trichloroacetimidate 1f:

To a magnetically stirred solution of 3,4,6-tri-*O*-benzyl-2-dexoy- α -D-glucopyranosid (50.0 mg, 0.12 mmol) and CCl₃CN (0.12 mL, 1.15 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (3.0 mL), DBU (1.7 μ L, 0.01 mmol, 0.1 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 5 min, after 5 min the ice bath was remove and solution stirred for 1.5 h. Evaporation of solvents afforded **1f**, the product was used without purification for the glycosytion.. The ¹H NMR is accordance with the literature previously reported⁹.

Cyclohexanol 3,4,6-tri-O-benzyl-2-dexoy-D-glucopyranoside α/β-4f:

Following the general procedure of **Method A** using trichloroacetimidate **1f** (33.3 mg, 0.06 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (3.85 mg, 0.04 mmol) in DCM (4.00 mL) at –40°C temperature for 12 hours afforded α/β -4f (18.0 mg, 87% yield, α/β =33/67) as a white solid (eluent, Toluene–Ethyl acetate 15:1).; ¹H NMR (CDCl₃, 400 MHz): δ 7.39–7.19 (m, 22.5H), 5.14 (d, 1H, *J* = 2.96 Hz), 4.94–4.90 (m, 1.4H), 4.73–4.51 (m, 7.7H), 4.08–4.02 (m, 1.0H), 3.90–3.78 (m, 2.6H), 3.73–3.42 (m, 5.2H), 2.37–1.24 (m, 22H); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.9, 138.6, 138.4, 138.3, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 97.9, 95.1, 78.5, 77.9, 77.3, 77.0, 76.7, 75.0, 74.9, 73.4, 71.8, 70.7, 65.9, 36.0, 33.4, 31.5, 25.7, 24.3, 24.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₄₀O₅Na 539.2773, found 539.2764.

2,3,5-tri-O-benzyl-β-D-Arabinose-furanose trichloroacetimidate 1g:

To a magnetically stirred solution of 2,3,5-tri-O-benzyl- β -D-Arabinose-furanose (131.7 mg, 0.29 mmol) and CCl₃CN (0.3 mL, 2.94 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (10.0 mL), DBU (22 μ L, 0.15 mmol, 0.5 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on

silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 3:1) to afford compound **1g** (159 mg, 97% yield) as a white powder. TLC (hexane–EtOAc, 3:1): $R_{\rm f} = 0.50$, $[\alpha]_{\rm D}^{21} = +22.9$ (c = 0.65, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 8.52 (s, 1H, NH), 7.39–7.24 (m, 15H, ArH), 6.36 (s, 1H, C1^{Ara}-H), 4.70 (d, 1H, J = 11.60 Hz, OCH₂Ph), 4.57–4.54 (m, 3H, OCH₂Ph), 4.50 (d, 2H, J = 2.40 Hz, OCH₂Ph), 4.48–4.43 (m, 1H, C4^{Ara}-H), 4.26 (d, 1H, J = 2.40 Hz, C2^{Ara}-H), 4.06 (dd, 1H, J = 2.40, 6.00 Hz, C3^{Ara}-H), 3.70–3.65 (m, 2H, C5^{Ara}-H and C5^{Ara}-H); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 161.1, 138.0, 137.7, 137.3, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8, 127.6, 127.5, 104.4, 86.6, 83.7, 83.5, 77.4, 77.0, 76.7, 73.5, 72.1, 72.0, 69.4, 29.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂₈H₂₈Cl₃NNaO₅ 586.0931, found 586.0935.

Cyclohexanol 2,3,5-tri-O-benzyl-β-D-Arabinose-furanose β-4g:

Following the general procedure of **Method A** using trichloroacetimidate **1g** (83.1 mg, 0.15 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (10.01 mg, 0.10 mmol) in DCM (10.00 mL) at -40° C temperature for 12 hours afforded α/β -4g (25.1 mg, 50% yield, α/β =25/75) as a white solid (eluent, Toluene–Ethyl acetate 15:1). [α] $_{D}^{21}$ = +49.68 (*c* = 0.92, CHCl₃); 1H NMR (CDCl₃, 400 MHz): δ 7.35–7.24 (m, 15H, ArH), 5.10 (d, 1H, *J* = 4.40 Hz, C1^{Ara}-H), 4.70–4.50 (m, 6H, O<u>CH₂Ph</u>), 4.11–4.03 (m, 3H, OCH, C3^{Ara}-H and C2^{Ara}-H), 3.59–3.52 (m, 3H, C4^{Ara}-H, C5^{Ara}-H and C5^{Ara}-H), 1.90–1.14 (m, 10H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.3, 138.1, 137.8, 128.4, 128.3, 128.0, 127.8, 127.7, 127.6, 127.5, 98.7 (C1^{Ara1}), 84.0, 83.7, 79.9, 77.3, 77.0, 76.7, 75.9, 73.3, 73.0, 72.3, 72.2, 33.7, 31.8, 25.6, 24.5, 24.3; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₂H₃₈O₅Na 525.2617, found 525.2608.

Cyclohexanol 2,3,5-tri-*O*-benzyl-α-D-Arabinose-furanose **α-4g**:

Following the general procedure of **Method B** using trichloroacetimidate **1g** (83.1 mg, 0.15 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (10.01 mg, 0.10 mmol) in DCM (10.00 mL) at room temperature for 3 hours afforded α/β -4g (31.1 mg, 62% yield, α/β =86/14) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_D^{21} = -20.4$ (c = 2.02, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.34–7.23 (m, 15H, ArH), 5.21 (d, 1H, J = 1.60 Hz, C1^{Ara}-H), 4.60–4.46 (m, 6H, O<u>CH</u>₂Ph), 4.22–4.19 (m, 1H, C4^{Ara}-H), 4.03–4.01 (dd, 1H, J = 1.60, 3.60 Hz, C2^{Ara}-H), 3.94–3.91 (q, 1H, J = 3.60 Hz, C3^{Ara}-H), 3.67–3.57 (m, 3H, C5^{Ara}-H, C5^{Ara}-H and OCH), 1.91–1.24 (m, 10H, CH₃); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 138.2, 138.0, 137.7, 128.4, 128.3, 128.0, 127.8, 127.7, 127.6, 127.5, 104.1 (C1^{Ara1}), 88.8, 83.6, 80.0, 77.3, 77.0, 76.7, 74.9, 73.3, 72.0, 71.9, 70.0, 33.7, 31.7, 25.7, 24.2, 24.1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₂H₃₈O₅Na 525.2617, found 525.2733.

2,3,4,6-tetra-O-benzyl-α-D-mannose-pyranoside trichloroacetimidate 1h:

To a magnetically stirred solution of 2,3,4,6-tetra-*O*-benzyl- α -D-mannose-pyranoside (73.7 mg, 0.14 mmol) and CCl₃CN (0.14 mL, 1.36 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (5.0 mL), DBU (9.6 μ L, 0.068 mmol, 0.5 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 4:1) to afford compound **1h** (91.3 mg, 98% yield) as a white powder. TLC (hexane–EtOAc, 4:1): $R_f = 0.50$, $[\alpha]_D^{21} = +26.0$ (c = 0.19, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 8.52 (s, 1H, NH), 7.43–7.19 (m, 20H, ArH), 6.36 (d, 1H, J = 2.00 Hz, C1^{Man}-H), 4.89 (d, 1H, J = 10.40 Hz, OCH₂Ph), 4.77 (s, 2H, OCH₂Ph), 4.69–4.51 (m, 5H, OCH₂Ph), 4.15 (t, 1H, J = 9.60 Hz, C4^{Man}-H), 3.98–3.91 (m, 2H, C6^{Man}-H and C3^{Man}-H), 3.88–3.87 (m, 1H, C2^{Man}-H), 3.82 (dd, 1H, J = 4.40, 11.20 Hz, C5^{Man}-H), 3.74–3.71 (m, 1H, C6^{Man}-H); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 161.0, 138.3, 138.1, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 96.1, 78.9, 77.3, 77.0, 76.7, 75.4, 74.8, 74.2, 73.5, 73.4, 72.7, 72.4, 68.8, 29.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₆H₃₆Cl₃NNaO₆ 706.1506, found 706.1510.

Cyclohexanol 2,3,4,6-tetra-O-benzyl- β -D-mannose-pyranoside β -4h:

Following the general procedure of Method **A** using trichloroacetimidate **1h** (40.4 mg, 0.059 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (3.90 mg, 0.039 mmol) in DCM (3.90 mL) at -40° C temperature for 12 hours afforded α/β -4h (21.1 mg, 87% yield, α/β =25:75) as a white solid (eluent, Toluene–Acetonitrile 15:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.25 (m, 20H, ArH), 4.99 (d, 1H, J = 1.60 Hz, C1^{Gle1}-H), 4.87 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.78–4.61 (m, 5H, OCH₂Ph), 4.55–4.49 (m, 2H, OCH₂Ph), 4.00–3.91 (m, 2H, C3^{Gle1}-H and C4^{Gle1}-H), 3.86–3.70 (m, 4H, C2^{Gle1}-H, C5^{Gle1}-H, C6^{Gle1}-H and C6^{Gle1}-H), 3.61–3.54 (m, 1H, OCH), 1.67–1.16 (m, 10H, CH₂); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 138.5, 138.4, 128.3, 128.2, 128.1, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 95.7 (C1^{Gle1}), 80.3, 77.4, 77.0, 76.7, 75.4, 75.1, 74.8, 73.3, 72.6, 72.2, 71.8, 69.4, 33.2, 31.3, 25.7, 24.0, 23.8; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₆O₆Na 645.3192, found 645.3202.

Cyclohexanol 2,3,4,6-tetra-*O*-benzyl-α-D-mannose-pyranoside α-4h:

Following the general procedure of Method **B** using trichloroacetimidate **1h** (46.2 mg, 0.067 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (4.50 mg, 0.045 mmol) in DCM (4.50 mL) at room temperature for 3 hours afforded α/β -4h (24.1 mg, 86% yield, α/β =25:75) as a white solid

(eluent, Toluene–Acetonitrile 15:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.49–7.19 (m, 20H, ArH), 5.02 (d, 1H, J = 12.40 Hz, OCH₂Ph), 4.92–4.89 (m, 2H, OCH₂Ph), 4.64–4.42 (m, 6H, C1^{Glc1}-H and OCH₂Ph), 3.86–3.81 (m, 3H, C2^{Glc1}-H, C4^{Glc1}-H and C6^{Glc1}-H), 3.74–3.69 (m, 2H, C6^{Glc1}-H and OCH), 3.50 (dd, 1H, J = 3.20, 9.20 Hz, C3^{Glc1}-H), 3.47–3.42 (m, 1H, C5^{Glc1}-H), 1.79–1.26 (m, 10H, CH₂); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.9, 138.6, 138.4, 138.3, 128.5, 128.3, 128.1, 127.8, 127.6, 127.5, 127.4, 127.3, 99.5 (C1^{Glc1}), 82.6, 77.3, 77.0, 76.7, 75.9, 75.1, 75.0, 74.1, 73.7, 73.4, 71.4, 69.9, 33.5, 31.6, 25.8, 23.9, 23.7; HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₆O₆Na 645.3192, found 645.3199.

2,3,4,6-tetra-O-benzyl-β-D-rhamnose-pyranoside trichloroacetimidate 1i:

To a magnetically stirred solution of 2,3,4,6-tetra-*O*-benzyl- β -D-rhamnose-pyranoside (60 mg, 0.14 mmol) and CCl₃CN (0.1 mL, 1.11 mmol, 8.0 equiv.) in anhydrous CH₂Cl₂ (3.0 mL), DBU (8.0 μ L, 0.06 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 4:1) to afford compound **1i** (91.3 mg, 98% yield) as a white powder. TLC (hexane–EtOAc, 4:1): $R_{\rm f} = 0.50$, $[\alpha]_{\rm D}^{21} = -29.5$ (c = 0.36, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 8.51 (s, 1H, NH), 7.42–7.25 (m, 15H, ArH), 6.24 (d, 1H, J = 2.00 Hz, C1^{Rha}-H), 4.96 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.78 (s, 2H, OCH₂Ph), 4.67–4.57 (m, 3H, OCH₂Ph), 3.92–3.85 (m, 3H, C5^{Rha}-H, C2^{Rha}-H and C3^{Rha}-H), 3.71 (t, 1H, J = 9.20 Hz, C4^{Rha}-H), 1.35 (d, 1H, J = 6.40 Hz, CH₃); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 160.6, 138.3, 138.1, 137.9, 128.6, 128.5, 128.4, 128.2, 128.0, 127.8, 127.7, 96.0, 79.8, 78.9, 77.3, 77.0, 76.7, 75.6, 73.9, 72.8, 72.3, 71.1, 29.7,18.1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂9H₃₀Cl₃NNaO₅ 600.1087, found 600.1089.

Cyclohexanol 2,3,4,6-tetra-*O*-benzyl-β-D-rhamnose-pyranoside β-4i:

Following the general procedure of Method A using trichloroacetimidate 1i (36.0 mg, 0.062 mmol, 1.5 equiv.) and acceptor cyclohexanol 2a (4.15 mg, 0.041 mmol) in DCM (4.10 mL) at -40°C temperature for 12 hours afforded α/β -4i (19.1 mg, 90% yield, α/β =52:48) as a white solid (eluent, Toluene–Ethyl acetate 15:1). $[\alpha]_{D}^{21} = -45.9$ (c = 1.3, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.50–7.23 (m, 15H, ArH), 5.02–4.89 (m, 3H, OCH₂Ph), 4.65 (d, 1H, J = 10.80 Hz, OCH₂Ph),

4.51–4.40 (m, 3H, C1^{Glc1}-H and OCH₂Ph), 3.84 (d, 1H, J = 2.80 Hz, C2^{Glc1}-H), 3.71–3.65 (m, 1H, OCH), 3.62 (t, 1H, J = 9.20 Hz, C4^{Glc1}-H), 3.44 (dd, 1H, J = 2.80, 9.20 Hz, C3^{Glc1}-H), 3.32–3.26 (m, 1H, C5^{Glc1}-H), 1.92–1.24 (m, 13H, CH₂); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.9, 138.6, 138.3, 128.5, 128.3, 128.1, 128.0, 127.6, 127.5, 127.4, 127.3, 99.2 (C1^{Glc1}), 82.4,

80.2, 77.3, 77.0, 76.7, 76.2, 75.4, 74.3, 73.7, 71.8, 71.3, 33.4, 31.5, 25.8, 23.8, 23.6, 18.1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₄₀O₅Na 539.2773, found 539.2752.

Cyclohexanol 2,3,4,6-tetra-*O*-benzyl-α-D-rhamnose-pyranoside α-4i:

Following the general procedure of Method **B** using trichloroacetimidate **1i** (39.7 mg, 0.069 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (4.58 mg, 0.046 mmol) in DCM (4.60 mL) at room temperature for 3 hours afforded α/β -4i (20.7 mg, 87% yield, α/β =91:9) as a white solid (eluent, Toluene–Ethyl acetate 15:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.38–7.25 (m, 15H, ArH), 4.94 (d, 1H, J = 10.80 Hz, OCH₂Ph), 4.86 (d, 1H, J = 1.60 Hz, C1^{Glc1}-H), 4.79–4.61 (m, 5H, OCH₂Ph), 3.88 (dd, 1H, J = 3.20, 9.60 Hz), 3.79–3.70 (m, 2H, C5^{Glc1}-H and C2^{Glc1}-H), 3.61 (t, 1H, J = 9.20 Hz, C4^{Glc1}-H), 3.55–3.48 (m, 1H, OCH), 1.76–1.15 (m, 13H, CH₂); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 138.6, 138.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 95.7 (C1^{Glc1}), 80.8, 80.3, 77.4, 77.0, 76.7, 75.6, 75.5, 74.5, 72.8, 72.2, 68.0, 33.3, 31.2, 25.7, 24.0, 23.8, 18.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₄₀O₅Na 539.2773, found 539.2764.

2,3,4-tri-*O*-benzyl-6-dexoy-α-D-glucopyranoside trichloroacetimidate 1j:

To a magnetically stirred solution of 2,3,4-tri-*O*-benzyl-6-dexoy- α -D-glucopyranoside (60 mg, 0.14 mmol) and CCl₃CN (0.14 mL, 1.38 mmol, 10.0 equiv.) in anhydrous CH₂Cl₂ (5.0 mL), DBU (10.0 μ L, 0.07 mmol, 0.5 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 3:1) to afford compound **1j** (79.4 mg, 98% yield) as a white powder. TLC (hexane–EtOAc, 3:1): $R_f = 0.50$, $[\alpha]_D^{21} = +78.3$ (c = 0.56, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 8.55 (s, 1H, NH), 7.31–7.25 (m, 15H, ArH), 6.40 (d, 1H, J = 3.56Hz, C1^{Gle}-H), 4.96 (d, 1H, J = 10.88 Hz, OCH₂Ph), 4.91 (d, 1H, J = 10.92 Hz, OCH₂Ph), 4.82 (d, 1H, J = 10.88 Hz, OCH₂Ph), 4.75–4.63 (m, 3H, OCH₂Ph), 4.04–3.93 (m, 2H, C3^{Gle}-H and C5^{Gle}-H), 3.72 (dd, 1H, J = 3.36, 9.44 Hz, C2^{Gle}-H), 3.22 (t, 1H, J = 9.48 Hz, C4^{Gle}-H), 1.25 (d, 3H, J = 3.24 Hz, CH₃); ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 161.5, 138.6, 138.1, 138.0, 128.5, 128.4, 128.2, 128.1, 127.9, 127.7, 127.6, 94.1 (C1^{Gle}), 91.3, 82.9, 81.2, 79.7, 77.4, 77.0, 76.7, 75.7, 75.6, 72.9, 69.7, 29.7, 18.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂₉H₃₀Cl₃NNaO₅ 600.1087, found 600.1092.

Cyclohexanol 2,3,4-tri-O-benzyl-6-dexoy- β -D-glucopyranoside β -4j:

Following the general procedure of **Method A** using trichloroacetimidate **1j** (46.7 mg, 0.08 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (5.78 mg, 0.05 mmol) in DCM (5.00 mL) at -40°C temperature for 12 hours afforded α/β -4j (23.2 mg, 90% yield, α/β =33/67) as a white solid (eluent, Hex–Ethyl acetate 4:1).; ¹H NMR (CDCl₃, 400 MHz): δ 7.39–7.28 (m, 15H, ArH), 5.02 (d, 1H, *J* = 10.88 Hz, O<u>CH₂Ph</u>), 4.94 (d, 1H, *J* = 10.92 Hz, O<u>CH₂Ph</u>), 4.88 (d, 1H, *J* = 10.84 Hz, O<u>CH₂Ph</u>), 4.80 (d, 1H, *J* = 10.92 Hz, O<u>CH₂Ph</u>), 4.73 (d, 1H, *J* = 10.88 Hz, O<u>CH₂Ph</u>), 4.64 (d, 1H, *J* = 10.84 Hz, O<u>CH₂Ph</u>), 4.51 (d, 1H, *J* = 7.84 Hz, C1^{Gle1}-H), 3.74–3.67 (m, 1H, OCH), 3.62 (t, 1H, *J* = 9.12 Hz, C4^{Gle1}-H), 3.47–3.36 (m, 2H, C2^{Gle1}-H and C5^{Gle1}-H), 3.22 (t, 1H, *J* = 9.12 Hz, C3^{Gle1}-H), 2.01–1.24 (m, 13H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 138.7, 138.6, 138.2, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 101.6 (C1^{Gle1}), 84.7, 83.4, 82.6, 77.3, 77.0, 76.7, 75.7, 75.3, 74.9, 71.0, 33.8, 31.9, 25.6, 24.1, 24.0, 18.0; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₄₀O₅Na 539.2773, found 539.2762.

Cyclohexanol 2,3,4-tri-O-benzyl-6-dexoy-α-D-glucopyranoside α-4j:

Following the general procedure of **Method B** using trichloroacetimidate **1j** (46.7 mg, 0.08 mmol, 1.5 equiv.) and acceptor cyclohexanol **2a** (5.78 mg, 0.05 mmol) in DCM (5.00 mL) at room temperature for 3 hours afforded α/β -4j (24.8 mg, 87% yield, α/β =33/67) as a white solid (eluent, Hex–Ethyl acetate 4:1). [α]²¹_D = +64.3 (c = 0.61, CHCl₃), ¹H NMR (CDCl₃, 400 MHz): δ 7.40–7.28 (m, 15H, ArH), 5.02 (d, 1H, J = 10.76 Hz, O<u>CH₂Ph</u>), 4.92 (d, 1H, J = 10.80 Hz, O<u>CH₂Ph</u>), 4.88 (d, 1H, J = 3.68 Hz, C1^{Glc1}-H), 4.83 (d, 1H, J = 10.72 Hz, O<u>CH₂Ph</u>), 4.77 (d, 1H, J = 11.92 Hz, O<u>CH₂Ph</u>), 4.70–4.64 (m, 2H, O<u>CH₂Ph</u>), 4.00 (t, 1H, J = 9.82 Hz, C3^{Glc1}-H), 3.91–3.84 (m, 1H, C5^{Glc1}-H), 3.56–3.52 (m, 2H, C2^{Glc1}-H and CHO), 3.15 (t, 1H, J = 9.24 Hz, C4^{Glc1}-H), 1.93–1.20 (m, 13H, CH₃); ¹³C{¹H} NMR (CDCl₃, 400 MHz): δ 139.0, 138.4, 128.4, 128.3, 128.0, 94.4 (C1^{Glc1}), 84.1, 80.4, 77.3, 77.0, 76.7, 75.6, 75.4, 75.2, 72.9, 33.4, 31.5, 25.6, 24.5, 24.2; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₃H₄₀O₅Na 539.2773, found 539.2806.

5 Reference

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi,J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
- 2 A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem., 2009, 113, 6378–6396.
- 3 (a) P. C. Hariharan, J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, *Theor. Chem. Acc.*, 1973, 28, 213–222. (b) M. J. Frisch, J. A. Pople, J. S. Binkley, Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, *J. Chem. Phys.*, 1984, 80, 3265–3269.
- 4 M. Dolg, U. Wedig, H. Stoll, H. Preuss, Energy-adjusted ab initio pseudopotentials for the first row transition elements, *J. Chem. Phys.*, 1987, **86**, 866–872.
- 5 A. V. Marenich, C. J. Cramer, D. G Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B., 2009, 113, 6378–6396.
- 6 Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 7 P. Fuentealba, H. Preuss, H. Stoll, L.V. Szentpaly, A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds, *Chem. Phys. Lett.*, 1982, **89**, 418–422.
- 8 S. Kim, S. Song, T. Lee, S. Jung, D. Kim, Practical Synthesis of KRN7000 from Phytosphingosine, Synthesis, 2004, 6, 847-850
- 9. C. Bucher, Prof. Dr. Ryan Gilmour, Fluorine-Directed Glycosylation, *Angew. Chew.*, 2010, **122**, 8906-8910

6 NMR Spectrums of Compounds

Figure S2. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-1a

Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of β-1a

Figure S4. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -1a

Figure S5. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3a

Figure S6. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -3a

Figure S7. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3a

Figure S9. ¹H NMR (400 MHz, CDCl₃) spectrum of β-3b

Figure S11. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3b

Figure S13. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3c

Figure S17. ¹H NMR (400 MHz, CDCl₃) spectrum of β-3d

S57

Figure S21. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3e

Figure S22. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -3e

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum of **α-3e**

Figure S25. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3f

Figure S28. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-3f

Figure S29. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3g

Figure S31. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3g

Figure S32. ¹³C NMR (400 MHz, CDCl₃) spectrum of α -3g

Figure S33. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3h

Figure S35. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3h

Figure S37. ¹H NMR (400 MHz, CDCl₃) spectrum of

Figure S41. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3j

Figure S42. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -3j

Figure S43. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3j

Figure S44. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-3j

Figure S45. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3k

S84

Figure S47. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3k

Figure S51. ¹H NMR (400 MHz, CDCl₃) spectrum of α-31

Figure S52. ¹³C NMR (400 MHz, CDCl₃) spectrum of α -31

Figure S53. ¹H NMR (400 MHz, CDCl₃) spectrum of β -3m

Figure S55. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3m

Figure S56. ¹³C NMR (400 MHz, CDCl₃) spectrum of α -3m

Figure S58. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -3n

Figure S59. ¹H NMR (400 MHz, CDCl₃) spectrum of α-3n

Figure S60. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-3n

Figure S61. ¹H NMR (400 MHz, CDCl₃) spectrum of 1b

Figure S62. ¹³C NMR (400 MHz, CDCl₃) spectrum of 1b

Figure S63. ¹H NMR (400 MHz, CDCl₃) spectrum of β-4b

Figure S64. ¹³C NMR (400 MHz, CDCl₃) spectrum of β-4b

Figure S67. ¹H NMR (400 MHz, CDCl₃) spectrum of 1c

Figure S68. ¹³C NMR (400 MHz, CDCl₃) spectrum of 1c

Figure S69. ¹H NMR (400 MHz, CDCl₃) spectrum of β-4c

Figure S70. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -4c

Figure S71. ¹H NMR (400 MHz, CDCl₃) spectrum of α/β-4c

Figure S72. ¹³C NMR (400 MHz, CDCl₃) spectrum of α/β -4c

Figure S73. ¹H NMR (400 MHz, CDCl₃) spectrum of α/β-4d (condition A)

Figure S75. ¹H NMR (400 MHz, CDCl₃) spectrum of α/β -4d (condition B)

Figure S78. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-4e

Figure S79. ¹H NMR (400 MHz, CDCl₃) spectrum of α/β -4f

Figure S80. ¹³C NMR (400 MHz, CDCl₃) spectrum of α/β -4f

Figure S81. ¹H NMR (400 MHz, CDCl₃) spectrum of 1g

Figure S82. ¹³C NMR (400 MHz, CDCl₃) spectrum of 1g

Figure S83. ¹H NMR (400 MHz, CDCl₃) spectrum of β -4g

Figure S84. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -4g

Figure S85. ¹H NMR (400 MHz, CDCl₃) spectrum of α-4g

Figure S87. ¹H NMR (400 MHz, CDCl₃) spectrum of 1h

Figure S88. ¹³C NMR (400 MHz, CDCl₃) spectrum of 1h

Figure S89. ¹H NMR (400 MHz, CDCl₃) spectrum of β-4h

Figure S91. ¹H NMR (400 MHz, CDCl₃) spectrum of α-4h

Figure S92. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-4h

Figure S93. ¹H NMR (400 MHz, CDCl₃) spectrum of 1i

Figure S94. ¹³C NMR (400 MHz, CDCl₃) spectrum of 1i

Figure S95. ¹H NMR (400 MHz, CDCl₃) spectrum of β -4i

Figure S97. ¹H NMR (400 MHz, CDCl₃) spectrum of α-4i

Figure S99. ¹H NMR (400 MHz, CDCl₃) spectrum of 1j

Figure S100. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-4i

Figure S101. ¹H NMR (400 MHz, CDCl₃) spectrum of β-4j

Figure S102. ¹³C NMR (400 MHz, CDCl₃) spectrum of β -4j

Figure S103. ¹H NMR (400 MHz, CDCl₃) spectrum of α-4j

Figure S104. ¹³C NMR (400 MHz, CDCl₃) spectrum of α-4j